1
|
Deslippe JR, Bentley SB. The role of wetland restoration in mediating phosphorus ecosystem services in agricultural landscapes. Curr Opin Biotechnol 2025; 91:103227. [PMID: 39631212 DOI: 10.1016/j.copbio.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Phosphorus (P) is an essential plant nutrient that often limits agricultural productivity. Human activities, especially fertiliser use, have significantly altered the P cycle, causing eutrophication of aquatic systems. Restoring wetlands to agricultural landscapes can retain P, improving water quality and other ecosystem services. The effectiveness of P retention in restored wetlands varies with hydrology, soil properties, vegetation, and other factors. Challenges such as wetland P saturation, legacy P release, and plant invasions can limit P retention capacity. Furthermore, climate-related changes in temperature and hydrology have the potential to undermine long-term P retention. New methods such as Integrated Constructed Wetlands and new technologies that provide high-resolution temporal and spatial data enable managers to optimise multifunctionality in agricultural landscapes.
Collapse
Affiliation(s)
- Julie R Deslippe
- School of Biological Sciences, and Centre for Biodiversity and Restoration Ecology, Te Herenga Waka - Victoria University of Wellington, New Zealand.
| | - Shannon B Bentley
- School of Biological Sciences, and Centre for Biodiversity and Restoration Ecology, Te Herenga Waka - Victoria University of Wellington, New Zealand
| |
Collapse
|
2
|
Cui M, Yang B, Dong J, Fan X, Yu H, Ren G, Zhu Z, Du D. Phosphorus addition severely exacerbates the inhibitory effect of the increased diurnal temperature range on the invasive plant Solidago canadensis. PHYSIOLOGIA PLANTARUM 2024; 176:e14634. [PMID: 39588714 DOI: 10.1111/ppl.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
This study investigates how variations in diurnal temperature and phosphorus concentration affect the growth of native Artemisia argyi and invasive Solidago canadensis under intraspecific and interspecific competition. We conducted factorial experiments to assess the impacts of warming, including an increased diurnal temperature range (DTRinc), a symmetric increase in diurnal temperature range (DTRsys), a decreased diurnal temperature range (DTRdec) and phosphorus application (5 g and 10 g P m2 yr-1) on both intra- and inter-specific competition among plants. The results indicated that (1) the DTRsys for A. argyi was -48.95% and for S. canadensis, it was -31.49% and overall had a more pronounced inhibitory effect on the biomass of both plant species than other warming treatments after comprehensive analysis. (2) Under intraspecific competition, phosphorus promoted the growth of A. argyi and S. canadensis on plant height, root length, and biomass. The biomass of A. argyi (22.75% and 53.61%) and S. canadensis (11.49% and 27.76%) increased under low and high phosphorus, respectively. Under interspecific competition, the plant height and biomass of the two plant species showed different response trends to phosphorus. Still, the competitiveness of S. canadensis increased compared with the untreated group. (3) Plant adaptability in biomass was more sensitive to warming than phosphorus treatments, and warming reduced the promoting effect of phosphorus, indicating that warming and phosphorus have interactive effects on plants. Phosphorus exacerbated the inhibitory effect of DTRinc on the biomass of S. canadensis, which was more pronounced than other warming methods. The different responses of the two plants mention the species to warming and phosphorus treatments under different competition scenarios reflect the differences in their ecological strategies for adapting to the environment.
Collapse
Affiliation(s)
- Miaomiao Cui
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, China
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | - Bin Yang
- College of Life Sciences, Shenyang Normal University, Shenyang, China
| | - Jie Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xue Fan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Haochen Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Guangqian Ren
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| | - Zhaoqi Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Zuo K, Fan L, Guo Z, Zhang L, Duan Y, Zhang J, Chen S, Lin H, Hu R. High nutrient utilization and resorption efficiency promote bamboo expansion and invasion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121370. [PMID: 38838536 DOI: 10.1016/j.jenvman.2024.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Bamboos are fast-growing, aggressively-spreading, and invasive woody clonal species that often encroach upon adjacent tree plantations, forming bamboo-tree mixed plantations. However, the effects of bamboo invasion on leaf carbon (C) assimilation, and nitrogen (N) and phosphorus (P) utilization characteristics remains unclear. We selected four different stands of Pleioblastus amarus invading Chinese fir (Cunninghamia lanceolata) plantations to investigate the concentrations, stoichiometry, and allometric growth relationships of mature and withered leaves of young and old bamboos, analyzing N and P utilization and resorption patterns. The stand type, bamboo age, and their interaction affected the concentrations, stoichiometry and allometric growth patterns of leaf C, N, and P in both old and young bamboos, as well as the N and P resorption efficiency. Bamboo invasion into Chinese fir plantations decreased leaf C, N, and P concentrations, C:N and C:P ratios, N and P resorption efficiency, and allometric growth exponents among leaf C, N, and P, while it only slightly altered N:P ratios. PLS-PM analysis revealed that bamboo invasion negatively impacted leaf C, N, and P concentrations, as well as N and P utilization and resorption. The results indicate that high N and P utilization and resorption efficiency, along with the mutual sharing of C, N, and P among bamboos in interface zones, promote continuous bamboo expansion and invasion. Collectively, these findings highlight the significance of N and P utilization and resorption in bamboo expansion and invasion and provide valuable guidance for the establishment of mixed stands and the ecological management of bamboo forests.
Collapse
Affiliation(s)
- Keyi Zuo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Lili Fan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Le Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yiyang Duan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Jingrun Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Hua Lin
- Forestry Bureau of Shaxian County, Shaxian, Sanming, 365500, China
| | - Ruicai Hu
- Longyou Forestry Extension Station, Quzhou, 324400, China
| |
Collapse
|
4
|
Zheng S, Cha X, Dong Q, Guo H, Sun L, Zhao Q, Gong Y. Effects of rainfall patterns in dry and rainy seasons on the biomass, ecostoichiometric characteristics, and NSC content of Fraxinus malacophylla seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1344717. [PMID: 38533402 PMCID: PMC10963558 DOI: 10.3389/fpls.2024.1344717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
With global climate change and rising temperatures, rainfall will change. The impact of global rainfall changes on ecosystems has prompted people to delve deeper into how changes in rainfall affect plant growth; Plant biomass, nutrient element content, and non-structural carbohydrate content are very sensitive to changes in precipitation. Therefore, understanding the impact of rainfall changes on seedlings is crucial. However, it is currently unclear how the seedlings of Fraxinus malacophylla Hemsl in rocky desertification areas respond to changes in rainfall. In this study, the response of biomass, nutrient accumulation, and NSC content of Fraxinus malacophylla Hemsl seedlings to different rainfall intervals and rainfall during the dry and rainy seasons was studied. Use natural rainfall duration of 5 days (T) and extended rainfall duration of 10 days(T+) as rainfall intervals; average monthly rainfall was used as the control (W), with a corresponding 40% increase in rainfall (W+) and a 40% decrease in rainfall (W-) as rainfall treatments. The research results indicate that the biomass of roots, stems, and leaves, as well as the accumulation of C, N, and P in Fraxinus malacophylla Hemsl seedlings increase with the increase of rainfall, while the soluble sugar and starch content show a pattern of first increasing and then decreasing. The biomass and nutrient accumulation of each organ showed root>leaf>stem. Except for the beginning of the dry season, prolonging the duration of rainfall in other periods inhibits the biomass accumulation of Fraxinus malacophylla Hemsl seedlings, and promotes the accumulation of C, N, and P nutrients and an increase in soluble sugar and starch content. There was a significant positive correlation (P<0.05) between the nutrient contents of C, N, and P in various organs, as well as between soluble sugar and starch content; And N: P>16, plant growth is limited by P element. These results indicate that changes in rainfall can affect the growth and development of Fraxinus malacophylla Hemsl seedlings, increasing rainfall can promote biomass and nutrient accumulation of Fraxinus malacophylla Hemsl seedlings, and prolonging rainfall intervals and reducing rainfall have inhibitory effects on them. The exploration of the adaptation of Fraxinus malacophylla Hemsl seedlings to rainfall patterns has promoted a basic understanding of the impact of rainfall changes on the growth of Fraxinus malacophylla Hemsl. This provides a theoretical basis for understanding how Fraxinus malacophylla Hemsl can grow better under rainfall changes and for future management of Fraxinus malacophylla Hemsl artificial forests in rocky desertification areas.
Collapse
Affiliation(s)
- Shaojie Zheng
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Xiaofei Cha
- Nujiang Prefecture Forestry and Grassland Bureau, Nujiang Yunnan, China
| | - Qiong Dong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Huanxian Guo
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Lijuan Sun
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Qize Zhao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| | - Yunqi Gong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, China
- Southwest Mountain Forest Resources Conservation and Utilization of the Ministry of Education, Kunming, China
| |
Collapse
|
5
|
Wu SW, Shi ZY, Huang M, Yang S, Yang WY, Li YJ. Influence of Mycorrhiza on C:N:P Stoichiometry in Senesced Leaves. J Fungi (Basel) 2023; 9:jof9050588. [PMID: 37233299 DOI: 10.3390/jof9050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Senesced leaves play a vital role in nutrient cycles in the terrestrial ecosystem. The carbon (C), nitrogen (N) and phosphorus (P) stoichiometries in senesced leaves have been reported, which are influenced by biotic and abiotic factors, such as climate variables and plant functional groups. It is well known that mycorrhizal types are one of the most important functional characteristics of plants that affect leaf C:N:P stoichiometry. While green leaves' traits have been widely reported based on the different mycorrhiza types, the senesced leaves' C:N:P stoichiometries among mycorrhizal types are rarely investigated. Here, the patterns in senesced leaves' C:N:P stoichiometry among plants associated with arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), or AM + ECM fungi were explored. Overall, the senesced leaves' C, with 446.8 mg/g in AM plants, was significantly lower than that in AM + ECM and ECM species, being 493.1 and 501.4 mg/g, respectively, which was mainly caused by boreal biomes. The 8.9 mg/g senesced leaves' N in ECM plants was significantly lower than in AM (10.4 mg/g) or AM + ECM taxa (10.9 mg/g). Meanwhile, the senesced leaves' P presented no difference in plant associations with AM, AM + ECM and ECM. The senesced leaves' C and N presented contrary trends with the changes in mean annual temperature (MAT) and mean annual precipitation (MAP) in ECM or AM + ECM plants. The differences in senesced leaves' C and N may be more easily influenced by the plant mycorrhizal types, but not P and stoichiometric ratios of C, N and P. Our results suggest that senesced leaves' C:N:P stoichiometries depend on mycorrhizal types, which supports the hypothesis that mycorrhizal type is linked to the evolution of carbon-nutrient cycle interactions in the ecosystem.
Collapse
Affiliation(s)
- Shan-Wei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Zhao-Yong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Ming Huang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - Wen-Ya Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, China
- Henan Engineering Research Center of Human Settlements, Luoyang 471023, China
| | - You-Jun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
6
|
Kim S, Park HJ, Lee CW, Kim NY, Hwang JE, Lee BD, Park HB, An J, Baek J. Endangered plant species under differing anthropogenic interventions: how to preserve Pterygopleurum neurophyllum in Wondong wetland? PeerJ 2022; 10:e14050. [PMID: 36193426 PMCID: PMC9526420 DOI: 10.7717/peerj.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/23/2022] [Indexed: 01/19/2023] Open
Abstract
Endangered wetland plants are important as the potential keystone species and mediators for plant-soil interactions. Establishing conservation strategies for endangered plants is also prioritized because of the elevating extinction risk by human-induced wetland disturbances. The present study examined the factors controlling the incidence of Pterygopleurum neurophyllum, the endangered wetland plant experiencing severe habitat loss throughout Northeast Asia. Here, P. neurophyllum populations and their surrounding environments were addressed in the last natural Korean habitat to assess the possible influential factors (vegetation coverage, species richness, exotic plant species, coarse rock content, soil bulk density, and soil electroconductivity and pH) under anthropogenic wetland interventions (with or without soil disturbance). Our results showed that P. neurophyllum occurred 6 out of 32 plots in the study area. All P. neurophyllum were found in Miscanthus-dominated area, but preferred microhabitats featuring reduced vegetation coverage, increased species richness, and undisturbed soils under vegetation removal. Multimodel inference also indicated that vegetation coverage (relative importance = 1.00) and coarse rock content (relative importance = 0.70) were the major influential factors for P. neurophyllum population size, and the surviving P. neurophyllum were strictly limited to where both of them were kept lowered. Furthermore, the wetland intervention with soil disturbance had a negative effect on P. neurophyllum by creating the rocky and compacted soil surface as a result of land reclamation treatments. Conversely, the wetland intervention without soil disturbance enhanced the P. neurophyllum incidence by decreasing vegetation coverage of the overcrowding competitive plants. Overall findings reflect that the strategies to counteract habitat loss and manage the overly dense competitive plants should be necessary for conserving P. neurophyllum, as well as other wetland plants threatened by the human-induced disturbances and excessive competition intensities.
Collapse
|
7
|
Wei T, Dongjie Z, Guanglan C, Wanling X, Weihong Z, Lei Q. Effect of agricultural intervention on nutrient stoichiometry from root to leaf in the helophyte species Glyceria spiculosa. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.964198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant nutrient stoichiometry indicates the balance of plant internal nutrients and its nutrient-use strategies in response to environmental changes. However, the responses of nutrient stoichiometry in different wetland plant organs under agricultural intervention are poorly understood. Here, we compared the nitrogen (N), phosphorus (P), and the ratio of N:P in the plant organs (leaves, stems, roots, and root hair) of a typical helophyte plant (Glyceria spiculosa) in reference, drained, nutrient-rich, and cultivated wetlands (CW) located downstream of the Tumen River in Northeast China. Compared with that in reference wetlands (RW), the results indicate that the average N content in plant leaves, stems, roots, and root hair in nutrient-rich wetlands (NW) was significantly higher by 76, 61, 56, and 39%, respectively (p < 0.05), whereas the N content of roots and root hair in drained wetlands (DW) was significantly higher by 17 and 32%, respectively (p < 0.05). It was found that plant root P increased only in nutrient-rich and DW (p < 0.05). Interestingly, the agricultural interventions significantly affected soil N and P availability, resulting in positive effects on plant leaves, stems, roots, and root hair. Nutrient stoichiometry analysis showed the highest increase in plant leaf N:P ratio in NW, followed by that in drained and CW, but its ratio in root and root hair showed no significant changes under different agricultural interventions, which suggests that G. spiculosa allocates nutrients differently in different organs under agricultural interventions. These results imply that plant nutrient stoichiometry should incorporate various plant organs for an in-depth understanding of plant strategies against environmental changes.
Collapse
|
8
|
Zhang X, Feng Q, Cao J, Biswas A, Su H, Liu W, Qin Y, Zhu M. Response of leaf stoichiometry of Potentilla anserina to elevation in China's Qilian Mountains. FRONTIERS IN PLANT SCIENCE 2022; 13:941357. [PMID: 36226296 PMCID: PMC9549292 DOI: 10.3389/fpls.2022.941357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/25/2022] [Indexed: 05/05/2023]
Abstract
Plants adapt to changes in elevation by regulating their leaf ecological stoichiometry. Potentilla anserina L. that grows rapidly under poor or even bare soil conditions has become an important ground cover plant for ecological restoration. However, its leaf ecological stoichiometry has been given little attention, resulting in an insufficient understanding of its environmental adaptability and growth strategies. The objective of this study was to compare the leaf stoichiometry of P. anserina at different elevations (2,400, 2,600, 2,800, 3,000, 3,200, 3,500, and 3,800 m) in the middle eastern part of Qilian Mountains. With an increase in elevation, leaf carbon concentration [(C)leaf] significantly decreased, with the maximum value of 446.04 g·kg-1 (2,400 m) and the minimum value of 396.78 g·kg-1 (3,500 m). Leaf nitrogen concentration [(N)leaf] also increased with an increase in elevation, and its maximum and minimum values were 37.57 g·kg-1 (3,500 m) and 23.71 g·kg-1 (2,800 m), respectively. Leaf phosphorus concentration [(P)leaf] was the highest (2.79 g·kg-1) at 2,400 m and the lowest (0.91 g·kg-1) at 2,800 m. The [C]leaf/[N]leaf decreased with an increase in elevation, while [N]leaf/[P]leaf showed an opposite trend. The mean annual temperature, mean annual precipitation, soil pH, organic carbon, nitrogen, and phosphorus at different elevations mainly affected [C]leaf, [N]leaf, and [P]leaf. The growth of P. anserina in the study area was mainly limited by P, and this limitation was stronger with increased elevation. Progressively reducing P loss at high elevation is of great significance to the survival of P. anserina in this specific region.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Feng
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Qi Feng
| | - Jianjun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Asim Biswas
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Haohai Su
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, China
| | - Yanyan Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, China
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Meng Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
9
|
Sun W, Shi F, Chen H, Zhang Y, Guo Y, Mao R. Relationship between relative growth rate and C:N:P stoichiometry for the marsh herbaceous plants under water-level stress conditions. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Feng W, Santonja M, Bragazza L, Buttler A. Shift in plant-soil interactions along a lakeshore hydrological gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140254. [PMID: 32721708 DOI: 10.1016/j.scitotenv.2020.140254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Wetlands occupy the transitional zone between aquatic and terrestrial systems. Hydrological conditions have significant influence on wetland plant communities and soil biogeochemistry. However, our knowledge about plant-soil interactions in wetlands along hydrological gradients is still limited, although it is crucial to guide wetland management decisions and to adapt, whenever possible, hydrological conditions to the different plant communities. To this aim, we related vegetation composition, plant functional traits, soil physicochemical properties, soil microbial biomass, and soil enzymatic activities in wetlands on the southeastern shore of Neuchâtel lake, Switzerland, a lake whose level is partly regulated. Aboveground and belowground plant biomass and correspondent C, N and P concentrations remained constant or decreased moving from the vegetation community subjected to more frequent flooding events to the community with almost no flooding. The soil organic layer exhibited always higher nutrient concentrations and greater enzymatic activities than the organo-mineral and mineral layers. The chemical and biological characteristics of the soil organic layer showed decreasing values for most of the parameters along the hydrological gradient from lakeshore to upland wetland communities. On the basis of nutrient stoichiometry, plant-soil system in the plant community with most flooding events had no-nutrient limitation, while there was a N limitation in the transitional community. In the upland plant community where there was no flooding effect, the plant-soil system was characterized by N and P co-limitation. These findings are important because they provide a threshold for flooding regime by the lake in the context of optimization of lake level regulation under various stakeholders needs.
Collapse
Affiliation(s)
- Wenjuan Feng
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Station 2, 1015 Lausanne, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Case postale 96, 1015 Lausanne, Switzerland
| | - Mathieu Santonja
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Station 2, 1015 Lausanne, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Case postale 96, 1015 Lausanne, Switzerland; Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| | - Luca Bragazza
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Station 2, 1015 Lausanne, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Case postale 96, 1015 Lausanne, Switzerland; Agroscope, Field-Crop Systems and Plant Nutrition, Research Division Plant Production Systems, Route de Duillier 50, P.O. Box 1012, CH-1260 Nyon, Switzerland
| | - Alexandre Buttler
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Station 2, 1015 Lausanne, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Case postale 96, 1015 Lausanne, Switzerland; Laboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et Techniques, 16 route de Gray, Université de Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
11
|
Zhu D, Hui D, Wang M, Yang Q, Yu S. Light and competition alter leaf stoichiometry of introduced species and native mangrove species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140301. [PMID: 32806386 DOI: 10.1016/j.scitotenv.2020.140301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 05/21/2023]
Abstract
Ecological stoichiometry is the study of the balance of ecosystem energy and nutrient cycling, especially carbon (C), nitrogen (N), and phosphorus (P). C, N, and P are the key elements for plant growth and metabolism. Systematic research on leaf stoichiometry in mangrove forest ecosystems is still lacking. To understand the leaf stoichiometry of introduced species and native species in mangrove forests, we selected four species (one introduced species, Sonneratia apetala, and three native species, Avicennia marina, Aegiceras corniculatum, and Kandelia obovate) and measured leaf C, N, and P contents under different light conditions. The results showed that there were significant negative scaling relationships of leaf C versus N and C versus P but positive scaling relationships of leaf N versus P in the four mangrove species. Light and competition had significant effects on leaf stoichiometry, especially under the full light condition. S. apetala influenced leaf elements in a mixture with native species. Interspecific competition reduced leaf N and P contents in A. corniculatum and K. obovate but increased leaf N and P contents in A. marina. Leaf N and P contents of the four species showed similar responses to both intraspecific and interspecific competition. The ratio of leaf C:N:P (108:11:1) in the mangrove forests was lower than that in other ecosystems, and species with a higher growth rate had a higher leaf P content and lower N:P ratio, supporting the growth rate hypothesis. Leaf N:P was 11.04, indicating that there was N limitation in the mangrove forests. This systematic research of leaf stoichiometry of mangrove forests improves our understanding of mangrove growth and nutrient use strategies in response to different environmental stresses.
Collapse
Affiliation(s)
- Dehuang Zhu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute, Sun Yat-sen University, Guangzhou 518054, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville 37209, USA
| | - Mengqi Wang
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Qiong Yang
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute, Sun Yat-sen University, Guangzhou 518054, China.
| |
Collapse
|
12
|
Dibar DT, Zhang K, Yuan S, Zhang J, Zhou Z, Ye X. Ecological stoichiometric characteristics of Carbon (C), Nitrogen (N) and Phosphorus (P) in leaf, root, stem, and soil in four wetland plants communities in Shengjin Lake, China. PLoS One 2020; 15:e0230089. [PMID: 32760138 PMCID: PMC7410364 DOI: 10.1371/journal.pone.0230089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/13/2020] [Indexed: 12/02/2022] Open
Abstract
Ecological stoichiometric should be incorporated into management and nutrient impacted ecosystems dynamic to understand the status of ecosystems and ecological interaction. The present study focused on ecological stoichiometric characteristics of soil, and leaves, stems, and roots of different macrophytes after the banning of seine fishing in Shengjin Lake. For C, N, and P analysis from leaves, stems, roots, and soil to explore their stoichiometric ratio and deriving environmental forces, four dominant plant communities (Vallisneria natans, Zizania latifolia, Trapa natans and Carex schmidtii) were collected. The concentration of C, N, P and C: N: P ratio in leaves, stems, roots, and soil among the plant communities varied significantly. Along the depth gradient high C: N was measured in C.schmidtii soil (7.08±1.504) but not vary significantly (P >0.05). High C: P result was found in T.natans (81.14±43.88) and in V.natans soil (81.40±42.57) respectively with no significant difference (p>0.05). Besides, N: P ratio measured high in V. natans (13.7±4.05) and showed significant variation (P<0.05). High leaf C: N and N: P ratio was measured in C. schmidtii and V. natans respectively. Nevertheless, high leaf C: P ratio was measured in Z. latifolia. From the three studied organs, leaf C: N and N: P ratio showed high values compared to root and stems. The correlation analysis result showed that at 0-10cm depth soil organic carbon (SOC) correlated negatively with stem total phosphorus (STP), and root total nitrogen (RTN) (P<0.05) but positively strongly with leaf total phosphorus (LTP) and leaf total nitrogen (LTN) (P<0.01) respectively. Soil total nitrogen (STN) at 0-10cm strongly positively correlated with leaf total phosphorus (LTP) (P<0.01) and positively with RN: P and leaf total carbon (LTC) (P<0.05). Soil basic properties such as soil moisture content (SMC), bulky density (BD) and pH positively correlated with soil ecological stoichiometric characteristics. Redundancy analysis (RDA) result showed available nitrogen (AN), soil total nitrogen (STN), and available phosphorus (AP) were the potential determinants variables on plants stoichiometric characteristics.
Collapse
Affiliation(s)
- Dagne Tafa Dibar
- School of Resources and Environmental Engineering, Anhui
University, Hefei, China
| | - Kun Zhang
- School of Resources and Environmental Engineering, Anhui
University, Hefei, China
| | - Suqiang Yuan
- School of Resources and Environmental Engineering, Anhui
University, Hefei, China
| | - Jinyu Zhang
- School of Resources and Environmental Engineering, Anhui
University, Hefei, China
| | - Zhongze Zhou
- School of Resources and Environmental Engineering, Anhui
University, Hefei, China
| | - Xiaoxin Ye
- School of Resources and Environmental Engineering, Anhui
University, Hefei, China
| |
Collapse
|
13
|
Liping Shan, Song C, Zhang X, Wang X, Luan Z. Responses of Above-ground Biomass, Plant Diversity, and Dominant Species to Habitat Change in a Freshwater Wetland of Northeast China. RUSS J ECOL+ 2020. [DOI: 10.1134/s1067413620010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Photosynthesis, Ecological Stoichiometry, and Non-Structural Carbohydrate Response to Simulated Nitrogen Deposition and Phosphorus Addition in Chinese Fir Forests. FORESTS 2019. [DOI: 10.3390/f10121068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) deficiency in soil affects plant growth and primary production. Accelerated nitrogen (N) deposition can cause ecological carbon:nitrogen:phosphorus (C:N:P) stoichiometry imbalance and increase the degree of relative P deficiency in the soil. However, it remains unclear how N deposition affects P uptake and C:N:P stoichiometry in coniferous timber forests, and whether P addition diminishes the effect of N-induced P limitation on plant growth. From January 2017 to April 2018, we investigated the effects of nine different N and P addition treatments on 10-year old trees of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. Our results demonstrated that N and P additions at a high concentration could improve the photosynthetic capacity in Chinese fir by increasing the chlorophyll content and stimulating the photosynthesis activity. The C:N:P stoichiometry varied with the season under different N and P addition treatments, indicating that N addition at a moderate concentration could diminish the effect of the P limitation on the growth of Chinese fir. The soluble sugar content in the leaves displayed more stable seasonal variations, compared with those of starch. However, the non-structural carbohydrate (NSC) content in the leaves did not vary with the season under both P and N addition treatment. The data suggested that N and P combination treatment at moderate concentrations promoted carbon assimilation by accelerating the photosynthetic rate. Thus, our results provide new insights into the adaptation mechanisms of coniferous timber forest ecosystems to the effects of N deposition under P deficiency and can help to estimate the ecological effects of environmental changes linked to human management practices.
Collapse
|
15
|
Mei L, Yang X, Zhang S, Zhang T, Guo J. Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1129-1139. [PMID: 31412509 DOI: 10.1016/j.scitotenv.2019.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Global change apart from ecosystem processes also influences the community structure of key organisms, such as arbuscular mycorrhizal fungi (AMF). We conducted a 3-year experiment where we suppressed with benomyl mycorrhiza to understand how AMF alter the plant community structure under warming and nitrogen (N) addition. The elemental content and foliar tissue stoichiometry of the dominant species Leymus chinensis and the subordinate species Puccinellia tenuiflora were studied along with soil nutrient stoichiometries. Overall, N addition enhanced plant N: phosphorus (P) ratios at a greater level than experimental warming did. Under global change conditions, AMF symbionts significantly increased soil available P concentrations, promoted plant P absorption and decreased the plant N:P ratios. AMF alleviate P limitation by reducing plant N:P ratios. Our results highlight that the negative influence of global change on plant productivity might cancel each other out through the additive effects of AMF and that global change will increase the dependency of plants on their mycorrhizal symbionts.
Collapse
Affiliation(s)
- Linlin Mei
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Xue Yang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Shuaiqing Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Tao Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Jixun Guo
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
16
|
Wang J, Chen G, Zou G, Song X, Liu F. Comparative on plant stoichiometry response to agricultural non-point source pollution in different types of ecological ditches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:647-658. [PMID: 30411294 DOI: 10.1007/s11356-018-3567-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Long-term agricultural development has led to agricultural non-point source (NPS) pollution. Ecological ditches (eco-ditch), as specific wetland systems, can be used to manage agricultural NPS water and achieve both ecological and environmental benefits. In order to understand which type of eco-ditch systems (Es, soil eco-ditch; Ec, concrete eco-ditch; Eh, concrete eco-ditch with holes on double-sided wall) is more suitable for plant nutrient balance meanwhile reducing NPS water (total nitrogen [TN], about 10 mg/L; total phosphorus [TP], about 1 mg/L), it is essential to evaluate the plant (Vallisneria natans) stoichiometry response to water in different types of eco-ditches under static experiment. The results indicated that there were no significant differences in TP removal efficiency among three eco-ditches, yet Eh systems had the best TN removal efficiency during the earlier experimental time. Addition of agricultural NPS water had varying effects on plants living in different types of eco-ditch systems. Plant organ stoichiometry of V. natans varied in relation to eco-ditch types. Plant stoichiometry (C:N, C:P, and N:P) of V. natans in Eh systems could maintain the homeostasis of nutrients and was not greatly affected by external changing environment. V. natans in Es systems can more easily modify the nutrient contents of organs with regard to nutrient availability in the environment. Our findings provide useful plant stoichiometry information for ecologists studying other specific ecosystems.
Collapse
Affiliation(s)
- Junli Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, 201106, People's Republic of China
| | - Xiangfu Song
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Fuxing Liu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China.
| |
Collapse
|
17
|
Li F, Hu C, Xie Y, Liu W, Chen X, Deng Z, Hou Z. Influence of Differ P Enrichment Frequency on Plant Growth and Plant C:N:P in a P-Limited Subtropical Lake Wetland, China. FRONTIERS IN PLANT SCIENCE 2018; 9:1608. [PMID: 30455714 PMCID: PMC6231420 DOI: 10.3389/fpls.2018.01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Phosphorus (P) enrichment as a result of anthropogenic activities can potentially alter plant C:N:P stoichiometry. However, the influence of different P enrichment frequencies on plant C:N:P stoichiometry in P-limited ecosystems is still unclear. In this study, we conducted a P-addition experiment to elucidate the effect of various P enrichment frequencies on the plant C:N:P stoichiometry of Carex brevicuspis in a freshwater wetland at Dongting Lake, China. We used four P enrichment frequencies (treatment A: no P addition; treatment B: three 0.1 g kg-1 additions at 10-day intervals; treatment C: two 0.15 g kg-1 additions at 15-day intervals; and treatment D: one 0.3 g kg-1 addition during the experimental period) in a factorial design with an experimental duration of 30 days. Biomass accumulation was lowest in the treatment A and highest in the treatment C, and increased with decreasing P addition frequency. The shoot:root ratio did not differ significantly between the four treatments. Both foliar and root C concentrations were not significantly different between the treatments. Foliar N concentration was significantly lower in the treatment D than in the other three treatments, while root N concentration did not differ significantly between the treatments. Both foliar and root P concentrations, and foliar C:N were much higher in the treatment B than in the treatment A. However, root C:N did not differ significantly between treatments. Both foliar and root C:P and N:P of C. brevicuspis were lower in the treatment B than in the treatment A. These results indicated that different frequencies of P addition significantly influenced plant growth. Moreover, P enrichment, rather than frequency, significantly influenced plant C:N:P stoichiometry. Our results improve our understanding of the influence of different P enrichment frequencies on plant C:N:P stoichiometry and nutrient cycling in freshwater wetlands.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, China
| | - Cong Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture Chinese Academy of Sciences, Changsha, China
| | - Yonghong Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture Chinese Academy of Sciences, Changsha, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, China
| | - Xinsheng Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture Chinese Academy of Sciences, Changsha, China
| | - Zhengmiao Deng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture Chinese Academy of Sciences, Changsha, China
| | - Zhiyong Hou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha, China
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
18
|
Kou L, Chen W, Jiang L, Dai X, Fu X, Wang H, Li S. Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:611-620. [PMID: 29272830 DOI: 10.1016/j.scitotenv.2017.12.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Increase of anthropogenic atmospheric nitrogen (N) deposition markedly influences biogeochemical cycles of elements in a wide range of ecosystems. However, our knowledge of how N deposition affects stoichiometry of plants in forests experiencing regular seasonal droughts remains limited. Using a 3-year (2013-2015) N-manipulative experiment, we examined the stoichiometric responses of ten mineral elements, including the most limiting elements (N and P) to plant growth, base cations (K, Ca, and Mg), and trace metal cations (Mn, Zn, Cu, Al, and Fe) in resource-acquiring organs (foliage vs. absorptive roots) of Pinus elliottii to N additions in both wet and dry seasons in a seasonally dry subtropical forest. Stoichiometric responses of both organs depended on rate of N addition (generally stronger under high rate) and season. N additions increased foliar [N] and decreased foliar [P] only in dry season and the relative changes in foliar N:P ratio were twice higher in dry than wet seasons, suggesting an aggravated P limitation in dry season. The stoichiometry of absorptive roots was more responsive to N additions than that of foliage, especially for the base cations. N additions increased [Mn] and decreased Fe:Mn ratio in both organs, indicating increased risk of Mn2+ toxicity to this tree species. Our results have implications for understanding the N-induced changes in nutrient limitation of forests influenced by seasonal drought, and highlight the contrasting stoichiometric responses of above- and below-ground resource-acquiring plant organs to N loading.
Collapse
Affiliation(s)
- Liang Kou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqin Dai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Jiangxi Provincial Key Laboratory of Ecosystem Processes and Information, Taihe 343725, China
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Yuan Z, Jiang S, Sheng H, Liu X, Hua H, Liu X, Zhang Y. Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2438-2450. [PMID: 29402084 DOI: 10.1021/acs.est.7b03910] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The phosphorus (P) cycle is an important Earth system process. While natural P mobilization is slow, humans have been altering P cycle by intensifying P releases from lithosphere to ecosystems. Here, we examined magnitudes of which humans have altered the P cycles by integrating the estimates from recent literatures, and furthermore illustrated the consequences. Based on our synthesis, human alterations have tripled the global P mobilization in land-water continuum and increased P accumulation in soil with 6.9 ± 3.3 Tg-P yr-1. Around 30% of atmospheric P transfer is caused by human activities, which plays a significant role than previously thought. Pathways involving with human alterations include phosphate extraction, fertilizers application, wastes generation, and P losses from cropland. This study highlights the importance of sustainable P supply as a control on future food security because of regional P scarcity, food demand increase and continuously P intensive food production. Besides, accelerated P loads are responsible for enhanced eutrophication worldwide, resulting in water quality impairment and aquatic biodiversity losses. Moreover, the P enrichment can definitely stimulate the cycling of carbon and nitrogen, implying the great need for incorporating P in models predicting the response of carbon and nitrogen cycles to global changes.
Collapse
Affiliation(s)
- Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Songyan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hu Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Xin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hui Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Xuewei Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - You Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
20
|
Huang J, Yu H, Liu J, Luo C, Sun Z, Ma K, Kang Y, Du Y. Phosphorus addition changes belowground biomass and C:N:P stoichiometry of two desert steppe plants under simulated N deposition. Sci Rep 2018; 8:3400. [PMID: 29467375 PMCID: PMC5821873 DOI: 10.1038/s41598-018-21565-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/06/2018] [Indexed: 11/30/2022] Open
Abstract
Many studies have reported that increasing atmospheric nitrogen (N) deposition broadens N:phosphorus (P) in both soils and plant leaves and potentially intensifies P limitation for plants. However, few studies have tested whether P addition alleviates N-induced P limitation for plant belowground growth. It is also less known how changed N:P in soils and leaves affect plant belowground stoichiometry, which is significant for maintaining key belowground ecological processes. We conducted a multi-level N:P supply experiment (varied P levels combined with constant N amount) for Glycyrrhiza uralensis (a N fixing species) and Pennisetum centrasiaticum (a grass) from a desert steppe in Northwest China during 2011–2013. Results showed that increasing P addition increased the belowground biomass and P concentrations of both species, resulting in the decreases in belowground carbon (C):P and N:P. These results indicate that P inputs alleviated N-induced P limitation and hence stimulated belowground growth. Belowground C:N:P stoichiometry of both species, especially P. centrasiaticum, tightly linked to soil and green leaf C:N:P stoichiometry. Thus, the decoupling of C:N:P ratios in both soils and leaves under a changing climate could directly alter plant belowground stoichiometry, which will in turn have important feedbacks to primary productivity and C sequestration.
Collapse
Affiliation(s)
- Juying Huang
- Institute of Environmental Engineering, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environment Regulation in Arid Region, Yinchuan, 750021, China
| | - Hailong Yu
- Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environment Regulation in Arid Region, Yinchuan, 750021, China. .,College of Resources and Environment, Ningxia University, Yinchuan, 750021, China.
| | - Jili Liu
- Institute of Environmental Engineering, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environment Regulation in Arid Region, Yinchuan, 750021, China
| | - Chengke Luo
- Institute of Environmental Engineering, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environment Regulation in Arid Region, Yinchuan, 750021, China
| | - Zhaojun Sun
- Institute of Environmental Engineering, Ningxia University, Yinchuan, 750021, China.,Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environment Regulation in Arid Region, Yinchuan, 750021, China.,College of Resources and Environment, Ningxia University, Yinchuan, 750021, China
| | - Kaibo Ma
- College of Resources and Environment, Ningxia University, Yinchuan, 750021, China
| | - Yangmei Kang
- College of Resources and Environment, Ningxia University, Yinchuan, 750021, China
| | - Yaxian Du
- College of Resources and Environment, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
21
|
Mao R, Zhang XH, Li SY, Song CC. Long-term phosphorus addition enhances the biodegradability of dissolved organic carbon in a nitrogen-limited temperate freshwater wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:332-336. [PMID: 28668744 DOI: 10.1016/j.scitotenv.2017.06.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) enrichment is expected to strongly influence dissolved organic carbon (DOC) biodegradation. However, the relationship between P availability and DOC biodegradation is largely unknown in nitrogen (N)-limited ecosystems. Here, we investigated the changes in the ratio of DOC to dissolved total nitrogen (DTN), specific UV absorbance at 254nm (SUVA254), and DOC biodegradation in surface water and soil pore water (0-15cm depth) following eight years of multi-level P addition (0, 1.2, 4.8, and 9.6gPm-2year-1) in an N-limited freshwater marsh in Northeast China. We found that P addition caused an increase in DOC biodegradation in surface water and soil pore water, irrespective of the P addition levels. Compared with the control treatment, the P addition rates of 1.2, 4.8, and 9.6gPm-2year-1 increased DOC biodegradation by 20.7%, 15.2%, and 14.5% in surface waters, and 11.3%, 9.4%, and 12.0% in soil pore waters, respectively. The DOC biodegradation was separately negatively correlated with the DOC:DTN ratio and SUVA254, indicating that the positive effect of P addition on DOC biodegradation was caused by the elevated N concentration and the reduced DOC aromaticity. Our findings suggest that P enrichment enhances the biodegradability of DOC through increased N availability and altered DOC chemical composition, which would accelerate DOC loss from the waters and alter ecosystem C balance in N-limited temperate wetlands.
Collapse
Affiliation(s)
- Rong Mao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; The Three Gorges Institute of Ecological Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Xin-Hou Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Si-Yue Li
- The Three Gorges Institute of Ecological Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chang-Chun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
22
|
Mao R, Li SY, Zhang XH, Wang XW, Song CC. Effect of long-term phosphorus addition on the quantity and quality of dissolved organic carbon in a freshwater wetland of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:1032-1037. [PMID: 28215795 DOI: 10.1016/j.scitotenv.2017.02.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Understanding how P enrichment alters the quantity and quality of dissolved organic carbon (DOC) is important, because of their role in regulating the C cycle. Here, we established a four-level P addition experiment (0, 1.2, 4.8, and 9.6gPm-2year-1) in a N-limited freshwater wetland in the Sanjiang Plain, Northeast China. The aim of this study was to examine the effects of eight years of P addition on DOC concentration, SUVA254 (Abs254/DOC concentration, indicating the aromaticity of DOC), C:C ratio (Abs400/DOC concentration, indicating the proportion of colored humic substances in DOC), and E4:E6 ratio (Abs465/Abs665, indicating the molecular size of humic substances) in surface water and soil pore water (0-15cm depth) during the growing season (June through September). Our results showed similar changing trends in concentration and optical properties of DOC following eight years of P addition in the both surface water and soil pore water across the sampling dates. Generally, P addition decreased DOC concentration, SUVA254, and C:C ratio, and increased E4:E6 ratio, irrespective of P addition levels. These altered optical properties of DOC indicated that P addition decreased the molecular weight and aromaticity of DOC, and thus increased the quality of DOC. These results suggest P enrichment substantially reduces the quantity of DOC in N-limited temperate freshwater wetlands, and imply that increased DOC quality following P addition can further provide a positive feedback to decreased DOC pool.
Collapse
Affiliation(s)
- Rong Mao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Si-Yue Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin-Hou Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xian-Wei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chang-Chun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
23
|
Zhang Y, Zhang N, Xu B, Kumirska J, Qi F. Occurrence of earthy–musty taste and odors in the Taihu Lake, China: spatial and seasonal patterns. RSC Adv 2016. [DOI: 10.1039/c6ra16733k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The occurrence of earthy–musty T&O in the Taihu Lake evaluated in 2009/2010 and the main contributors are β-ionone, β-cyclocitral, IPMP and IBMP.
Collapse
Affiliation(s)
- Yingchao Zhang
- State Key Laboratory of Automotive Simulation and Control
- Jilin University
- Changchun 130022
- China
| | - Ni Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- China
| | - Bingbing Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Jolanta Kumirska
- Department of Environmental Analysis
- Faculty of Chemistry
- University of Gdansk
- Poland
| | - Fei Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- China
| |
Collapse
|