1
|
Vinther L, Broholm MM, Schittich AR, Haugsted T, McKnight US, Draborg H, Bjerg PL, Wünsch UJ. Fluorescence spectroscopy as an indicator tool for pharmaceutical contamination in groundwater and surface water. CHEMOSPHERE 2025; 372:144009. [PMID: 39716599 DOI: 10.1016/j.chemosphere.2024.144009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Knowledge of contaminant distribution and transport of contaminant plumes in groundwater is important for effective remediation. Tedious and expensive laboratory analyses could be supplemented with optical measurements such as fluorescence to offer a rapid alternative with the potential for on-site measurements. Here, we explore the applicability of fluorescence spectroscopy as an on-site alternative to identifying the extent of a groundwater contaminant plume in Grindsted, Denmark. We show that three abundant contaminants (sulfanilamide, sulfaguanidine, and sulfanilic acid) emit very strong, but highly similar fluorescence distinct from the naturally occurring organic matter. The limit of detection for the sum of these three contaminants was 14 and 142 μg/L using benchtop measurements and handheld sensors, respectively. We demonstrate that low-volume solid-phase extractions can be a tool to lower the detection limits through the selective enrichment of contaminants. However, the co-occurrence of natural and anthropogenic fluorescent organic matter presents a significant challenge for the reliable quantification of contaminants. The high similarity between investigated fluorescent contaminants poses a significant challenge for machine learning approaches that are commonly used to increase sensitivity and selectivity. Nonetheless, the results demonstrate how fluorescence spectroscopy can be applied as a viable indicator and classification tool to identify pharmaceutical contamination in groundwater, as well as surface waters.
Collapse
Affiliation(s)
- Laila Vinther
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Mette M Broholm
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Anna-Ricarda Schittich
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Therese Haugsted
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Ursula S McKnight
- Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 603 82, Norrköping, Sweden
| | - Helene Draborg
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Poul L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Urban J Wünsch
- National Institute of Aquatic Resources, Section for Oceans and Arctic, Technical University of Denmark, Henrik Dams Allé, Building 201, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
3
|
Pan B, Tian H, Pan B, Zhong T, Xin M, Ding J, Wei J, Huang HJ, Tang JQ, Zhang F, Feng NX, Mo CH. Investigating the environmental dynamics of emerging pollutants in response to global climate change: Insights from bibliometrics-based visualization analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177758. [PMID: 39616913 DOI: 10.1016/j.scitotenv.2024.177758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
The environmental dynamics of emerging pollutants were profoundly influenced by global climate change, attracting widespread attention to this complex interaction. However, single studies or reviews were insufficient to grasp, clarify, and predict the evolutionary characteristics and coupling patterns of emerging pollutants under global climate change. Here, 2389 research articles collected from the Web of Science Core Collection database for the period 2000-2023 were analyzed using systematic bibliometric visual analysis software. Results suggested a rapid growth trend in this field study, particularly accelerating after 2015. The United States, China, the United Kingdom, and Spain led in the volume of publications, forming a multidisciplinary research network centered on environmental science. Wastewater treatment, personal care products, pharmaceuticals, and heavy metals were identified as current research hotspots, with climate change emerging as the most prominent keyword. Research focus gradually shifted from single pollutants to multi-pollutant composite effects, from local issues to global-scale assessments, and from phenomenon description to mechanism analysis and risk evaluation. It is concluded that climate change is reshaping the environmental behaviors and ecological risks of emerging pollutants, and multidisciplinary, multi-scale research methods are urgent need. Future research is suggested to strengthen interdisciplinary collaboration, integrate climate and pollutant migration models, and investigate impacts of extreme climate events in depth.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Hong Tian
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Boyou Pan
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ting Zhong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Miao Xin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinhua Ding
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junyu Wei
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing-Qian Tang
- Department of Subject Service and Consultation, Jinan University Library, Guangzhou 510632, China
| | - Fengtao Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Azuma T, Usui M, Hasei T, Hayashi T. Occurrence and environmental fate of anti-influenza drugs in a subcatchment of the Yodo River Basin, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176086. [PMID: 39260509 DOI: 10.1016/j.scitotenv.2024.176086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Understanding the current situation and risk of environmental contamination by anti-influenza drugs in aquatic environments is key to prevent the unexpected emergence and spread of drug-resistant viruses. However, few reports have been focused on newer drugs that have recently been introduced in clinical settings. In this study, the behaviour of the prodrug baloxavir marboxil (BALM)-the active ingredient of Xofluza, an increasingly popular anti-influenza drug-and its pharmacologically active metabolite baloxavir (BAL) in the aquatic environment was evaluated. Additionally, their presence in urban rivers and a wastewater treatment plant (WWTP) in the Yodo River basin was investigated and compared with those of the major anti-influenza drugs used to date (favipiravir (FAV), peramivir (PER), laninamivir (LAN), and its active metabolite, laninamivir octanoate (LANO), oseltamivir (OSE), and its active metabolite, oseltamivir carboxylate (OSEC), and zanamivir (ZAN)) to comprehensively assess their environmental fate in the aquatic environment. The results clearly showed that BALM, FAV, and BAL were rapidly degraded through photolysis (2-h, 0.6-h, and 0.4-h half-lives, respectively), followed by LAN, which was gradually biodegraded (7-h half-life). In addition, BALM and BAL decreased by up to 47 % after 4 days and 34 % after 2 days of biodegradation in river water. However, the remaining conventional drugs, except for LANO (<1 % after 10 days), were persistent, being transported from the upstream to downstream sites. The LogKd values for the rates of sorption of BALM (0.5-1.6) and BAL (1.8-3.1) on river sediment were higher than those of conventional drugs (-0.5 to 1.7). Notably, all anti-influenza drugs were effectively removed by ozonation (>90-99.9 % removal) after biological treatment at a WWTP. Thus, these findings suggest the importance of introducing ozonation to reduce pollution loads in rivers and the environmental risks associated with drug-resistant viruses in aquatic environments, thereby promoting safe river environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
5
|
Alfian SD, Azzahra AM, Khoiry QA, Griselda M, Puspitasari IM, Abdulah R. Pharmacists perspectives on challenges and facilitators in initiating medications take-back program in Indonesia: A qualitative study. SAGE Open Med 2024; 12:20503121241290968. [PMID: 39434985 PMCID: PMC11492182 DOI: 10.1177/20503121241290968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Objective The establishment of a medication take-back program is an important intervention to prevent the improper disposal of expired or unused household medications. However, such a program has not been established in Indonesia. A significant step in establishing the program is to gain a better understanding of pharmacists' perspectives on the associated challenges and facilitators. Therefore, this study aimed to explore pharmacists' perspectives on the associated challenges and facilitators in initiating medications take-back program in Indonesia. Methods This qualitative study was conducted through Key Informant Interviews with a purposive sample of nine pharmacists working in community health centers (CHC) in Bandung City, Indonesia. The discussions were transcribed, coded, and analyzed using Atlas.ti9 software. Results Pharmacists' perspectives on initiating medications take-back program were categorized into two main themes, including challenges and facilitators. The identified challenges comprised a lack of personnel, financial constraints, geographical constraints, lack of facilities, and inadequate knowledge. Meanwhile, the facilitators included the good responsibility of pharmacists, incentives, and convenient locations. Conclusion The identified challenges and facilitators should be considered when initiating medication take-back programs in Indonesia.
Collapse
Affiliation(s)
- Sofa D Alfian
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Annisa M Azzahra
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Qisty A Khoiry
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Meliana Griselda
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Irma M Puspitasari
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
6
|
Abajo Z, Domingo-Echaburu S, Évora C, Pereda J, Alvarez-Lorenzo C, Rabasco AM, De la Casa-Resino I, Carapeto R, Argaluza J, Lertxundi U, Orive G. A Cross-Sectional Study to Assess the Knowledge of Pharmacy Students About Drug Pollution in Spain. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2024; 88:101254. [PMID: 39059471 DOI: 10.1016/j.ajpe.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
The presence of pharmaceuticals in the environment is an issue of growing concern. The European Commission adopted the "European Union Strategic Approach to Pharmaceuticals in the Environment", which focuses on actions to reduce the risk of pharmaceuticals in the environment, including how environmental aspects can become part of medical training programs. OBJECTIVE Obtain data from pharmacy students about pharmaceutical pollution to provide information about the training needs that may help develop new actions related to the training and dissemination of this issue. METHODS A total of 1614 pharmacy students from 5 Schools of Pharmacy in Spain completed a self-administered questionnaire consisting of 24 questions: 13 about knowledge, 8 related to attitude, and 3 to opinion. RESULTS Around 75% of students reported that they did not know "One Health" or "emerging pollutant" concepts and around 88% declared that they did not know that diclofenac caused a catastrophic vulture decline in Asia. The importance of this topic and their attitude to acquiring new knowledge was evaluated higher than 8 points out of 10, while received training during their studies was a score of 2.8 points out of 10. CONCLUSION The knowledge about key concepts was relatively poor. In fact, they judged training about pharmaceuticals in the environment during their pharmacy studies was very scarce. However, students consider drug pollution to be a very important issue and have a very good attitude toward acquiring knowledge about it.
Collapse
Affiliation(s)
- Zuriñe Abajo
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Arrasate, Gipuzkoa, Spain
| | - Carmen Évora
- Dpto. Ingeniería Química y Tecnología Farmacéutica Facultad de Farmacias, Instituto de Tecnologías Biomédicas (ITB) Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Santiago, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio M Rabasco
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Sevilla, Sevilla, Spain
| | | | - Ricardo Carapeto
- Spanish Medicines and Medical Devices Agency, Ministry of Health, Madrid, Spain
| | - Julene Argaluza
- Epidemiology and Public Health Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Agustin MB, Lahtinen MH, Kemell M, Oliaei E, Mikkonen KS, Grönqvist S, Lehtonen M. Enzymatic crosslinking of lignin nanoparticles and nanocellulose in cryogels improves adsorption of pharmaceutical pollutants. Int J Biol Macromol 2024; 266:131168. [PMID: 38552694 DOI: 10.1016/j.ijbiomac.2024.131168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents. Here, cryogels from lignin-containing cellulose nanofibrils (LCNF) and lignin nanoparticles (LNPs) were explored as pharmaceuticals adsorbents. An enzyme-based approach using laccase was used for crosslinking instead of fossil-based chemical modification. The impact of laccase treatment on LNPs alone produced surface-crosslinked water-insoluble LNPs with preserved morphology and a hemicellulose-rich, water-soluble LNP fraction. The water-insoluble LNPs displayed a significant increase in adsorption capacity, up to 140 % and 400 % for neutral and cationic drugs, respectively. The crosslinked cryogel prepared by one-pot incubation of LNPs, LCNF and laccase showed significantly higher adsorption capacities for various pharmaceuticals in a multi-component system than pure LCNF or unmodified cryogels. The crosslinking minimized the leaching of LNPs in water, signifying enhanced binding between LNPs and LCNF. In real wastewater, the laccase-modified cryogel displayed 8-44 % removal for cationic pharmaceuticals. Overall, laccase treatment facilitated the production of bio-based adsorbents by improving the deposition of LNPs to LCNF. Finally, this work introduces a sustainable approach for engineering adsorbents, while aligning with global sustainability goals.
Collapse
Affiliation(s)
- Melissa B Agustin
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland; Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Maarit H Lahtinen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Erfan Oliaei
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Stina Grönqvist
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Mari Lehtonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland
| |
Collapse
|
8
|
Alfian SD, Rendrayani F, Khoiry QA, Pratama MA, Griselda M, Pradipta IS, Nursiswati N, Abdulah R. Do pharmacists counsel customers on the disposal of unused or expired household medications? A national survey among 1,596 pharmacists in Indonesia. Saudi Pharm J 2024; 32:102020. [PMID: 38525264 PMCID: PMC10960135 DOI: 10.1016/j.jsps.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Pharmacists play a vital role in counseling customers on proper medication disposal, yet their consistency in providing such information is often lacking. This study aimed to assess pharmacists' awareness of appropriate disposal practices for unused and expired household medications. Additional objectives included evaluating whether pharmacists offer disposal information during counseling, measuring their willingness to receive medication waste from the public, and identifying associated factors. Methods A national cross-sectional online survey employing convenience sampling was conducted among pharmacists working in hospitals, pharmacies, clinics, or community health centers (CHCs) in Indonesia, using a validated questionnaire to assess awareness, information provision, and willingness to receive medications for disposal. Binary logistic regression, with 95% confidence intervals (CI) and odds ratios (OR), explored potential associations between factors and outcomes. Results This study involved 1,596 pharmacists across 37 Indonesian provinces. Most pharmacists were women (80.4 %), aged 31-40 years (49.3 %), with a pharmacist professional background (93.8 %), working in CHCs (41.2 %), and practicing for 1-5 years (51.0 %). More than half were unaware of guidelines for returning medications to health facilities. While 69.9 % never counseled customers on disposal practices, 64.9 % expressed willingness to receive unused and expired medication from the public. Pharmacists practicing for at least six years were more likely to provide disposal information during counseling (OR: 2.54; 95 % CI: 1.44-4.47). Conversely, those in clinics (OR: 2.16; 95 % CI: 1.29-3.62), CHCs (OR: 2.07; 95 % CI: 1.45-2.95), or hospitals (OR: 2.00; 95 % CI: 1.27-3.14) were more likely to be unwilling to receive expired and unused household medication. Conclusions The study reveals that most pharmacists, particularly those with limited practice duration, lacked awareness regarding the importance of proper medication disposal and did not provide counseling on appropriate medication disposal to patients. To address this issue, there is a pressing need for intensified education intensified education at the undergraduate level, continuous training for pharmacists, and a clear policy and practical guidelines, particularly targeting pharmacists in clinics, CHCs, and hospitals, to facilitate the acceptance of unused and expired household medications.
Collapse
Affiliation(s)
- Sofa D. Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Farida Rendrayani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Qisty A. Khoiry
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mochammad A.A. Pratama
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Meliana Griselda
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivan Surya Pradipta
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | | | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
9
|
Azuma T, Matsunaga N, Ohmagari N, Kuroda M. Development of a High-Throughput Analytical Method for Antimicrobials in Wastewater Using an Automated Pipetting and Solid-Phase Extraction System. Antibiotics (Basel) 2024; 13:335. [PMID: 38667011 PMCID: PMC11605239 DOI: 10.3390/antibiotics13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 12/01/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged and spread globally. Recent studies have also reported the presence of antimicrobials in a wide variety of aquatic environments. Conducting a nationwide monitoring survey of AMR in the environment to elucidate its status and to assess its impact on ecosystems and human health is of social importance. In this study, we developed a novel high-throughput analysis (HTA) system based on a 96-well plate solid-phase extraction (SPE), using automated pipetting and an SPE pre-treatment system. The effectiveness of the system as an HTA for antimicrobials in environmental water was verified by comparing it with a conventional manual analytical system in a domestic hospital over a period of two years and four months. The results of the manual analysis and HTA using a combination of automated pipetting and SPE systems were generally consistent, and no statistically significant difference was observed (p > 0.05) between the two systems. The agreement ratios between the measured concentrations based on the conventional and HTA methods were positively correlated with a correlation coefficient of r = 0.99. These results indicate that HTA, which combines automated pipetting and an SPE pre-treatment system for rapid, high-volume analysis, can be used as an effective approach for understanding the environmental contamination of antimicrobials at multiple sites. To the best of our knowledge, this is the first report to present the accuracy and agreement between concentrations based on a manual analysis and those measured using HTA in hospital wastewater. These findings contribute to a comprehensive understanding of antimicrobials in aquatic environments and assess the ecological and human health risks associated with antimicrobials and antimicrobial-resistant bacteria to maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
10
|
Kwizera E, Rumbeiha WK, Nishimwe K, Nziza J. A survey to document toxic hazards in the zone surrounding volcanoes national park, a habitat for mountain gorillas, an endangered wildlife species in Rwanda. Front Vet Sci 2024; 10:1320162. [PMID: 38234986 PMCID: PMC10791935 DOI: 10.3389/fvets.2023.1320162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction In recent years, Volcanoes National Park has seen a rise in its wildlife population, primarily due to the diligent efforts of the Rwandan government in safeguarding endangered species, notably the mountain gorillas (Gorilla beringei spp. beringei). This population growth has led to a pressing need for more expansive habitats, ensuring these creatures have ample space, sustenance, and shelter for their wellbeing. Consequently, there are planned park expansion activities on the horizon. However, before initiating this expansion, a critical prelude involves identifying potential threats, particularly toxic substances stemming from agricultural activities in the surrounding environment of Volcanoes National Park. Methods To address this concern, a comprehensive study was conducted, aimed at pinpointing potential toxic hazards and assessing the awareness of the local population regarding the harm these hazards pose to wildlife species. Data was collected from individuals with no prior knowledge of the study using a pre-tested questionnaire. The questionnaire was divided into three sections: socio-demographic issues, potential toxic hazards assessment, and a section to determine awareness and risk of potential toxic hazards to humans, animals, and the environment. Respondents were selected based on specific criteria, which included being 18 years or older and residing within the National Volcano Park (NVP) area. Results The study's findings revealed four main categories of potential toxic hazards, which include household chemicals, pharmaceutical products, agricultural pesticides, and poisonous plants. These hazards could jeopardize the health and survival of wildlife species if they consume or come into contact with them. Furthermore, the study exposed an inadequacy in the knowledge and skills of the local community in preventing these toxic hazards, which can result in death of wildlife species and ecosystem contamination and degradation. Conclusion Study results also underscored the significance of education and training in enhancing the awareness of local communities concerning these toxic threats. Therefore, it is imperative to implement immediate measures to mitigate the adverse effects of these toxic hazards on wildlife species, especially in light of the planned park expansion.
Collapse
Affiliation(s)
- Enock Kwizera
- Department of Veterinary Medicine, University of Rwanda, Nyagatare, Rwanda
| | - Wilson K. Rumbeiha
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | - Kizito Nishimwe
- Department of Food Science and Technology, University of Rwanda, Musanze, Rwanda
| | | |
Collapse
|
11
|
Cannata C, Backhaus T, Bramke I, Caraman M, Lombardo A, Whomsley R, Moermond CTA, Ragas AMJ. Prioritisation of data-poor pharmaceuticals for empirical testing and environmental risk assessment. ENVIRONMENT INTERNATIONAL 2024; 183:108379. [PMID: 38154319 DOI: 10.1016/j.envint.2023.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
There are more than 3,500 active pharmaceutical ingredients (APIs) on the global market for human and veterinary use. Residues of these APIs eventually reach the aquatic environment. Although an environmental risk assessment (ERA) for marketing authorization applications of medicinal products is mandatory in the European Union since 2006, an ERA is lacking for most medicines approved prior to 2006 (legacy APIs). Since it is unfeasible to perform extensive ERA tests for all these legacy APIs, there is a need for prioritization of testing based on the limited data available. Prioritized APIs can then be further investigated to estimate their environmental risk in more detail. In this study, we prioritized more than 1,000 APIs used in Europe based on their predicted risk for aquatic freshwater ecosystems. We determined their risk by combining an exposure estimate (Measured or Predicted Environmental Concentration; MEC or PEC, respectively) with a Predicted No Effect Concentration (PNEC). We developed several procedures to combine the limited empirical data available with in silico data, resulting in multiple API rankings varying in data needs and level of conservativeness. In comparing empirical with in silico data, our analysis confirmed that the PEC estimated with the default parameters used by the European Medicines Agency often - but not always - represents a worst-case scenario. Comparing the ecotoxicological data for the three main taxonomic groups, we found that fish represents the most sensitive species group for most of the APIs in our list. We furthermore show that the use of in silico tools can result in a substantial underestimation of the ecotoxicity of APIs. After combining the different exposure and effect estimates into four risk rankings, the top-ranking APIs were further screened for availability of ecotoxicity data in data repositories. This ultimately resulted in the prioritization of 15 APIs for further ecotoxicological testing and/or exposure assessment.
Collapse
Affiliation(s)
- Cristiana Cannata
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands.
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Irene Bramke
- Global Sustainability, AstraZeneca, Den Haag, the Netherlands
| | - Maria Caraman
- European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Anna Lombardo
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Rhys Whomsley
- European Medicines Agency (EMA), Amsterdam, the Netherlands
| | - Caroline T A Moermond
- Centre for Safety of Substances and Products (VSP), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Welch SA, Moe SJ, Sharikabad MN, Tollefsen KE, Olsen K, Grung M. Predicting Environmental Risks of Pharmaceuticals from Wholesale Data: An Example from Norway. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2253-2270. [PMID: 37341554 DOI: 10.1002/etc.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/03/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Environmental risk assessment (ERA) of pharmaceuticals relies on available measured environmental concentrations, but often such data are sparse. Predicted environmental concentrations (PECs), calculated from sales weights, are an attractive alternative but often cover only prescription sales. We aimed to rank, by environmental risk in Norway, approximately 200 active pharmaceutical ingredients (APIs) over 2016-2019, based on sales PECs. To assess the added value of wholesale and veterinary data, we compared exposure and risk predictions with and without these additional sources. Finally, we aimed to characterize the persistence, mobility, and bioaccumulation of these APIs. We compared our PECs to available Norwegian measurements, then, using public predicted-no-effect concentrations, we calculated risk quotients (RQs) and appended experimental and predicted persistence and bioaccumulation. Our approach overestimated environmental concentrations compared with measurements for 18 of 20 APIs with comparable predictions and measurements. Seventeen APIs had mean RQs >1, indicating potential risk, while the mean RQ was 2.05 and the median 0.001, driven by sex hormones, antibiotics, the antineoplastic abiraterone, and common painkillers. Some high-risk APIs were also potentially persistent or bioaccumulative (e.g., levonorgestrel [RQ = 220] and ciprofloxacin [RQ = 56]), raising the possibility of impacts beyond their RQs. Exposure and risk were also calculated with and without over-the-counter sales, showing that prescriptions explained 70% of PEC magnitude. Likewise, human sales, compared with veterinary, explained 85%. Sales PECs provide an efficient option for ERA, designed to overestimate compared with analytical techniques and potentially held back by limited data availability and an inability to quantify uncertainty but, nevertheless, an ideal initial approach for identification and ranking of risks. Environ Toxicol Chem 2023;42:2253-2270. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| | | | - Merete Grung
- Norwegian Institute for Water Research, Oslo, Norway
| |
Collapse
|
13
|
Hernández Martínez SA, Melchor-Martínez EM, González-González RB, Sosa-Hernández JE, Araújo RG, Rodríguez-Hernández JA, Barceló D, Parra-Saldívar R, Iqbal HMN. Environmental concerns and bioaccumulation of psychiatric drugs in water bodies - Conventional versus biocatalytic systems of mitigation. ENVIRONMENTAL RESEARCH 2023; 229:115892. [PMID: 37084948 PMCID: PMC10114359 DOI: 10.1016/j.envres.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.
Collapse
Affiliation(s)
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDEA-CSIC, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Cientific i Tecnològic de la Universitat de Girona, Edifici H(2)O, Girona, Spain; Sustainability Cluster, School of Engineering UPES, Dehradun, India
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico.
| |
Collapse
|
14
|
Esterhuizen M, Pflugmacher S. Phytoremediation of diclofenac using the Green Liver System: Macrophyte screening to system optimization. N Biotechnol 2023; 76:82-89. [PMID: 37217117 DOI: 10.1016/j.nbt.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Green Liver Systems employ the ability of macrophytes to take up, detoxify (biotransform), and bioaccumulate pollutants; however, these systems require optimization to target specific pollutants. In the present study, the aim was to test the applicability of the Green Liver System for diclofenac remediation considering the effects of selected variables. As a starting point, 42 macrophyte life forms were evaluated for diclofenac uptake. With the three best performing macrophytes, the system efficiency was evaluated at two diclofenac concentrations, one environmentally relevant and that other significantly higher (10µg/L and 150µg/L) and in two system sizes (60L and 1000L) as well as at three flow rates (3, 7, and 15L/min). The effect of single species and combinations on removal efficiency was also considered. The highest internalization percentage was recorded in Ceratophyllum spp., Myriophyllum spp., and Egeria densa. Phytoremediation efficiency with species combinations was far superior to utilizing only a single macrophyte type. Furthermore, the results indicate that the flow rate significantly affected the removal efficiency of the pharmaceutical tested, with the highest remediation efficiency obtained with the highest flow rate. System size did not significantly affect phytoremediation; however, increase diclofenac concentration reduced the systems performance significantly. When planning the setup of a Green Liver System for wastewater remediation, basic knowledge about the water, i.e., pollutant types and flow, must be utilized during planning to optimize remediation. Various macrophytes show diverse uptake efficiencies for different contaminants and should be selected based on the pollutant composition of the wastewater.
Collapse
Affiliation(s)
- Maranda Esterhuizen
- Ecosystem and Environmental Research Program Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Fabianinkatu 33, 00014 Helsinki, Finland; Korea Institute of Science and Technology Europe (KIST EU), Joint Laboratory of Applied Ecotoxicology, Campus 7.1, 66123 Saarbrücken, Germany; Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg, 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada.
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg, 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Adamczuk M. Environmentally realistic concentrations of ibuprofen influence life histories but not population dynamics of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157783. [PMID: 35926623 DOI: 10.1016/j.scitotenv.2022.157783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug that can be found in freshwater ecosystems. Due to its current presence in aquatic ecosystems, this pharmaceutical has aroused concerns about its impact on aquatic biota. As a result, ibuprofen is the one of the most frequently studied pharmaceuticals. However, most of these studies focus on short-term observations of biomarkers and physiological endpoints. This paper presents the outcomes of whole-life-cycle observations and six-month observations of the population dynamics of Daphnia magna reared under the influence of 1 μg/L, 2 μg/L and 4 μg/L of ibuprofen. Individuals reared under the influence of ibuprofen grew slowly, matured later and lived longer. Moreover, they displayed a higher reproduction rate and carried smaller broods but delivered larger neonates. Ibuprofen in concentrations of 1 μg/L and 2 μg/L had the most significant effect on the above traits. The observed impact of ibuprofen at the individual level did not transfer to population size and dynamics. All the populations represented a typical boom and bust cycle with restricted reproduction during the periods of highest population size. This is the first study to explore the linkage between the life histories of aquatic invertebrates and the actual response of their populations to the occurrence of ibuprofen in the environment. The study emphasizes the need to apply the protocol of whole life-cycle observation in tandem with population scrutiny, since such a protocol can reveal the virtual responses of aquatic biota to the presence of chemicals in the environment.
Collapse
Affiliation(s)
- Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences, B. Dobrzańskiego 37, 20-262 Lublin, Poland.
| |
Collapse
|
16
|
MOF-templated core–shell CoSx@BiOBr Z-type heterojunction degradation of multiple antibiotics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
18
|
Ojemaye CY, Petrik L. Pharmaceuticals and Personal Care Products in the Marine Environment Around False Bay, Cape Town, South Africa: Occurrence and Risk-Assessment Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:614-634. [PMID: 33783837 DOI: 10.1002/etc.5053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the marine environment has been increasing as a result of anthropogenic activities. The preservation of marine ecosystems as well as the safety of harvested seafood are nowadays a global concern. In the present study, levels of pharmaceuticals and personal care products were assessed in different environmental compartments in the near-shore marine environment of False Bay, Cape Town, South Africa. The study revealed the presence of these persistent chemical compounds in different environmental samples from this location. Diclofenac was the most dominant compound detected, with higher concentration than the other pharmaceutical compounds, as well as being present in almost all the samples from the different sites (seawater, 3.70-4.18 ng/L; sediment, 92.08-171.89 ng/g dry wt; marine invertebrates, 67.67-780.26 ng/g dry wt; seaweed, 101.50-309.11 ng/g dry wt). The accumulation of pharmaceuticals and personal care products in the different species of organisms reflects the increasing anthropogenic pressure taking place at the sampling sites along the bay, as a result of population growth, resident lifestyle as well as poorly treated sewage effluent discharge from several associated wastewater-treatment plants. The concentration of these contaminants is in the order marine biota > sediments > seawater. The contaminants pose a low acute and chronic risk to the selected trophic levels. A public awareness campaign is needed to reduce the pollution at the source, as well as wastewater discharge limits need to be more stringent. Environ Toxicol Chem 2022;41:614-634. © 2021 SETAC.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
19
|
Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF. Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Removal of amoxicillin in aqueous solutions by a chemical activated carbons derived from Jujube nuts: adsorption behaviors, kinetic and thermodynamic studies. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02159-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Rodrigues P, Oliva-Teles L, Guimarães L, Carvalho AP. Occurrence of Pharmaceutical and Pesticide Transformation Products in Freshwater: Update on Environmental Levels, Toxicological Information and Future Challenges. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:14. [PMCID: PMC9734374 DOI: 10.1007/s44169-022-00014-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/28/2022] [Indexed: 09/06/2024]
Abstract
Pharmaceuticals and pesticides are recognized micropollutants in freshwater systems. Their ever-increasing frequency of detection, levels found and little information available about their effects on non-target organisms, make them emerging contaminants. However, parental compounds are not the only substances of concern. Their metabolites and degradation products, hereby referred to as transformation products, are increasingly detected in freshwater samples and wastewater effluents. In the past years, a wealth of publications provided concentration levels detected in freshwater and some toxicological data, which required critical systematization. This review identified concentrations for 190 transformation products (92 from pesticides and 98 from pharmaceuticals) in water bodies and wastewater effluents. A concentration heatmap was produced to easily spot the substances found at higher levels and plan future research. The very limited available toxicological data link exposure to transformation products to adverse outcomes in humans (genotoxicity and alteration in detoxification processes) and aquatic species (mostly related to apical endpoints). Overall, environmental levels of these transformation products may pose a severe threat to aquatic organisms and need to be further investigated in sound experimental designs, testing for the effects of the single substances as well as of their mixtures. Such toxicological information is highly needed to improve both water treatment technologies and monitoring programmes.
Collapse
Affiliation(s)
- P. Rodrigues
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - L. Oliva-Teles
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| | - L. Guimarães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| | - A. P. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/n, 4450-208 Matosinhos, Portugal
- Department of Biology, FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal
| |
Collapse
|
22
|
Björklund E, Svahn O. Total Release of 21 Indicator Pharmaceuticals Listed by the Swedish Medical Products Agency from Wastewater Treatment Plants to Surface Water Bodies in the 1.3 Million Populated County Skåne (Scania), Sweden. Molecules 2021; 27:77. [PMID: 35011310 PMCID: PMC8746806 DOI: 10.3390/molecules27010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
In 2017, the Swedish Environmental Protection Agency published a report on advanced wastewater treatment for the removal of pharmaceutical residues and stated that advanced treatment should be implemented where it will make the largest difference from an environmental perspective. However, the report also concluded that this need cannot be specified with existing data, but consideration must be made of local conditions. Two considerations are (1) the discharged amount of pharmaceutical into receiving water bodies and (2) the turnover of water in the recipient, where the highest risks are related to recipients with a low water turnover and low dilution. The current project comprised eight different WWTPs distributed throughout the entire County Skåne (Scania) in Sweden, with a population of ca. 1,300,000 persons. In total, 21 of 22 pharmaceuticals were analyzed according to the list proposed by the Swedish Medical Products Agency 2015. The results show that large amounts of pharmaceuticals are released from the WWTPs yearly to Scanian recipients. The total discharge of pharmaceuticals from the eight treatment plants adds up to 71 kg of these 21 substances alone, mainly comprising metoprolol, which is a drug that lowers blood pressure, and the analgesic drug diclofenac. Additionally, carbamazepine, losartan, naproxen and oxazepam were present in significant concentrations. These represented three illnesses that are very common: high blood pressure, inflammation/pain and depression/anxiety. The concentrations were generally in line with previous national Swedish screenings. It was estimated that, when one million cubic meters (1,000,000 m3) of wastewater is discharged, almost 4 kg of the 21 pharmaceuticals is released. The total volume wastewater release by the >90 WWTPs in Scania was estimated to 152,887,000 m3, which corresponded to 590 kg/year. The investigated 21 drugs cover only a small part of many hundred pharmaceuticals that are in use in Sweden. Thus, most likely, one or several tons of pharmaceuticals leak out to the Scanian recipients annually. The analysis of river samples shows that the dilution of wastewater is a key parameter in reducing concentrations. However, some locations have remarkably high concentrations, which occur when the volume wastewater is large in relation to the flow in the river. These kinds of regional results are of importance when selecting where advanced treatment should be prioritized in a first instance, as requested by the Swedish EPA.
Collapse
Affiliation(s)
- Erland Björklund
- Department of Environmental Science and Bioscience, Kristianstad University, Elmetorpsvägen 15, SE-291 88 Kristianstad, Sweden
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Elmetorpsvägen 15, SE-291 88 Kristianstad, Sweden
| |
Collapse
|
23
|
Domingo-Echaburu S, Dávalos LM, Orive G, Lertxundi U. Drug pollution & Sustainable Development Goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149412. [PMID: 34391154 DOI: 10.1016/j.scitotenv.2021.149412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The United Nations set "The 2030 Agenda for Sustainable Development," which includes the Sustainable Development Goals (SDGs), a collection of 17 global goals designed to be a "blueprint to achieve a better and more sustainable future for all". Although only mentioned in one of the seventeen goals (goal 3), we argue that drugs in general, and growing drug pollution in particular, affects the SDGs in deeper, not readily apparent ways. So far, the emerging problem of drug pollution has not been sufficiently addressed. Here, we outline and discuss how drug pollution can affect SDGs and even threaten their achievement.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - L M Dávalos
- Department of Ecology and Evolution, Stony Brook University, 626 Life Sciences Building, Stony Brook, NY 11794, USA; Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, 129 Dana Hall, Stony Brook, NY 11794, USA
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
24
|
Fiaz M, Ahmed I, Riaz R, Nawaz U, Arshad M. Prevalence of antibiotic-resistant bacterial strains in wastewater streams: molecular characterization and relative abundance. Folia Microbiol (Praha) 2021; 66:1023-1037. [PMID: 34339002 DOI: 10.1007/s12223-021-00902-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Bacteria from wastewater discharged to the sewerage near three hospitals of Islamabad, Rawalpindi, and Faisalabad were examined for resistance to the most commonly prescribed antibiotics in Pakistan. From the selected sites, a total of 109 isolates from 40 different species were identified based on 16S rRNA gene sequence and phylogeny. The isolates were tested for their resistance to ciprofloxacin, levofloxacin, ofloxacin, amoxicillin, and ampicillin. The results indicated that the isolates were resistant with the highest percentage to ampicillin and the lowest percentage to ciprofloxacin. Among the resistant isolates, 91.7% were found resistant to ampicillin, 83.5% to amoxicillin, 67.0% to ofloxacin, whereas only 27.5% to ciprofloxacin and 21.1% to levofloxacin. Among three sampled locations, the most of resistance was observed in Escherichia and Acinetobacter species. More than 30% isolated microorganisms were found resistant to more than three antibiotics. These findings concluded the presence of predominant microbial population resistant to antibiotics in wastewater channels near hospitals and its surroundings, which requires further investigation regarding their existence and spread in other environmental media having potential community health implications.
Collapse
Affiliation(s)
- Marium Fiaz
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iftikhar Ahmed
- Microbial Genetic Resources Program, Bio-Resources Conservation Institute (BCI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Rabaila Riaz
- Microbial Genetic Resources Program, Bio-Resources Conservation Institute (BCI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Uzma Nawaz
- Department of Statistics, Government Graduate College, Sahiwal, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
25
|
YUNUSA U, UMAR U, IDRİSS S, IBRAHİM A, ABDULLAHİ T. Experimental and DFT Computational Insights on the Adsorption of Selected Pharmaceuticals of Emerging Concern from Water Systems onto Magnetically Modified Biochar. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.900197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Khan AH, Aziz HA, Khan NA, Dhingra A, Ahmed S, Naushad M. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148484. [PMID: 34217082 DOI: 10.1016/j.scitotenv.2021.148484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of pharmaceutical residues in the aquatic ecosystem is an emerging concern of environmentalists. This study primarily investigated the seasonal variation of high-priority pharmaceutical residues in the Yamuna River, accompanied by 22 drains discharge from different parts of Delhi. Five sampling sites were selected for analyzing high-priority pharmaceuticals along with physico-chemical and biological parameters for 3 season's viz. pre-monsoon (PrM), monsoon (DuM), and post-monsoon (PoM), respectively. The maximum occurrences were detected during the PoM, compared to the PrM and DuM seasons. The maximum concentration of BOD, COD, and Phosphate was detected at the last sampling station (SP-5). Similarly, all targeted pharmaceuticals concentration were maximum at the last sampling point i.e. Okhla barrage (SP-5, max: DIC = 556.1 ng/l, IBU = 223.4 ng/l, CAR = 183.1 ng/l, DIA = 457.8 ng/l, OFL = 1726.5 ng/l, FRU = 312.2 ng/l and SIM = 414.9 ng/l) except at Barapulla downstream (SP-4, max: ERY = 178.1 ng/l). The mean concentrations of Fecal coliform (FC) ranged from 1700 to 6500 CFU/100 ml. The maximum colonies were detected in PrM season (6500 CFU/100 ml) followed by PoM (5800 CFU/100 ml) and least in DuM (1700 CFU/100 ml). Risk quotient (RQ) analysis of high-priority pharmaceuticals indicated high ecotoxicological risks exposure (>1) from DIC, DIA, OFL, and SIM in all seasons at all the sampling sites. However, lower risk was predicted for IBU, CAR, ERY, and FRU, respectively. This risk assessment indicated an aquatic ecosystem potentially exposed to high risks from these pharmaceutical residues. Moreover, seasonal agricultural application, rainfall, and temperature could influence the levels and compositions of pharmaceutical residue in the aquatic ecosystem. Hence, attention is required particularly to this stream since it is only a local lifeline source for urban consumers for domestic water supply and farmers for cultivation.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Aastha Dhingra
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Sirajuddin Ahmed
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Argaluza J, Domingo-Echaburu S, Orive G, Medrano J, Hernandez R, Lertxundi U. Environmental pollution with psychiatric drugs. World J Psychiatry 2021; 11:791-804. [PMID: 34733642 PMCID: PMC8546762 DOI: 10.5498/wjp.v11.i10.791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Among all contaminants of emerging interest, drugs are the ones that give rise to the greatest concern. Any of the multiple stages of the drug's life cycle (production, consumption and waste management) is a possible entry point to the different environmental matrices. Psychiatric drugs have received special attention because of two reasons. First, their use is increasing. Second, many of them act on phylogenetically highly conserved neuroendocrine systems, so they have the potential to affect many non-target organisms. Currently, wastewater is considered the most important source of drugs to the environment. Furthermore, the currently available wastewater treatment plants are not specifically prepared to remove drugs, so they reach practically all environmental matrices, even tap water. As drugs are designed to produce pharmacological effects at low concentrations, they are capable of producing ecotoxicological effects on microorganisms, flora and fauna, even on human health. It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain. Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties, a large number of stakeholders with different values and interests, and enormous complexity. Possible solutions consist on acting at source, using medicines more rationally, eco-prescribing or prescribing greener drugs, designing pharmaceuticals that are more readily biodegraded, educating both health professionals and citizens, and improving coordination and collaboration between environmental and healthcare sciences. Besides, end of pipe measures like improving or developing new purification systems (biological, physical, chemical, combination) that eliminate these residues efficiently and at a sustainable cost should be a priority. Here, we describe and discuss the main aspects of drug pollution, highlighting the specific issues of psychiatric drugs.
Collapse
Affiliation(s)
- Julene Argaluza
- Department of Epidemiology and Public Health, Bioaraba Health Research Institute, Vitoria-Gasteiz 01002, Spain
| | - Saioa Domingo-Echaburu
- Department of Pharmacy, Alto Deba Integrated Health Care Organization, Arrasate 20500, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
- Singapore Eye Research Institute, Discovery Tower, Singapore 168751, Singapore
| | - Juan Medrano
- Department of Psychiatry, Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Portugalete 48920, Spain
| | - Rafael Hernandez
- Department of Internal Medicine, Araba Mental Health Network, Vitoria-Gasteiz 01006, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz 01006, Alava, Spain
| |
Collapse
|
28
|
Sochacki A, Kowalska K, Felis E, Bajkacz S, Kalka J, Brzeszkiewicz A, Vaňková Z, Jakóbik-Kolon A. Removal and transformation of sulfamethoxazole in acclimated biofilters with various operation modes - Implications for full-scale application. CHEMOSPHERE 2021; 280:130638. [PMID: 33932905 DOI: 10.1016/j.chemosphere.2021.130638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
The knowledge gaps regarding the degradation of sulfamethoxazole (SMX) in biofilters include the effect of aeration, constant feeding with readily biodegradable organic carbon and the presence of reactive media such as manganese oxides (MnOx). Thus, the goal of this study was to assess the removal of SMX in lab-scale biofilters with various operation variables: aeration, presence of MnOx as an amendment of filtering medium and the presence of readily biodegradable organic carbon (acetate). The sand used in the experiment as a filtering medium was previously exposed to the presence of SMX and acetate, which provided acclimation of the biomass. The removal of SMX was complete (>99%) with the exception of the unaerated columns fed with the influent containing acetate, due to apparent slower rate of SMX degradation. The obtained results suggest that bacteria were able to degrade SMX as a primary substrate and the degradation of this compound was subsequent to the depletion of acetate. The LC-MS/MS analysis of the effluents indicated several biotransformation reactions for SMX: (di)hydroxylation, acetylation, nitrosation, deamonification, S-N bond cleavage and isoxazole-ring cleavage. The relative abundance of transformation products was decreased in the presence of MnOx or acetate. Based on the Microtox assay, only the effluents from the unaerated columns filled with MnOx were classified as non-toxic. The results offer important implications for the design of biofilters for the elimination of SMX, namely that biofilters offer the greatest performance when fed with secondary wastewater and operated as non-aerated systems with a filtering medium containing MnOx.
Collapse
Affiliation(s)
- Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Katarzyna Kowalska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland; Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland
| | - Joanna Kalka
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland
| | - Arletta Brzeszkiewicz
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Zuzana Vaňková
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic
| | - Agata Jakóbik-Kolon
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland
| |
Collapse
|
29
|
Carbamazepine Levels Related to the Demographic Indicators in Groundwater of Densely Populated Area. WATER 2021. [DOI: 10.3390/w13182539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Consumption of pharmaceuticals by people is growing. Carbamazepine (CBZ) is an extensively used anti-epileptic drug that is recalcitrant to degradation. As a result, CBZ has been widely detected in the aquatic ecosystem due to its daily consumption and drainage in sewage systems. Leakages from sewage networks and septic tanks may represent one of the main sources of CBZ in groundwater. In this study, CBZ concentrations in groundwater and their correlations with the demographic structure of the population were investigated in the densely populated Milan urban area. Seventy-six demographic variables were retrieved from the Italian Population and Housing census. Twenty-one groundwater samples were collected from unconfined and semi-confined aquifers of the Milan area and the concentration of CBZ was measured. Groundwater CBZ levels in both aquifers were associated with the demographic data within a circular buffer with a radius of 1.5 km. All data were analyzed using a multivariate statistical approach. The results showed a significant association (p < 0.05) between CBZ concentrations and specific demographic segments of the population. Higher CBZ concentrations were found to be associated with the population aged 70 years and over (aging index), and with families having children aged under 5 years (family index). In addition, the divorce index was correlated with the high concentration of CBZ, whereas the educated and sexagenarian population showed a negative correlation. Our results indicated that the contamination of CBZ follows the same pattern in unconfined and semi-confined aquifers, which are used for drinking water purposes in Milan area. Therefore, changing the CBZ consumption pattern or replacing CBZ with other drugs may strongly influence groundwater contamination of the investigated area.
Collapse
|
30
|
Liu S, Wang C, Wang P, Chen J, Wang X, Yuan Q. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China. ENVIRONMENTAL RESEARCH 2021; 198:110449. [PMID: 33217435 DOI: 10.1016/j.envres.2020.110449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are recognized as a group of emerging contaminants closely related to anthropogenic activities, which capture increasing attention worldwide. To evaluate the anthropogenic disturbances on PPCP distribution and sources, this study investigated the distribution and sources of 50 PPCPs along the 2300 km long Jinsha River and revealed different anthropogenic disturbances on PPCPs. Results showed that 40 out of the 50 PPCPs were ubiquitously detected among these river water samples, with the concentrations varied from less than 1 ng/L to more than 500 ng/L. Although most PPCPs concentrations were much lower in the Jinsha River than in highly developed rivers, the prevalence of PPCPs suggested the widespread use and improper disposal of PPCPs in the Jinsha River. The risk assessment also revealed that some PPCPs posed risks to aquatic organisms in the Jinsha River. Anthropogenic activities including human habitation and dam construction had different influence on PPCPs. PPCP distribution varied significantly across the "Hu Huanyong line", indicating human habitation significantly influenced PPCP distribution. Dam construction was insignificant in altering PPCP distribution throughout the Jinsha River. Moreover, the land use index indicated degradation level of multiple lands related to anthropogenic activities and represented the major sources of PPCPs in the Jinsha River. Most PPCPs were correlated with anthropogenic lands, for example, antibiotics, analgesics, and endocrine disrupting chemicals mainly originated from artificial surfaces, whereas other PPCPs mainly originated from cultivated lands. Together, this study indicates the disturbances of multiple anthropogenic activities on PPCP distribution and sources along the Jinsha River, which contributes to PPCP management in rural areas.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
31
|
Kergoat L, Besse-Hoggan P, Leremboure M, Beguet J, Devers M, Martin-Laurent F, Masson M, Morin S, Roinat A, Pesce S, Bonnineau C. Environmental Concentrations of Sulfonamides Can Alter Bacterial Structure and Induce Diatom Deformities in Freshwater Biofilm Communities. Front Microbiol 2021; 12:643719. [PMID: 34025605 PMCID: PMC8137839 DOI: 10.3389/fmicb.2021.643719] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Since the early 1920s, the intensive use of antibiotics has led to the contamination of the aquatic environment through diffuse sources and wastewater effluents. The antibiotics commonly found in surface waters include sulfamethoxazole (SMX) and sulfamethazine (SMZ), which belong to the class of sulfonamides, the oldest antibiotic class still in use. These antibiotics have been detected in all European surface waters with median concentrations of around 50 ng L–1 and peak concentrations of up to 4–6 μg L–1. Sulfonamides are known to inhibit bacterial growth by altering microbial production of folic acid, but sub-lethal doses may trigger antimicrobial resistance, with unknown consequences for exposed microbial communities. We investigated the effects of two environmentally relevant concentrations (500 and 5,000 ng L–1) of SMZ and SMX on microbial activity and structure of periphytic biofilms in stream mesocosms for 28 days. Measurement of sulfonamides in the mesocosms revealed contamination levels of about half the nominal concentrations. Exposure to sulfonamides led to slight, transitory effects on heterotrophic functions, but persistent effects were observed on the bacterial structure. After 4 weeks of exposure, sulfonamides also altered the autotrophs in periphyton and particularly the diversity, viability and cell integrity of the diatom community. The higher concentration of SMX tested decreased both diversity (Shannon index) and evenness of the diatom community. Exposure to SMZ reduced diatom species richness and diversity. The mortality of diatoms in biofilms exposed to sulfonamides was twice that in non-exposed biofilms. SMZ also induced an increase in diatom teratologies from 1.1% in non-exposed biofilms up to 3% in biofilms exposed to SMZ. To our knowledge, this is the first report on the teratological effects of sulfonamides on diatoms within periphyton. The increase of both diatom growth rate and mortality suggests a high renewal of diatoms under sulfonamide exposure. In conclusion, our study shows that sulfonamides can alter microbial community structures and diversity at concentrations currently present in the environment, with unknown consequences for the ecosystem. The experimental set-up presented here emphasizes the interest of using natural communities to increase the ecological realism of ecotoxicological studies and to detect potential toxic effects on non-target species.
Collapse
Affiliation(s)
| | - Pascale Besse-Hoggan
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémie Beguet
- AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Marion Devers
- AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhu JJ, Dressel W, Pacion K, Ren ZJ. ES&T in the 21st Century: A Data-Driven Analysis of Research Topics, Interconnections, And Trends in the Past 20 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3453-3464. [PMID: 33722002 DOI: 10.1021/acs.est.0c07551] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Environmental Science & Technology (ES&T) has served a leadership role in reporting advanced and significant research findings for decades and accumulated tremendous amount of high-quality literature. In this study, we developed tailored text mining methods and analyzed 29 188 papers published in ES&T from 2000 to 2019, and we performed data-driven analyses to reveal some critical information and guidance on what has been published, what topical changes have evolved, and what are the areas that deserve additional attention. While top research keywords remained stable (water, sorption, soil, emiss, oxid, exposur), the trending up and emerging keywords showed clear shift over the years. Keywords related to nanobased materials (nanoparticl, nanomateri, carbon nanotub), climate and energy (climat, ch4, greenhouse gas emiss, mitig, energi), and health (exposur, health, ingest) demonstrated the strongest uptrend in the past 10 years, while plastics and PFAS were among clear emerging topics in the past 5 years. Co-occurrence analysis showed distinct associations between media (water, soil, air, sediment), chemicals (pcb, humic subst, particulate matt), processes (sorption, remov, degrad), and properties (kinet, mechan, speciat). Furthermore, a rule-based classification deciphered trends, distributions, and interconnections of articles based on either monodomains (air, soil, solid waste, water, and wastewater) or multidomains. It found water and wastewater cross-discipline articles tended to have higher citation values, while air domain tended to stand alone. Water and air monodomains consistently increased their shares in publications (together 56.3% in 2019), while shares of soil studies gradually declined. This study provides new data-driven methods on literature mining and offers unique insights on environmental research landscape and opportunities.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Willow Dressel
- Princeton University Library, Princeton University, Princeton, New Jersey 08544, United States
| | - Kelee Pacion
- Princeton University Library, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
33
|
Caban M, Lis H, Stepnowski P. Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment - A Critical Review with the Latest Innovations. Crit Rev Anal Chem 2021; 52:1386-1407. [PMID: 33673780 DOI: 10.1080/10408347.2021.1881755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review starts with a presentation of the theory of kinetic uptake by passive sampling (PS), which is traditionally used to distinguish between integrative and equilibrium samplers. Demonstrated limitations of this model for the passive sampling of pharmaceuticals from water were presented. Most notably, the contribution of the protective membrane in the resistance to mass transfer of lipophilic analytes and the well documented effect of external parameters on sampling rates contributed to the greatest uncertainty in PS application. The diffusion gradient in thin layer (DGT) technique seems to reduce the effect of external parameters (e.g., flow rate) to some degree. The laboratory-determined integrative uptake periods over defined sampler deployments was compared, and the discrepancy found suggests that the most popular Polar Organic Chemical Integrative Sampler (POCIS) could in some cases utilized as an equilibrium sampler. This assertion is supported by own calculations for three pharmaceuticals with extremely different lipophilic characters. Finally, the reasons performance reference compounds (PRCs) are not recommended for the reduction in uncertainty of the TWAC found by adsorptive samplers were presented. It was concluded that techniques of passive sampling of pharmaceuticals need a new uptake model to fit the current situation.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
34
|
Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116515. [PMID: 33493756 DOI: 10.1016/j.envpol.2021.116515] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Sludge generated at sewage treatment plants is of environmental concern due to the voluminous production and the presence of a high concentration of emerging contaminants (ECs). This review discusses the fate of ECs in sewage sludge treatment with an emphasis on fundamental mechanisms driving the degradation of compounds based on chemical properties of the contaminant and process operating conditions. The removal of ECs in sewage sludge through various treatment processes of sludge stabilization, such as anaerobic digestion (AD), composting, and pre-treatment methods (thermal, sonication, and oxidation) followed by AD, are discussed. Several transformation mechanisms and remediation strategies for the removal of ECs in sludge are summarized. The study concludes that pH, sludge type, and the types of functional groups are the key factors affecting the sorption of ECs to sludge. During conventional waste stabilization processes such as composting, the degradation of ECs depends on the type of feedstock (TOC, N, P, C/N, C/P) and the initial concentration of the contaminant. In AD, the degree of degradation depends on the hydrophilicity of the compound. The estrogenicity of the sludge may sometimes increase due to the conversion to estrogenic compounds. The pre-treatment techniques can increase the partitioning of ECs in the soluble fraction resulting in enhanced biodegradation up to 10-60%. However, the formation of by-products and loss of OH· to scavenging under high organic content during advanced oxidation processes can make the process uneconomical and require further research.
Collapse
Affiliation(s)
- Monika Dubey
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, 138602, Singapore
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
35
|
Majewska M, Harshkova D, Pokora W, Baścik-Remisiewicz A, Tułodziecki S, Aksmann A. Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111630. [PMID: 33396150 DOI: 10.1016/j.ecoenv.2020.111630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The non-steroidal anti-inflammatory drug diclofenac (DCF) is one of the commonly used and frequently detected drugs in water bodies, and several studies indicate its toxic effect on plants and algae. Studies performed with asynchronous Chlamydomonas reinhardtii cultures indicated that DCF inhibit the growth of population of the algae. Here, a synchronous population of C. reinhardtii, in which all cells are in the same developmental phase, is used. Following changes in cells size, photosynthetic activity and gene expression, we could compare, at the level of single cell, DCF-mediated effects with the effects caused by atrazine, a triazine herbicide that inhibits photosynthesis and triggers oxidative stress. Application of DCF and atrazine at the beginning of the cell cycle allowed us to follow the changes occurring in the cells in the subsequent stages of their development. Synchronized Chlamydomonas reinhardtii cultures (strain CC-1690, wild type) were exposed to diclofenac sodium salt (135 mg/L) or atrazine (77.6 µg/L). The cell suspension was sampled hourly (0-10 h) in the light period of the cell cycle to determine cell number and volume, photosynthetic pigment content, chlorophyll a fluorescence (OJIP test) in vivo, and selected gene expression (real-time qPCR), namely psbA, psaA, FSD1, MSD3 and APX1. The two toxicants differently influenced C. reinhardtii cells. Both substances decreased photosynthetic "vitality" (PI - performance index) of the cells, albeit for different reasons. While atrazine significantly disrupted the photosynthetic electron transport, resulting in excessive production of reactive oxygen species (ROS) and limited cell growth, DCF caused silencing of photosystem II (PSII) reaction centers, transforming them into "heat sinks", thus preventing significant ROS overproduction. Oxidative stress caused by atrazine was the probable reason for the rapid appearance of phytotoxic action soon after entering the cells, while the effects of DCF could only be seen several hours after treatment. A comparison of DCF-caused effects with the effects caused by atrazine led us to conclude that, although DCF cannot be regarded as typical photosynthetic herbicide, it exhibits an algicidal activity and can be potentially dangerous for aquatic plants and algae.
Collapse
Affiliation(s)
- Monika Majewska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Darya Harshkova
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Baścik-Remisiewicz
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
36
|
Ovung A, Mavani A, Chatterjee S, Das A, Suresh Kumar G, Bhuiya S, Das S, Bhattacharyya J. On the Biophysical Investigation of Sulfamethazine‐Hemoglobin Binding and the Resulting Adverse Effects of Antibiotics. ChemistrySelect 2020. [DOI: 10.1002/slct.202003256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aben Ovung
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima, Dimapur Nagalnd 797103 India
| | - A. Mavani
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima, Dimapur Nagalnd 797103 India
| | - Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Abhi Das
- Biophysical Chemistry Laboratory CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Sutanwi Bhuiya
- Department of Chemistry Jadavpur University, Jadavpur Kolkata 700032 India
| | - Suman Das
- Department of Chemistry Jadavpur University, Jadavpur Kolkata 700032 India
| | - Jhimli Bhattacharyya
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima, Dimapur Nagalnd 797103 India
| |
Collapse
|
37
|
Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron 2020; 172:112719. [PMID: 33166805 DOI: 10.1016/j.bios.2020.112719] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
The ever-increasing presence of contaminants in environmental waters is an alarming issue, not only because of their harmful effects in the environment but also because of their risk to human health. Pharmaceuticals and pesticides, among other compounds of daily use, such as personal care products or plasticisers, are being released into water bodies. This release mainly occurs through wastewater since the treatments applied in many wastewater treatment plants are not able to completely remove these substances. Therefore, the analysis of these contaminants is essential but this is difficult due to the great variety of contaminating substances. Facing this analytical challenge, electrochemical sensing based on molecularly imprinted polymers (MIPs) has become an interesting field for environmental monitoring. Benefiting from their superior chemical and physical stability, low-cost production, high selectivity and rapid response, MIPs combined with miniaturized electrochemical transducers offer the possibility to detect target analytes in-situ. In most reports, the construction of these sensors include nanomaterials to improve their analytical characteristics, especially their sensitivity. Moreover, these sensors have been successfully applied in real water samples without the need of laborious pre-treatment steps. This review provides a general overview of electrochemical MIP-based sensors that have been reported for the detection of pharmaceuticals, pesticides, heavy metals and other contaminants in water samples in the past decade. Special attention is given to the construction of the sensors, including different functional monomers, sensing platforms and materials employed to achieve the best sensitivity. Additionally, several parameters, such as the limit of detection, the linear concentration range and the type of water samples that were analysed are compiled.
Collapse
|
38
|
Duan L, Zhang Y, Wang B, Cagnetta G, Deng S, Huang J, Wang Y, Yu G. Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114753. [PMID: 32559871 DOI: 10.1016/j.envpol.2020.114753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutically active compounds (PhACs) are widely found in the environment due to vast human consumption. Lots of work has been devoted to investigating the occurrence and seasonal variations globally. To fully understand characteristics and cross-year variation of PhACs in Beijing, 35 PhACs were analyzed in 46 sites across Beijing from both urban and suburban areas. Concentrations of target PhACs were ranged from levels of ng L-1 to μg L-1. Metoprolol (524 ng L-1), caffeine (390 ng L-1) and acetaminophen (156 ng L-1) were the three most abundant non-antibiotics with the highest median concentration, and nalidixic acid (135 ng L-1), erythromycin (64 ng L-1) and sulfamethoxazole (77 ng L-1) were the most abundant antibiotics. Urban and suburban areas are distinguished by PhAC composition in cluster analysis due to different wastewater collection rate. The ratio of easily removable compound group and hardly removable group was then proposed to reflect the wastewater collection rate. The compositional comparison of PhACs in WWTPs' effluents and their receiving rivers further illustrates the impact of WWTPs in urban area. Higher proportion of antibiotics (>30%) in suburban area reflected the impact of presence of livestock farms, which should be concerned. Further statistical analyses show an improving trend of wastewater collection rate, and excluding metoprolol, an anti-hypertension medicine, the total concentration of 13 target PhACs was reduced by 72% during 2013-2017.
Collapse
Affiliation(s)
- Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Yizhe Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China.
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| |
Collapse
|
39
|
Sweileh WM, Moh’d Mansour A. Bibliometric analysis of global research output on antimicrobial resistance in the environment (2000-2019). Glob Health Res Policy 2020; 5:37. [PMID: 32775695 PMCID: PMC7398083 DOI: 10.1186/s41256-020-00165-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is a global health threat that requires a "One Health" approach. Of the One Health triad, the environmental component is the most dynamic and most neglected. Therefore, the objective of the current study was to assess and analyze global research activity on AMR in the environment. Methods This was a bibliometric descriptive study of publications on AMR in the environment. Publications were retrieved using SciVerse Scopus for the study period from 2000 to 2019. The search query was developed using terms and phrases related to the topic. The retrieved publications were analyzed for specific bibliometric indicators including annual growth, citation analysis, key players, research output for each world regions, research themes, and occurrences of different drug classes of antimicrobials. Visualization maps including research collaboration were created using VOSviewer program. The Hirsch (h) index was used to assess scientific impact. Results There were 2611 research articles based on the implemented research query. The retrieved documents had an average of 22 citations per document and an h-index of 122. The annual number of publications showed a steep increase from 2011 to 2019. The major research themes in the field were (1) dissemination and abundance of antibiotic-resistant genes and (2) detection of bacterial strains or antibiotic residues in various environmental isolates. The bulk of the retrieved articles (n = 899; 34.4%) originated from the European region. China led with 598 (22.9%) documents. Four of the top 10 active institutions were in China. The top 10 active countries had relatively inadequate international research collaboration. The most commonly encountered antibiotic drug classes in the retrieved articles were penicillin/cephalosporin (n = 1152 occurrences). The most frequently encountered pathogen in the retrieved publications was E. coli (n = 666). The Science of the Total Environment journal was the most prolific journal with 139 (5.3%) publications. Conclusion Scientific literature on the AMR in the environment has witnessed a steep growth lately with a leading role of China and Chinese institutions. Data on AMR in the environment need to be collected from all world regions including the Eastern Mediterranean and African regions through research collaboration and funding of research in this field.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- Department of Physiology, Pharmacology/Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | |
Collapse
|
40
|
Gravell A, Fones GR, Greenwood R, Mills GA. Detection of pharmaceuticals in wastewater effluents-a comparison of the performance of Chemcatcher® and polar organic compound integrative sampler. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27995-28005. [PMID: 32405945 PMCID: PMC7334249 DOI: 10.1007/s11356-020-09077-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 05/16/2023]
Abstract
Chemcatcher® and POCIS passive sampling devices are widely used for monitoring polar organic pollutants in water. Chemcatcher® uses a bound Horizon Atlantic™ HLB-L sorbent disk as receiving phase, whilst the POCIS uses the same material in the form of loose powder. Both devices (n = 3) were deployed for 21 days in the final effluent at three wastewater treatment plants in South Wales, UK. Following deployment, sampler extracts were analysed using liquid chromatography time-of-flight mass spectrometry. Compounds were identified using an in-house database of pharmaceuticals using a metabolomics workflow. Sixty-eight compounds were identified in all samplers. For the POCIS, substantial losses of sorbent (11-51%) were found during deployment and subsequent laboratory analysis, necessitating the use of a recovery factor. Percentage relative standard deviations varied (with 10 compounds exceeding 30% in both samplers) between individual compounds and between samplers deployed at the three sites. The relative performance of the two devices was evaluated using the mass of analyte sequestered, measured as an integrated peak area. The ratio of the uptake of the pharmaceuticals for the POCIS versus Chemcatcher® was lower (1.84x) than would be expected on the basis of the ratio of active sampling areas (3.01x) of the two devices. The lower than predicted uptake may be attributable to the loose sorbent material moving inside the POCIS when deployed in the field in the vertical plane. In order to overcome this, it is recommended to deploy the POCIS horizontally inside the deployment cage.
Collapse
Affiliation(s)
- Anthony Gravell
- Natural Resources Wales, Faraday Building, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Gary R Fones
- School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK.
| | - Richard Greenwood
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
| | - Graham A Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
41
|
Alves TC, Mota JAX, Pinheiro A. Biosorption of organic micropollutants onto lignocellulosic-based material. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:427-439. [PMID: 32960789 DOI: 10.2166/wst.2020.333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The occurrence of organic micropollutants such as pharmaceutical drugs and hormones in the environment reflects the inefficiency of traditional wastewater treatment technologies. Biosorption is a promising alternative from a technical-economic point of view, so understanding the mechanisms of adsorption in new biosorbents is vital for application and process optimization. Within this context, this study aims to evaluate the mechanisms of adsorption and removal of synthetic and natural hormones by Pinus elliottii bark biosorbent (PS) compared to commercial granular activated carbon (GAC) through kinetic models, isotherm models, and thermodynamic models. The adsorbents were also characterized by morphology, chemical composition, functional groups, and point of zero charge. Characterization of the adsorbents highlights the heterogeneous and fibrous morphology and broader range of functional groups found for PS. Kinetic adjustments showed high accuracy for pseudo-second-order, Elovich, and intraparticle diffusion models, presenting multilinearity and evidencing multi-stage adsorption. The isotherms for PS followed high-affinity models, predominantly chemisorption, while those for GAC followed the Langmuir model, where physisorption predominates. These mechanisms were confirmed by thermodynamic models, which also indicated a higher dependence on temperature in the adsorption process. In the fortified water removal test, PS showed removal values higher than GAC, highlighting the advantages of this adsorbent.
Collapse
Affiliation(s)
- Thiago Caique Alves
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Regional de Blumenau, Rua São Paulo, n. 3250, CEP: 89030-000, Blumenau, SC, Brazil E-mail:
| | - João André Ximenes Mota
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Regional de Blumenau, Rua São Paulo, n. 3250, CEP: 89030-000, Blumenau, SC, Brazil E-mail:
| | - Adilson Pinheiro
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Regional de Blumenau, Rua São Paulo, n. 3250, CEP: 89030-000, Blumenau, SC, Brazil E-mail:
| |
Collapse
|
42
|
Thomas JM, Aravindakumar C, Aravind UK. Removal of beta blockers using polyelectrolyte monolayered membrane and its antifouling performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Kairigo P, Ngumba E, Sundberg LR, Gachanja A, Tuhkanen T. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected Kenyan wastewaters, surface waters and sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137580. [PMID: 32135290 DOI: 10.1016/j.scitotenv.2020.137580] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 05/11/2023]
Abstract
Active pharmaceutical ingredients, especially antibiotics, are micropollutants whose continuous flow into hydrological cycles has the potential to mediate antibiotic resistance in the environment and cause toxicity to sensitive organisms. Here, we investigated the levels of selected antibiotics in four wastewater treatment plants and the receiving water bodies. The measured environmental concentrations were compared with the proposed compound-specific predicted no-effect concentration for resistance selection values. The concentration of doxycycline, amoxicillin, sulfamethoxazole, trimethoprim, ciprofloxacin and norfloxacin within the influents, effluents, surface waters and river sediments ranged between 0.2 and 49.3 μgL-1, 0.1 to 21.4 μgL-1; ˂ 0.1 and 56.6 μgL-1; and 1.8 and 47.4 μgkg-1, respectively. Compared to the effluent concentrations, the surface waters upstream and downstream one of the four studied treatment plants showed two to five times higher concentrations of ciprofloxacin, norfloxacin and sulfamethoxazole. The risk quotient for bacterial resistance selection in effluent and surface water ranged between ˂0.1 and 53, indicating a medium to high risk of antibiotic resistance developing within the study areas. Therefore, risk mitigation and prevention strategies are a matter of priority in the affected areas.
Collapse
Affiliation(s)
- Pius Kairigo
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Elijah Ngumba
- Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry, P.O. Box 62000-00200, Nairobi, Kenya
| | - Lotta-Riina Sundberg
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 Jyväskylä, Finland; University of Jyvaskyla, Nanoscience Center, P.O. Box 35, FI-40014, Finland
| | - Anthony Gachanja
- Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry, P.O. Box 62000-00200, Nairobi, Kenya
| | - Tuula Tuhkanen
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
44
|
Feng J, Liu Q, Ru X, Xi N, Sun J. Occurrence and distribution of priority pharmaceuticals in the Yellow River and the Huai River in Henan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16816-16826. [PMID: 32141007 DOI: 10.1007/s11356-020-08131-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/17/2020] [Indexed: 05/13/2023]
Abstract
The occurrence and spatial distribution of priority pharmaceuticals (PPs) in water samples from the Yellow River and the Huai River in the Henan region of China were investigated in this study. The concentration of the total PPs (ΣPPs; sum of the 10 observed PPs) ranged from not detected to 3474 ng L-1 in samples from the Yellow River and from 4.35 to 146 ng L-1 in samples from the Huai River. The level of the ΣPPs in the Huai River was much lower than that found in the Yellow River. The composition of the PPs differed between the two rivers. Norfloxacin, carbamazepine, and 5,5-diphenylhydantoin were detected at high concentrations in the Yellow River, whereas sulfamethazine, ampicillin trihydrate, carbamazepine, and 5,5-diphenylhydantoin were the dominant species in the Huai River, suggesting there were different pollution sources. In comparison to other studies around China, most of the PPs in water samples from the Yellow River and the Huai River were at low concentrations, except for norfloxacin and ofloxacin. There were significant seasonal variations among the PPs in water samples from the Huai River, whereas spatial distinctions were recorded among the PPs in the Yellow River. Dissolved organic carbon content did not correlate with the PPs in the studied area.
Collapse
Affiliation(s)
- Jinglan Feng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| | - Qi Liu
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiangli Ru
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jianhui Sun
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| |
Collapse
|
45
|
Lee WJ, Goh PS, Lau WJ, Ismail AF. Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04446-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Filipe OMS, Santos EBH, Otero M, Gonçalves EAC, Neves MGPMS. Photodegradation of metoprolol in the presence of aquatic fulvic acids. Kinetic studies, degradation pathways and role of singlet oxygen, OH radicals and fulvic acids triplet states. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121523. [PMID: 31732332 DOI: 10.1016/j.jhazmat.2019.121523] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/05/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Metoprolol is a pharmaceutical used for the treatment of cardiovascular diseases and disorders, whose frequent detection in surface waters raises concern. Indirect photodegradation is an important degradation pathway in waters and dissolved organic matter has a major role as photosensitizer. In this study, metoprolol photodegradation, in the absence and in the presence of fulvic acids extracted from the Vouga River (Portugal) (VRFA), was assessed under simulated sunlight. While metoprolol direct photodegradation was deniable, indirect photolysis occurred under the presence of VRFA. It followed a pseudo-first order kinetics and after 72 h of irradiation there was a decrease of metoprolol concentration of ∼80 %. The OH radical (OH) was verified to be the main reactive species (RS) responsible for the photosensitized degradation of metoprolol, but other RS are also involved, probably triplet excited states of FA (3FA*) and singlet oxygen (1O2), as demonstrated by the higher inhibition of the photodegradation in presence of sodium azide than in presence of 2-propanol. Based on a previous identification of photoproducts, tentative degradation mechanisms were here proposed. Photoproducts analysis after 24 h irradiation in the absence and presence of scavengers, shown that different RS are involved in the formation of different products/intermediates.
Collapse
Affiliation(s)
- Olga M S Filipe
- CERNAS - Research Centre for Natural Resources, Environment and Society, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal.
| | - Eduarda B H Santos
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Marta Otero
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elsa A C Gonçalves
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
47
|
Lima ML, Luís S, Poggio L, Aragonés JI, Courtier A, Roig B, Calas-Blanchard C. The importance of household pharmaceutical products disposal and its risk management: Example from Southwestern Europe. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 104:139-147. [PMID: 31978832 DOI: 10.1016/j.wasman.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The presence of pharmaceuticals in the environment is an emergent unknown environmental problem, linked to increased production and consumption of pharmaceuticals and, as such, understanding risk perception is fundamental. This study focuses on exploring causes (trust and knowledge) and effects (intention and proper individual disposal of pharmaceutical leftovers) of environmental and health risk perception. Survey data was collected in Portugal, Spain, and France (sample of 509 individuals). Data illustrated that in France, where the quantity of recycled pharmaceuticals is much higher, respondents reported a higher need for knowledge, but not a higher risk perception nor self-reported behaviour. Although previous research illustrates that higher trust correlates with lower risk perception, we found a positive correlation, which highlights the need to comprehend these variables in emergent risks. Results further confirmed a hypothesized moderated mediation model to explain proper disposal behaviour. We found an indirect effect of risk perception on behaviour through intention, which was stronger for participants with higher environmental identity. Understanding the causes and effects of risk perception of pharmaceuticals in the environment thereby contributes to improve pharmaceutical waste management processes and to promote the proper disposal of pharmaceuticals.
Collapse
Affiliation(s)
- Maria Luísa Lima
- Instituto Universitário de Lisboa (ISCTE - IUL), Centro de Investigação e Intervenção Social (CIS - IUL), Edifício ISCTE, Av. das Forças Armadas, 1649-026 Lisbon, Portugal
| | - Sílvia Luís
- Instituto Universitário de Lisboa (ISCTE - IUL), Centro de Investigação e Intervenção Social (CIS - IUL), Edifício ISCTE, Av. das Forças Armadas, 1649-026 Lisbon, Portugal.
| | - Lucía Poggio
- Universidad Complutense de Madrid, Facultad de Psicologia, Spain
| | | | | | | | - Carole Calas-Blanchard
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
48
|
Barros S, Coimbra AM, Alves N, Pinheiro M, Quintana JB, Santos MM, Neuparth T. Chronic exposure to environmentally relevant levels of simvastatin disrupts zebrafish brain gene signaling involved in energy metabolism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:113-125. [PMID: 32116137 DOI: 10.1080/15287394.2020.1733722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic drug belonging to the statins group, is a widely prescribed pharmaceutical for prevention of cardiovascular diseases. Several studies showed that lipophilic statins, as SIM, cross the blood-brain barrier and interfere with the energy metabolism of the central nervous system in humans and mammalian models. In fish and other aquatic organisms, the effects of SIM on the brain energy metabolism are unknown, particularly following exposure to low environmentally relevant concentrations. Therefore, the present study aimed at investigating the influence of SIM on gene signaling pathways involved in brain energy metabolism of adult zebrafish (Danio rerio) following chronic exposure (90 days) to environmentally relevant SIM concentrations ranging from 8 ng/L to 1000 ng/L. Real-time PCR was used to determine the transcript levels of several genes involved in different pathways of the brain energy metabolism (glut1b, gapdh, acadm, accα, fasn, idh3a, cox4i1, and cox5aa). The findings here reported integrated well with ecological and biochemical responses obtained in a parallel study. Data demonstrated that SIM modulates transcription of key genes involved in the mitochondrial electron transport chain, in glucose transport and metabolism, in fatty acid synthesis and β-oxidation. Further, SIM exposure led to a sex-dependent transcription profile for some of the studied genes. Overall, the present study demonstrated, for the first time, that SIM modulates gene regulation of key pathways involved in the energy metabolism in fish brain at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Nélson Alves
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - Marlene Pinheiro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade De Santiago De Compostela, Santiago De Compostela, Spain
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- FCUP, Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| |
Collapse
|
49
|
Puerta YT, Guimarães PS, Martins SE, Martins CDMG. Toxicity of methylparaben to green microalgae species and derivation of a predicted no effect concentration (PNEC) in freshwater ecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109916. [PMID: 31733936 DOI: 10.1016/j.ecoenv.2019.109916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/26/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Methylparaben (MeP) is one of the most used preservatives in the industry; however, the toxic effects on aquatic ecosystems are still poorly understood. Therefore, this study was conducted (1) to identify and compare the toxic effects of MeP on physiological parameters of different green microalgae species, using suitable mathematical models; and (2) to estimate a PNEC value for MeP in freshwater ecosystems, adopting either the deterministic or the probabilistic approaches. Toxicity tests were carried out with three green microalgae (Pseudopediastrum boryanum, Desmodesmus communis, Raphidocelis subcapitata), in which different endpoints such as growth rate, chlorophyll-a, and cell viability were measured and compared through the effective concentration which caused a response in x% of test organisms (ECx). ECx were obtained by adjusting different non-linear regression models for each microalgae dataset. Chlorophyll-a endpoint resulted in the lowest EC50 values, respectively 125, 81.2, 18.3 mg L-1 for D. communis, P. boryanum and R. subcapitata, showing R. subicapitata as the most sensitive, and D. communis as the most tolerant species to MeP (P < 0.05). PNEC was estimated from the present study and previous reports resulting in 5.7 and 65 μg L-1, respectively for the deterministic (PNECd) and the probabilistic (PNECp) approach. The development of chronic assays using test organisms from different ecological groups is encouraged to provide robust PNECp. In this meantime, we recommend the use of the estimated PNECd to support MeP risk assessments and policy formulation.
Collapse
Affiliation(s)
- Yarin Tatiana Puerta
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Universidade Federal Do Rio Grande - FURG, Av Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil; GeoLimna, Faculty of engineering, University of Antioquia, Medellín, 67th street # 53 - 108, Colombia
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas. Universidade Federal Do Rio Grande - FURG, Av Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Samantha Eslava Martins
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Universidade Federal Do Rio Grande - FURG, Av Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas. Universidade Federal Do Rio Grande - FURG, Av Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil.
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Universidade Federal Do Rio Grande - FURG, Av Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas. Universidade Federal Do Rio Grande - FURG, Av Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
50
|
Ayala-Durán SC, Hammer P, Pupo Nogueira RF. Surface composition and catalytic activity of an iron mining residue for simultaneous degradation of sulfonamide antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1710-1720. [PMID: 31749013 DOI: 10.1007/s11356-019-06662-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Iron mining residue was evaluated as a potential catalyst for heterogeneous Fenton/photo-Fenton degradation of sulfonamide antibiotics. The residue contained 25% Fe2O3 and 8% CeO2, as determined by X-ray fluorescence spectroscopy, as well as other minor phases such as P2O5, SiO2, and TiO2. X-ray photoelectron spectroscopy analysis revealed a lower content of iron oxides on the surface, which restricted interaction of the residue with H2O2. Despite this limitation and the relatively low specific surface area (26 m2 g-1) of the crude iron mining residue (without any pretreatment), the material presented high catalytic activity for Fenton degradation of sulfonamide antibiotics. The degradation was strongly dependent on the initial pH, showing the highest efficiency at pH 2.5. For this condition, a concentration of sulfathiazole below the detection limit was obtained within 30 min, under black light irradiation and using 0.3 g L-1 residue, with low H2O2 consumption (0.2 mmol L-1). The residue also provided highly efficient sulfathiazole degradation in the dark, with the concentration of the antibiotic decreasing to an undetectable level after 45 min. Simultaneous degradation of two sulfonamide antibiotics revealed higher recalcitrance of sulfamethazine, compared to sulfathiazole, but the levels of both antibiotics decreased to below the detection limit after 45 min. The residue was very stable, since no significant concentration of soluble iron was detected after the degradation process. Furthermore, high catalytic activity was maintained during up to five cycles, showing the potential of this material for use as a low-cost and environmentally compliant catalyst in Fenton processes.
Collapse
Affiliation(s)
- Saidy C Ayala-Durán
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-060, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Peter Hammer
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-060, Brazil
| | - Raquel F Pupo Nogueira
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-060, Brazil.
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|