1
|
Geng R, Qiang S, Mei H, Zhang B, Li P, Liang J, Fan Q. Sequestration process and mechanism of U(VI) on montmorillonite-aspergillus niger composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177952. [PMID: 39657335 DOI: 10.1016/j.scitotenv.2024.177952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The existence state and spatiotemporal evolution process of uranium in mineral-microbe complex systems are important factors that constrain its ecotoxicity. This study investigated the sequestration of U(VI) by montmorillonite-Aspergillus niger (MTA) composite using bioassay and spectroscopies approaches. The results demonstrate that the sequestration process and mechanism of U(VI) on MTA differ substantially from those of individual components. Under neutral conditions, the sorption of U(VI) decreased from 92.4 ± 4.6 % on MT to 73.2 ± 2.4 % on MTA4 and 74.9 ± 6.3 % on MTA10, respectively, while the stability of U(VI) species on MTA increased obviously compared to MT. In the case of MTA formed over 4 days (MTA4), the biosorption effect of A. niger hyphae dominated the sequestration of U(VI). In contrast, for MTA formed over 10 days (MTA10), the interactions between MT and A. niger became more pronounced, and the hyphae of Aspergillus niger played a pivotal role in U(VI) sequestration, immobilizing U(VI) through complexation with organic ligands and bioreduction reactions. The high expandability of MT facilitated the penetration of extracellular polymeric substances (EPS) from A. niger into its interlayer of MT, enhancing U(VI) complexation and reduction. These processes significantly contributed to the effective sequestration of U(VI) by the MTA composite.
Collapse
Affiliation(s)
- Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China
| | - Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiyang Mei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Beihang Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China.
| |
Collapse
|
2
|
Mayekar PC, Auras R. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants. Macromol Rapid Commun 2024; 45:e2300641. [PMID: 38206571 DOI: 10.1002/marc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Poly(lactic acid) (PLA) has garnered interest due to its low environmental footprint and ability to replace conventional polymers and be disposed of in industrial composting environments. Although PLA is compostable when subjected to a suitable set of conditions, its broader acceptance in industrial composting facilities has been affected adversely due to longer degradation timeframes than the readily biodegradable organic waste fraction. PLA must be fully exposed to thermophilic conditions for prolonged periods to biodegrade, which has restricted its adoption and hindered its acceptance in industrial composting facilities, negating its home composting potential. Thus, enhancing PLA biodegradation is crucial to expand its acceptance. PLA's biodegradability is investigated in a compost matrix under mesophilic conditions at 37 °C for 180 days by biostimulating the compost environment with skim milk, gelatin, and ethyl lactate to enhance the different stages of PLA biodegradation. The evolved CO2, number average molecular weight (Mn), and crystallinity evolution are tracked. To achieve a Mn ≲ 10 kDa for PLA, the biodegradation rate is accelerated by 15% by adding skim milk, 25% by adding gelatin, and 22% by adding ethyl lactate. This work shows potential techniques to help biodegrade PLA in home composting setting by adding biostimulants.
Collapse
Affiliation(s)
- Pooja C Mayekar
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| | - Rafael Auras
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Li X, Ning X, Li Z. Global research trends of uranium-containing wastewater treatment based on bibliometric review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120310. [PMID: 38377753 DOI: 10.1016/j.jenvman.2024.120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
The generation of uranium-containing wastewater (UCW) during different stages of uranium mining, processing, and utilization presents a significant ecological and biospheric threat. Consequently, it is crucial for both sustainable development and the protection of human health to adopt appropriate methods for the treatment of UCW as well as the separation and enrichment of uranium. This study conducted a comprehensive search of the Web of Science Core Collection (WOSCC) database for publications related to UCW treatment between 1990 and 2022 to gain insight into current trends in the field. Subsequently, the annual publications, WOSCC categories, geographical distribution, major collaborations, prolific authors, influential journals, and highly cited publications were the subjects of a biliometric analysis that was subsequently carried out. The study findings indicate a significant rise in the overall number of publications in the research field between 1990 and 2022. China, India, and the USA emerged as the primary contributors in terms of publication count. The Chinese Academy of Sciences, the East China University of Technology, and the University of South China were identified as the key research institutions in this field. Furthermore, a majority of the publications in this field were distributed through prestigious journals with high impact factors, such as the Journal of Radioanalytical and Nuclear Chemistry. The top 3 journals were Radioanalytical and Nuclear Chemistry, Chemical Engineering Journal, and Journal of Hazardous Materials. The keyword co-occurrence and burst analysis revealed that the current research on UCW treatment mainly focuses on adsorption-based treatment methods, environmentally functional materials, uranium recovery, etc. Furthermore, the study of the adsorption efficiency of different adsorbent materials, as well as the strengthening and improvement of adsorbent material selectivity and capacity for the recovery of uranium, represents a research hotspot in the field of UCW treatment in the future. This study conducts a comprehensive overview of the current status and prospects of the UCW treatment, which can provide a valuable reference for gaining insights into the development trajectory of the UCW treatment.
Collapse
Affiliation(s)
- Xianhong Li
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310028, China; School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Xiaolin Ning
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310028, China; School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
4
|
Fang Q, Tan Y, Yan R, Zhang D, Li M, Wu X, Hua Y, Xue W, Wang R. Insights into the long-term immobilization performances and mechanisms of CMC-Fe 0/FeS with different sulfur sources for uranium under anoxic and oxic aging. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120157. [PMID: 38295639 DOI: 10.1016/j.jenvman.2024.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale zerovalent iron (Fe0)-based materials have been demonstrated to be a effective method for the U(VI) removal. However, limited research has been conducted on the long-term immobilization efficiency and mechanism of Fe0-based materials for U(VI), which are essential for achieving safe handling and disposal of U(VI) on a large scale. In this study, the prepared carboxymethyl cellulose (CMC) and sulfurization dual stabilized Fe0 (CMC-Fe0/FeS) exhibited excellent long-term immobilization performances for U(VI) under both anoxic and oxic conditions, with the immobilization efficiencies were respectively reached over 98.0 % and 94.8 % after 180 days of aging. Most importantly, different from the immobilization mechanisms of the fresh CMC-Fe0/FeS for U(VI) (the adsorption effect of -COOH and -OH groups, coordination effect with sulfur species, as well as reduction effect of Fe0), the re-mobilized U(VI) were finally re-immobilized by the formed FeOOH and Fe3O4 on the aged CMC-Fe0/FeS. Under anoxic conditions, more Fe3O4 was produced, which may be the main reason for the long-term immobilization U(VI). Under oxic conditions, the production of Fe3O4 and FeOOH were relatively high, which both played significant roles in re-immobilizing U(VI) through surface complexation, reduction and incorporation effects.
Collapse
Affiliation(s)
- Qi Fang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yanling Tan
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Ran Yan
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - De Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Wu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yilong Hua
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Li H, Song J, Ma C, Shen C, Chen M, Chen D, Zhang H, Su M. Uranium recovery from weakly acidic wastewater using recyclable γ-Fe 2O 3@meso-SiO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119347. [PMID: 37897898 DOI: 10.1016/j.jenvman.2023.119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core-shell material (i.e. γ-Fe2O3@meso-SiO2) with magnetically and vertically oriented channels was rationally designed through a surfactant-templating method. Batch experiment results showed that the material had an efficiency level of >99.7% in removing U(VI) and a saturated adsorption capacity of approximately 41.40 mg/g, with its adsorption reaching equilibrium in 15 min. The U(VI) adsorption efficiency of the material remained above 90% in a solution with competing ions and in acidic radioactive wastewater, indicating its ability to selectively adsorb U(VI). The material exhibited high adsorption efficiency and desorption efficiency in five cycles of desorption and regeneration experiments. According to the results, the mechanism through which γ-Fe2O3@meso-SiO2 adsorbs U(VI) was dominated by chemical complexation and electrostatic attraction between these two substances. Therefore, γ-Fe2O3@meso-SiO2 is not only beneficial to control the environmental migration of uranium, but also has good selective adsorption and repeated regeneration performance when used to recover U(VI) from weakly acidic wastewater in uranium mining.
Collapse
Affiliation(s)
- Hong Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Juexi Song
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, Shandong, China
| | - Chuqin Ma
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Jeong D, Baik MH, Jung EC, Ko MS, Um W, Ryu JH. Potential of indigenous bacteria driven U(VI) reduction under relevant deep geological repository (DGR) conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121674. [PMID: 37085104 DOI: 10.1016/j.envpol.2023.121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Understanding the biogeochemical U redox processes is crucial for controlling U mobility and toxicity under conditions relevant to deep geological repositories (DGRs). In this study, we examined the microbial reduction of aqueous hexavalent uranium U(VI) [U(VI)aq] by indigenous bacteria in U-contaminated groundwater. Three indigenous bacteria obtained from granitic groundwater at depths of 44-60 m (S1), 92-116 m (S2), and 234-244 m (S3) were used in U(VI)aq bioreduction experiments. The concentration of U(VI)aq was monitored to evaluate its removal efficiency for 24 weeks under anaerobic conditions with the addition of 20 mM sodium acetate. During the anaerobic reaction, U(VI)aq was precipitated in the form of U(IV)-silicate with a particle size >100 nm. The final U(VI)aq removal efficiencies were 37.7%, 43.1%, and 57.8% in S1, S2, and S3 sample, respectively. Incomplete U(VI)aq removal was attributed to the presence of a thermodynamically stable calcium uranyl carbonate complex in the U-contaminated groundwater. High-throughput 16S rRNA gene sequencing analysis revealed the differences in indigenous bacterial communities in response to the depth, which affected to the U(VI)aq removal efficiency. Pseudomonas peli was found to be a common bacterium related to U(VI)aq bioreduction in S1 and S2 samples, while two SRB species, Thermodesulfovibrio yellowstonii and Desulfatirhabdium butyrativorans, played key roles in the bioreduction of U(VI)aq in S3 sample. These results indicate that remediation of U(VI)aq is possible by stimulating the activity of indigenous bacteria in the DGR environment.
Collapse
Affiliation(s)
- Dawoon Jeong
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea.
| | - Min Hoon Baik
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea
| | - Euo Chang Jung
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea
| | - Myoung-Soo Ko
- Department of Energy and Resources Engineering, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Wooyong Um
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-Gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Ji-Hun Ryu
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea.
| |
Collapse
|
7
|
Cheng X, Chen J, Li H, Sheng G. Preparation and evaluation of celite decorated iron nanoparticles for the sequestration performance of hexavalent chromium from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63535-63548. [PMID: 37055688 DOI: 10.1007/s11356-023-26896-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The increasing usage of an important heavy metal chromium for industrial purposes, such as metallurgy, electroplating, leather tanning, and other fields, has contributed to an augmented level of hexavalent chromium (Cr(VI)) in watercourses negatively impacting the ecosystems and significantly making Cr(VI) pollution a serious environmental issue. In this regard, iron nanoparticles exhibited great reactivity in remediation of Cr(VI)-polluted waters and soils, but, the persistence and dispersion of the raw iron should be improved. Herein, this article utilized an environment-friendly celite as a modifying reagent and described the preparation of a novel composites namaly celite decorated iron nanoparticles (C-Fe0) and evaluation of C-Fe0 for the sequestration performance of Cr(VI) from aqueous solution. The results indicated that initial Cr(VI) concentration, adsorbent dosage, and especially solution pH are all critical factors to control C-Fe0 performance in Cr(VI) sequestration. We demonstrated that C-Fe0 could achieve a high Cr(VI) sequestration efficiency with an optimized adsorbent dosage. Fitness of the pseudo-second-order kinetics model with data indicated that adsorption was the rate-controlling step and chemical interaction controlled Cr(VI) sequestration on C-Fe0. The adsorption isotherm of Cr(VI) could be the best depicted by Langmuir model with a monolayer adsorption. The underlying sequestration path of Cr(VI) by C-Fe0 was then put forward, and the combined effect of adsorption and reduction implied the potentials of C-Fe0 in Cr(VI) removal.
Collapse
Affiliation(s)
- Xiankui Cheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Zhejiang, 312000, People's Republic of China
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Zhejiang, 312000, People's Republic of China
| | - Hui Li
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Guodong Sheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Zhejiang, 312000, People's Republic of China.
| |
Collapse
|
8
|
Wu HY, Luo JX, Li HH, Zhang JH. Guest molecular guided syntheses of 2-dimensional uranyl complexes with rigid benzenedicarboxylate ligands. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2170230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hong-Yan Wu
- School of Resource and Chemical Engineering, Sanming University, Fujian Sanming, P.R. China
| | - Ju-Xiang Luo
- School of Resource and Chemical Engineering, Sanming University, Fujian Sanming, P.R. China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Jian-Han Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
9
|
Noli F, Dafnomili A, Sarafidis G, Dendrinou-Samara C, Pliatsikas N, Kapnisti M. Uranium and Thorium water decontamination via novel coated Cu-based nanoparticles; the role of chemistry and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156050. [PMID: 35598664 DOI: 10.1016/j.scitotenv.2022.156050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The removal of radioactive contaminants from aquifers is a matter of great concern. In this paper, coated copper-based nanoparticles (Cu-based NPs) were investigated as sorbent materials to remove uranium and thorium from low-level wastes, and especially from water, considering the influences of temperature, time, concentration, and pH. Cu-based NPs were derived through a hydrothermal synthesis from copper nitrate degradation in the presence of the bifunctional with COOH-terminated PEG, TEG as well as PEG 8000. The characterization was undertaken using XRD, TEM, TG/DTG, FTIR, and SEM-EDS. Isotherm models such as Langmuir and Freundlich were applied, while kinetic data were successfully reproduced by the pseudo-second-order equation and thermodynamic parameters were calculated. To investigate the removal mechanisms, UV-fluorescence and X-ray photoelectron spectroscopy were used. In the case of uranium, the predominant mechanism includes the formation of surface complexes, followed by extensive reduction (65%) of U(VI) to less soluble U(IV) while in the case of thorium, surface precipitation dominates. Copper nanoparticles exhibited significant U(VI) uptake capacity resulting in a decrease of the U-concentration below the acceptable limit of 30 μg/L and can be successfully applied in water treatment technology.
Collapse
Affiliation(s)
- Fotini Noli
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Argyro Dafnomili
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgios Sarafidis
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | - Nikolaos Pliatsikas
- Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
10
|
Efficient adsorptive and reductive removal of U(VI) and Se(IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Embaby MA, Haggag ESA, El-Sheikh AS, Marrez DA. Biosorption of Uranium from aqueous solution by green microalga Chlorella sorokiniana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58388-58404. [PMID: 35366208 PMCID: PMC9395467 DOI: 10.1007/s11356-022-19827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Uranium and its compounds are radioactive and toxic, as well as highly polluting and damaging the environment. Novel uranium adsorbents with high biosorption capacity that are both eco-friendly and cost-effective are continuously being researched. The non-living biomass of the fresh water green microalga Chlorella sorokiniana was used to study the biosorption of uranium from aqueous solution. The biosorption of uranium from aqueous solutions onto the biomass of microalga C. sorokiniana was investigated in batch studies. The results showed that the optimal pH for uranium biosorption onto C. sorokiniana was 2.5. Uranium biosorption occurred quickly, with an equilibrium time of 90 min. The kinetics followed a pseudo-second-order rate equation, and the biosorption process fit the Langmuir isotherm model well, with a maximum monolayer adsorption capacity of 188.7 mg/g. The linear plot of the DKR model revealed that the mean free energy E = 14.8 kJ/mol, confirming chemisorption adsorption with ion exchange mode. The morphology of the algal biomass was investigated using a scanning electron microscope and energy dispersive X-ray spectroscopy. The FTIR spectroscopy analysis demonstrated that functional groups (carboxyl, amino, and hydroxyl) on the algal surface could contribute to the uranium biosorption process, which involves ion exchange and uranium absorption, and coordination mechanisms. Thermodynamic simulations indicated that the uranium biosorption process was exothermic (ΔH = -19.5562 kJ/mol) and spontaneous at lower temperatures. The current study revealed that C. sorokiniana non-living biomass could be an efficient, rapid, low-cost, and convenient method of removing uranium from aqueous solution.
Collapse
Affiliation(s)
- Mohamed A Embaby
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt
| | | | | | - Diaa A Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
12
|
Li Z, Wang S, Dong Y, Miao X, Xiao B, Yang J, Zhao J, Huang R. Amidoxime functionalized chitosan for uranium sequestration in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113636. [PMID: 35588624 DOI: 10.1016/j.ecoenv.2022.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Amidoxime functionalized chitosan (AC) was recommended as a chelator for uranium sequestration in vivo in this study, and the structure-activity relationship was also explored. Compared with ZnNa3-DTPA, which was a commercial uranium mobilization drug, AC exhibited excellent biocompatibility and uranium removal efficiency, whether by injection or orally, which could reduce the amounts of uranium deposited in kidneys and femurs by up to 43.6% and 32.3%. In particular, ACs still possessed the ability to mobilize uranium in vivo even if administration was delayed for 72 h.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Siyi Wang
- School of Pharmacy, Henan University, Henan 475000, China
| | - Yipu Dong
- Guangdong Pharmaceutical University, Guangdong 511436, China
| | - Xiaoyao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bingkun Xiao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianyun Yang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianfeng Zhao
- China Ocean Aviation Group, Ltd., Beijing 100070, China
| | - Rongqing Huang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
13
|
Hamza MF, Wei Y, Khalafalla MS, Abed NS, Fouda A, Elwakeel KZ, Guibal E, Hamad NA. U(VI) and Th(IV) recovery using silica beads functionalized with urea- or thiourea-based polymers - Application to ore leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153184. [PMID: 35051487 DOI: 10.1016/j.scitotenv.2022.153184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Urea and thiourea have been successfully deposited at the surface of silica beads (through one-pot reaction with formaldehyde) for designing new sorbents for U(VI) and Th(IV) recovery (UR/SiO2 and TUR/SiO2 composites, respectively). These materials have been characterized by FTIR, titration, elemental analysis, BET, TGA, SEM-EDX for identification of structural and chemical properties, and interpretation of binding mechanisms. Based on deprotonation of reactive groups (amine, carbonyl, or thiocarbonyl) and metal speciation, the optimum pH was ~4. Uptake kinetics was fast (equilibrium within 60-90 min). Although the kinetic profiles are fitted by the pseudo-first order rate equation, the resistance to intraparticle diffusion cannot be neglected. Sorption isotherms were fitted by Langmuir equation (maximum sorption capacities: 1-1.2 mmol g-1). Thermodynamics are also investigated showing differences between the two types of functionalized groups: exothermic for TUR/SiO2 and endothermic for UR/SiO2. Metal desorption is highly effective using 0.3-0.5 M HCl solutions: total desorption occurs within 30-60 min; sorption/desorption properties are remarkably stable for at least 5 cycles. The sorbents have marked preference for U(VI) and Th(IV) over alkali-earth and base metals at pHeq ~4.8. By preliminary precipitation steps, it is possible "cleaning" ore leachates of pegmatite ore, and recovering U(VI) and Th(IV) using functionalized silica beads. After elution and selective recovery by precipitation with oxalate (Th-cake) and alkaline (U-cake), the metals can be valorized.
Collapse
Affiliation(s)
- Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, China; Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Neveen S Abed
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Khalid Z Elwakeel
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia; Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, Alès, France.
| | - Nora A Hamad
- Faculty of Science, Menoufia University, Shebine El-Koam, Egypt.
| |
Collapse
|
14
|
Yilmaz S, Külekçi EA, Mutlu BE, Sezen I. Analysis of winter thermal comfort conditions: street scenarios using ENVI-met model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63837-63859. [PMID: 33458789 DOI: 10.1007/s11356-020-12009-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Rapid migration to cities and the increasing demand for housing negatively affect living areas. Furthermore, uncontrolled population growth, industrialization, urbanization, narrowing of urban areas, and expansion of cities cause physical boundaries. Urbanization growth and the cold climate restrict pedestrian mobility in the city. Therefore, hourly microclimate data of the city center streets were collected 1.5 m above ground level in the winter period of 2019-2020. Then, different landscape design scenarios on pedestrian roads were investigated extensively using the ENVI-met V.4.4.2 winter model to determine the outdoor thermal comfort level. The RayMan model was utilized to generate the sky view factor (SVF) and analyze the mean values of the microclimate data. The proposed landscape design scenarios were as follows; (1) hard-covered street, (2) complete street coverage with a canopy, (3) street coverage with a semi-canopy, (4) sage of a combination of different plant species (30% deciduous, 30% coniferous, 30% bush), and (5) usage of ornamental pools in streets. The time period when pedestrians used the outdoor space was taken into consideration in evaluating and interpreting the analysis results. The findings of this study generally indicated that the semi-open canopy design provided roads with high thermal comfort such that people can walk and cycle in winter time. In conclusion, the thermal comfort condition of a street design, which is important for achieving sustainable urbanization, can be changed by making appropriate plan decisions. The findings of this study will help improve the outdoor thermal comfort in the first stage of urban planning and landscape street design for more livable and effective cities. This study emphasizes that a multidisciplinary team should work together to establish a healthy, sustainable, and livable urbanized area with thermal comfort in the streets.
Collapse
Affiliation(s)
- Sevgi Yilmaz
- Faculty of Architecture and Design, Department of Landscape Architecture, Atatürk University, 25240, Erzurum, Turkey
| | - Elif Akpinar Külekçi
- Faculty of Architecture and Design, Department of Landscape Architecture, Atatürk University, 25240, Erzurum, Turkey.
| | - Başak Ertem Mutlu
- Faculty of Architecture and Design, Department of Landscape Architecture, Atatürk University, 25240, Erzurum, Turkey
| | - Işık Sezen
- Faculty of Architecture and Design, Department of Landscape Architecture, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
15
|
Wu H, Chen J, Xu L, Guo X, Fang P, Du K, Shen C, Sheng G. Decorating nanoscale FeS onto metal-organic framework for the decontamination performance and mechanism of Cr(VI) and Se(IV). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Wang C, Helal AS, Wang Z, Zhou J, Yao X, Shi Z, Ren Y, Lee J, Chang JK, Fugetsu B, Li J. Uranium In Situ Electrolytic Deposition with a Reusable Functional Graphene-Foam Electrode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102633. [PMID: 34346102 DOI: 10.1002/adma.202102633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Nuclear fission produces 400 GWe which represents 11% of the global electricity output. Uranium is the essential element as both fission fuel and radioactive waste. Therefore, the recovery of uranium is of great importance. Here, an in situ electrolytic deposition method to extract uranium from aqueous solution is reported. A functionalized reduced graphene oxide foam (3D-FrGOF) is used as the working electrode, which acts as both a hydrogen evolution reaction catalyst and a uranium deposition substrate. The specific electrolytic deposition capacity for U(VI) ions with the 3D-FrGOF is 4560 mg g-1 without reaching saturation, and the Coulombic efficiency can reach 54%. Moreover, reduction of the uranium concentration in spiked seawater from 3 ppm to 19.9 ppb is achieved, which is lower than the US Environmental Protection Agency uranium limits for drinking water (30 ppb). Furthermore, the collection electrode can be efficiently regenerated and recycled at least nine times without much efficiency fading, by ejecting into 2000 ppm concentrated uranium solution in a second bath with reverse voltage bias. All these findings open new opportunities in using free-standing 3D-FrGOF electrode as an advanced separation technique for water treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Ahmed S Helal
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt
| | - Ziqiang Wang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jian Zhou
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiahui Yao
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhe Shi
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yang Ren
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Jinhyuk Lee
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeng-Kuei Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Bunshi Fugetsu
- Institute for Future Initiatives, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Liu L, Zhao J, Yin W, Lv S, Su M, Li P, Zheng X, Chiang P, Wu J. Enhanced immobilization of Cr(VI) by a Fe 0 -microorganisms composite system: Benchmark and pot experiments. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1123-1134. [PMID: 34213024 DOI: 10.1002/jeq2.20261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, a collaborative system of Fe0 and mixed anaerobic microorganisms was established for remediating chromium (Cr)-contaminated soil and restraining the translocation of Cr from soil to swamp cabbage (Ipomoea aquatica Forssk.). Solid phase characterization demonstrated that more reactive secondary minerals such as green rust, magnetite, and lepidocrocite were generated in the composite system as compared with the Fe0 -only system. Hence, the Fe0 -microorganisms composite system achieved a remarkably higher aqueous Cr(VI) removal of 85.6%, 2.9 times higher than that in the Fe0 -only system. After 14 d remediation, easily available Cr(VI) and Crtotal species such as water-soluble, exchangeable, and bound-to-carbonates were converted to less available Cr(III) and Crtotal species (e.g., Fe-Mn oxides-bound and organic matter-bound species) because of the production of Cr-Fe hydroxides and oxides [Crx Fe1-x (OH)3 or Crx Fe1-x OOH] on the Fe0 surface. A pot experiment showed that Cr uptake by swamp cabbage after the composite system remediation was suppressed by 69.1%, two times higher than that after the Fe0 -only system remediation. Excessive Fe uptake by swamp cabbage also was efficiently inhibited by the composite system treatment due to enhanced Fe hydroxides and oxides production on the Fe0 surface because of biological corrosion and mineralization. These results indicated that Fe0 -microorganisms composite system remediation could efficiently enhance Cr(VI) immobilization and decrease its bioavailability and bioaccumulation by plants, which is a promising technology in Cr-contaminated soil remediation.
Collapse
Affiliation(s)
- Li Liu
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Jinxin Zhao
- School of Environment, Jinan Univ., Guangzhou, 510632, China
| | - Weizhao Yin
- School of Environment, Jinan Univ., Guangzhou, 510632, China
| | - Sihao Lv
- School of Chemistry and Environmental Engineering, Dongguan Univ. of Technology, Dongguan, 523808, China
| | - Mei Su
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Xiangyu Zheng
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Penchi Chiang
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China
| |
Collapse
|
18
|
Fe3O4-modified sewage sludge biochar for U(VI) removal from aqueous solution: performance and mechanism. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07782-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Li L, Wu H, Chen J, Xu L, Sheng G, Fang P, Du K, Shen C, Guo X. Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Lin Y, Liu Y, Zhang S, Xie Z, Wang Y, Liu Y, Dai Y, Wang Y, Zhang Z, Liu Y, Deng S. Electrochemical synthesis of EuVO 4 for the adsorption of U(VI): Performance and mechanism. CHEMOSPHERE 2021; 273:128569. [PMID: 33139053 DOI: 10.1016/j.chemosphere.2020.128569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The efficient removal of uranium from aqueous solution remains of great challenge in securing water environment safety. In this paper, we reported a high temperature electrochemical method for the preparation of EuVO4 with different morphologies from rare earth oxides and vanadate, which solved the problems of rare earth and vanadium recovery. The effects of pH, ionic strength, contact time, initial concentration and reaction temperature on the adsorption of U(VI) by prepared adsorbent were studied by static batch experiments. When the concentration of U(VI) standard is 100 mg g-1, the maximum adsorption capacity of EuVO4 is 276.16 mg g-1. The adsorption mechanism was elucidated with zeta potential and XPS: 1) negatively charged EuVO4 attracted UO22+ by electrostatic attraction; 2) exposed Eu, V, and O atoms complexed with U(VI) through coordination; 3) the hybrid of Eu was complex, which accommodated different electrons to interact. In the multi-ion system with Al3+, Zn2+, Cu2+, Ni2+, Cr2+ and Mn2+, EuVO4 also showed good selective adsorption properties for U(VI). Five adsorption and desorption cycle experiments demonstrated that EuVO4 possessed good renewable performance.
Collapse
Affiliation(s)
- Yuling Lin
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Shuang Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Zijie Xie
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Yingcai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Yan Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Youquan Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
| | - Sheng Deng
- Research Center for Eco-Environmental Engineering Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
22
|
Wang C, Wang Z, Xu H, Bai L, Liu C, Jiang H, Cui P. Organic matter stabilized Fe in drinking water treatment residue with implications for environmental remediation. WATER RESEARCH 2021; 189:116688. [PMID: 33278722 DOI: 10.1016/j.watres.2020.116688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/31/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Fe-based materials used to adsorb P are commonly considered to be limited by the increased Fe lability, while Fe in drinking water treatment residue (DWTR) shows stable P adsorption abilities. Accordingly, this study aimed to gain insight into Fe lability in DWTR as compared to FeCl3 and Fe2(SO4)3 using Fe fractionation, EXAFS, and high-throughput sequencing technologies. The results showed that compared to Fe2(SO4)3 and FeCl3, Fe was relatively stable in the DWTR under the effects of organic matter, sulfides, and anaerobic conditions. Typically, the addition of FeCl3 and Fe2(SO4)3 enhanced Fe mobility in sediment and overlying water, promoting the formation of Fe-humin acid and ferrous sulfides (FeS and FeS2). However, the addition of DWTR, even at relatively high doses of Fe, has limited impact on Fe mobility. The addition remarkably increased oxidizable Fe in sediment (by approximately 63%), causing Fe to be dominated by oxidizable and residual fractions (like those in raw DWTR); EXAFS analysis also suggested that Fe-humin acid increased substantially with the addition of DWTR, becoming the main Fe species in sediment (with a relative abundance of 50.1%). Importantly, the Fe distributions were stable in sediment with DWTR added, which demonstrated that organic matter stabilized the Fe in the DWTR. Further analysis indicated that all materials promoted the enrichment of bacterial genera potentially related to Fe metabolism (e.g., Bacteroides, Dok59, and Methanosarcina). Fe2O3 in the FeCl3 and Fe2(SO4)3 groups and Fe-HA in the DWTR group were the key species affecting the microbial communities. Overall, the stabilizing effect of organic matter on Fe in DWTR could be used to develop Fe-based materials to enhance Fe stability for environmental remediation.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zhanling Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Graduate University of Chinese Academy of Sciences
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
23
|
Jin K, Lee B, Park J. Metal-organic frameworks as a versatile platform for radionuclide management. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Tian J, Yang C, Liu Z, Li F, He X, Chen W, Xia NN, Lin C. Construction of MoO 2@MoS 2 heterostructures in situ on carbon cloth for the hydrogen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj04245a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MoO2@MoS2 heterostructures in situ grown on carbon cloth were developed for efficient hydrogen evolution reaction.
Collapse
Affiliation(s)
- Jingyang Tian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Chundi Yang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhirui Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Funan Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Xiao He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Wei Chen
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230036, China
| | - Nan Nan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
25
|
Uranium Removal from Groundwater and Wastewater Using Clay-Supported Nanoscale Zero-Valent Iron. METALS 2020. [DOI: 10.3390/met10111421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The peculiarities of sorption removal of uranium (VI) compounds from the surface and mineralized groundwater using clay-supported nanoscale zero-valent iron (nZVI) composite materials are studied. Representatives of the main structural types of clay minerals are taken as clays: kaolinite (Kt), montmorillonite (MMT) and palygorskite (Pg). It was found that the obtained samples of composite sorbents have much better sorption properties for the removal of uranium from surface and mineralized waters compared to natural clays and nZVI.It is shown that in mineralized waters uranium (VI) is mainly in anionic form, namely in the form of carbonate complexes, which are practically not extracted by pure clays. According to the efficiency of removal of uranium compounds from surface and mineralized waters, composite sorbents form a sequence: montmorillonite-nZVI > palygorskite-nZVI > kaolinite-nZVI, which corresponds to a decrease in the specific surface area of the pristine clay minerals.
Collapse
|
26
|
U(VI) removal efficiency and mechanism of biochars derived from sewage sludge at two pyrolysis temperatures. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114728. [PMID: 32408081 DOI: 10.1016/j.envpol.2020.114728] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution by heavy metals (HMs) has raised considerable attention due to their toxic impacts on plants, animals and human beings. Thus, the environmental cleanup of these toxic (HMs) is extremely urgent both from the environmental and biological point of view. To remediate HMs-polluted environment, several nanoparticles (NPs) such as metals and its oxides, carbon materials, zeolites, and bimetallic NPs have been documented. Among these, Fe-based NPs have emerged as an effective choice for remediating environmental contamination, due to infinite size, high reactivity, and adsorption properties. This review summarizes the utilization of various Fe-based NPs such as nano zero-valent iron (NZVI), modified-NZVI, supported-NZVI, doped-NZVI, and Fe oxides and hydroxides in remediating the HMs-polluted environment. It presents a comprehensive elaboration on the possible reaction mechanisms between the Fe-based NPs and heavy metals, including adsorption, oxidation/reduction, and precipitation. Subsequently, the environmental factors (e.g., pH, organic matter, and redox) affecting the reactivity of the Fe-based NPs with heavy metals are also highlighted in the current study. Research shows that Fe-based NPs can be toxic to living organisms. In this context, this review points out the environmental hazards associated with the application of Fe-based NPs and proposes future recommendations for the utilization of these NPs.
Collapse
Affiliation(s)
- Abdul Latif
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China; Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| | - Di Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Aown Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- Department of Agriculture, Soil and Water, Testing Laboratory for Research, DG Khan, Pakistan
| |
Collapse
|
28
|
Ishag A, Li Y, Zhang N, Wang H, Guo H, Mei P, Sun Y. Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: A review. ENVIRONMENTAL RESEARCH 2020; 188:109855. [PMID: 32846643 DOI: 10.1016/j.envres.2020.109855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Owing to high surface energy, strong chemical reactivity and large surface area, nanoscale zero-valent iron (nZVI) as a novel emerging material has been extensively utilized in environmental cleanup. Although a lot of reviews regarding the removal of organic contaminants and heavy metals on nZVI are summarized in recent years, the advanced progress concerning the removal of radionuclides on nZVI is still scarce. In this review, we summarized the removal of technetium (Tc), uranium (U), selenium (Se) and other radionuclides on nZVI and nZVI-based composites, then their interaction mechanisms were reviewed in details. This review is crucial for the environmental chemist and material engineer to exploit the actual application of nZVI-based composites as the emerging materials of permeable reactive barrier on the removal of radionuclides from aqueous solutions.
Collapse
Affiliation(s)
- Alhadi Ishag
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ying Li
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ning Zhang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Huihui Wang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Han Guo
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Peng Mei
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yubing Sun
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
29
|
Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S. Phytotoxicity of iron-based materials in mung bean: Seed germination tests. CHEMOSPHERE 2020; 251:126432. [PMID: 32169709 DOI: 10.1016/j.chemosphere.2020.126432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 05/21/2023]
Abstract
Environmental applications and potential risks of iron-based materials have attracted increasing attention. However, most previous studies focused on a single material. Comparative research using different iron-based materials under the same experimental conditions is still lacking. Here, six iron-based materials, including micro-sized and nanoscale Fe3O4 (i.e., mFe3O4 and nFe3O4), bulk and bare nanoscale zero-valent iron (i.e., mZVI and B-nZVI), starch-supported nZVI (S-nZVI), and activated carbon-supported nZVI (A-nZVI), were studied to compare their phytotoxicity in mung bean grown in suspensions with doses of 0, 300, 600 and 1000 mg/L. Taking the four toxicology parameters (seed germination rate, germination index, seedling elongation and biomass) together, the iron-based materials except mFe3O4 generally produced no significant phytotoxicity to mung bean even at 1000 mg/L. nFe3O4 and B-nZVI showed no higher phytotoxicity than their micro-sized counterparts (mFe3O4 and mZVI). All the materials resulted in increased Fe concentrations in seedlings particularly in roots, and mZVI and B-nZVI produced more significant effects. However, the Fe in the roots was difficultly translocated to the shoots. Compared to B-nZVI, nFe3O4 had lower bioavailability and bioaccumulation potential. XRD results confirmed that most Fe3O4 and B-nZVI remained unchanged during seedling growth, while support materials accelerated the corrosion and transformation of S-nZVI and A-nZVI. In conclusion, the tested nanoscale iron-based materials generally possess no obvious phytotoxicity within the dose range, but cause excess Fe accumulation in seedlings. Introduction of support materials may reduce such risk, allowing safer applications of these iron-based materials.
Collapse
Affiliation(s)
- Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China; Qingdao Hengli Environmental Technology Research Institute Co., Ltd., Qingdao, Shandong Province, 266000, PR China
| | - Wenjie Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Fangyuan Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China; Key Laboratory of Soil Resources and Environment in Qianbei of Guizhou Province, Zunyi Normal University, Zunyi, Guizhou Province, 563002, PR China.
| | - Shaowen Liu
- Qingdao Hengli Environmental Technology Research Institute Co., Ltd., Qingdao, Shandong Province, 266000, PR China
| |
Collapse
|
30
|
Pasinszki T, Krebsz M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E917. [PMID: 32397461 PMCID: PMC7279245 DOI: 10.3390/nano10050917] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Present and past anthropogenic pollution of the hydrosphere and lithosphere is a growing concern around the world for sustainable development and human health. Current industrial activity, abandoned contaminated plants and mining sites, and even everyday life is a pollution source for our environment. There is therefore a crucial need to clean industrial and municipal effluents and remediate contaminated soil and groundwater. Nanosized zero-valent iron (nZVI) is an emerging material in these fields due to its high reactivity and expected low impact on the environment due to iron's high abundance in the earth crust. Currently, there is an intensive research to test the effectiveness of nZVI in contaminant removal processes from water and soil and to modify properties of this material in order to fulfill specific application requirements. The number of laboratory tests, field applications, and investigations for the environmental impact are strongly increasing. The aim of the present review is to provide an overview of the current knowledge about the catalytic activity, reactivity and efficiency of nZVI in removing toxic organic and inorganic materials from water, wastewater, and soil and groundwater, as well as its toxic effect for microorganisms and plants.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Department of Chemistry, School of Pure Sciences, College of Engineering, Science and Technology, Fiji National University, Suva P.O. Box 7222, Fiji;
| | | |
Collapse
|
31
|
Wei H, Dong F, Chen M, Zhang W, He M, Liu M. Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: a low-cost remediation technology. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07125-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Xie Y, Fang Q, Li M, Wang S, Luo Y, Wu X, Lv J, Tan W, Wang H, Tan K. Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134827. [PMID: 32000325 DOI: 10.1016/j.scitotenv.2019.134827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Immobilization of U(VI) by naturally ubiquitous ferrous ions (Fe(II)) has been considered as an efficient and ecofriendly method to retard the migration of aqueous U(VI) at many nuclear sites and surface environments. In this study, we conducted Fe-U coprecipitation experiments to investigate the mechanism and stability of uranium (U) precipitation induced by a small quantity of Fe(II) under oxygen-rich conditions. The experimental results suggest that the sedimentation rates of U(VI) by Fe(II) under neutral oxygen-rich conditions are more than 96%, which are about 36% higher than those without Fe(II) and 16% higher than those under oxygen-free conditions. The Fe-U coprecipitates were observed to remain stable under slightly acidic to neutral and oxygen-rich conditions. Fe(II) primarily settles down as low-crystalline iron oxide hydroxide. U(VI) mainly precipitates as three forms: 16-20% of U forms uranyl hydroxide and metaschoepite, which is absorbed on the surface of the solids; 52-56% of U is absorbed as discrete uranyl phases at the internal pores of iron oxide hydroxide; and 27-29% of U is probably incorporated into the FeO(OH) structure as U(V) and U(VI). The U(V) generated via one-electron reduction is somewhat resistant to the oxidation of O2 and the acid dissolution. In addition, nearly 70% of U and only about 15% of Fe could be extracted in 24 h by a hydrochloric acid solution with the H+ concentration ([H+]) of 0.01 M, revealing that U(VI) immobilization by low concentration of Fe(II) combined with O2 has potential applications in the separation and recycling of aqueous uranium.
Collapse
Affiliation(s)
- Yanpei Xie
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China.
| | - Mi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Sainan Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yingfeng Luo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Xiaoyan Wu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Junwen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Wenfa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Hongqiang Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, PR China
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| |
Collapse
|
33
|
Zhang J, Wu J, Chao J, Shi N, Li H, Hu Q, Yang XJ. Simultaneous removal of nitrate, copper and hexavalent chromium from water by aluminum-iron alloy particles. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 227:103541. [PMID: 31481250 DOI: 10.1016/j.jconhyd.2019.103541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Groundwater contamination is a worldwide concern and the development of new materials for groundwater remediation has been of great interest. This study investigated removal kinetics and mechanisms of nitrate, copper ion and hexavalent chromium (20-50 mg L-1) by particles of Al-Fe alloy consisting of 20% Fe in batch reactors from a single KNO3, CuSO4, Cu(NO3)2, K2Cr2O7 and their mixed solutions. The effects of contaminant interactions and initial pH of the solution were examined and the alloy particles before and after reaction were characterized by X-ray diffraction spectrometer, scanning electron microscopy and X-ray photoelectron spectroscopy. The removal mechanisms were attributed to chemical reduction [Cu(II) to Cu, NO3- to NH3 and Cr(VI) to Cr(III)] and co-precipitation of Cr(III)-Al(III)-Fe(III) hydroxides/oxyhydroxides. Cu(II) enhanced the rates of NO3- and Cr(VI) reduction and Cr(VI) was an inhibitor for Cu(II) and NO3- reduction. This study demonstrates that Al-Fe alloy is of potential for groundwater remediation.
Collapse
Affiliation(s)
- Jingqi Zhang
- Beijing Key Laboratory of Membrane Science and Technology, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wu
- Beijing Key Laboratory of Membrane Science and Technology, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingbo Chao
- National Institute of Metrology, Beijing 100029, China
| | - Naijie Shi
- National Institute of Metrology, Beijing 100029, China
| | - Haifeng Li
- National Institute of Metrology, Beijing 100029, China
| | - Qing Hu
- Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Beijing Huanding Environmental Big Data Institute, No. 1 Wangzhuang Road, 100083 Beijing, China
| | - Xiao Jin Yang
- Beijing Key Laboratory of Membrane Science and Technology, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
34
|
Removal of soluble uranium by illite supported nanoscale zero-valent iron: electron transfer processes and incorporation mechanisms. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06959-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Su M, Tsang DCW, Ren X, Shi Q, Tang J, Zhang H, Kong L, Hou L, Song G, Chen D. Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112891. [PMID: 31408794 DOI: 10.1016/j.envpol.2019.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI). A nearly complete removal of U(VI) was achieved by porous HAP under optimized conditions. Langmuir model could well describe the adsorption equilibrium. The data fit well with pseudo-second-order kinetic model, suggesting that U(VI) adsorption is primarily attributed to chemisorption with porous HAP. Intraparticle diffusion analysis showed that the intraparticle diffusion is the rate-limiting step for U(VI) adsorption by porous HAP. After removal by porous HAP, the adsorbed U(VI) ions were incorporated into tetragonal autunite, which has a low solubility (log Ksp: -48.36). Our findings demonstrate that the porous HAP can effectively remediate uranium contamination and holds great promise for environmental applications.
Collapse
Affiliation(s)
- Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyong Ren
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qingpu Shi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinfeng Tang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Lingjun Kong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Kiskira K, Papirio S, Mascolo MC, Fourdrin C, Pechaud Y, van Hullebusch ED, Esposito G. Mineral characterization of the biogenic Fe(III)(hydr)oxides produced during Fe(II)-driven denitrification with Cu, Ni and Zn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:401-412. [PMID: 31212147 DOI: 10.1016/j.scitotenv.2019.06.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The recovery of iron and other heavy metals by the formation of Fe(III) (hydr)oxides is an important application of microbially-driven processes. The mineral characterization of the precipitates formed during Fe(II)-mediated autotrophic denitrification with and without the addition of Cu, Ni, and Zn by four different microbial cultures was investigated by X-ray fluorescence (XRF), Raman spectroscopy, scanning electron microscopy equipped with energy dispersive X-Ray analyzer (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray Powder Diffraction (XRD) analyses. Fe(II)-mediated autotrophic denitrification resulted in the formation of a mixture of Fe(III) (hydr)oxides composed of amorphous phase, poorly crystalline (ferrihydrite) and crystalline phases (hematite, akaganeite and maghemite). The use of a Thiobacillus-dominated mixed culture enhanced the formation of akaganeite, while activated sludge enrichment and the two pure cultures of T. denitrificans and Pseudogulbenkiania strain 2002 mainly resulted in the formation of maghemite. The addition of Cu, Ni and Zn led to similar Fe(III) (hydr)oxides precipitates, probably due to the low metal concentrations. However, supplementing Ni and Zn slightly stimulated the formation of maghemite. A thermal post-treatment performed at 650 °C enhanced the crystallinity of the precipitates and favored the formation of hematite and some other crystalline forms of Fe associated with P, Na and Ca.
Collapse
Affiliation(s)
- Kyriaki Kiskira
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy; Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Maria Cristina Mascolo
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy
| | - Chloé Fourdrin
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France; IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
37
|
Tu J, Peng X, Wang S, Tian C, Deng H, Dang Z, Lu G, Shi Z, Lin Z. Effective capture of aqueous uranium from saline lake with magnesium-based binary and ternary layered double hydroxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:556-563. [PMID: 31063897 DOI: 10.1016/j.scitotenv.2019.04.429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Uranium in saline lake brine is a nuclear resource that attracts worldwide attention. Relatively low concentrations (about 0.2 mg L-1 to 30 mg L-1) require high affinity for the capture materials. In this paper, magnesium binary layered double hydroxides (MgAl-LDH) and its Fe-induced ternary LDH (MgAlFe-LDH) were synthesized for the extraction of simulated concentrations of U(VI) in the saline lake brine system. Batch experiments have shown that both LDHs have strong affinity towards uranium. MgAl-LDH yielded of stronger affinity in lower U(VI) concentrations (0.2 mg L-1 to 5 mg L-1), while MgAlFe-LDH was at higher U(VI) concentrations (5 mg L-1 to 30 mg L-1). For current uranium extraction, the affinities of MgAl-LDH and MgAlFe-LDH are more than twice the maximum affinity of other LDHs and LDHs-based materials. Therefore, these two LDHs are suitable for U(VI) extraction with different concentration levels in saline lakes. The capture process followed the pseudo-second-order kinetics with fast adsorption speed, and the coexisting cations have little effect on the extraction rate. Research through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed the main adsorption mechanisms are surface complexation and the interlayer carbonate coprecipitation. This work provides a potential method for U(VI) extraction while reusing the waste magnesium resources in saline lake.
Collapse
Affiliation(s)
- Jingwei Tu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoqian Peng
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuting Wang
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chen Tian
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Hong Deng
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhi Dang
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Guining Lu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhenqing Shi
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhang Lin
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, Guangdong 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
38
|
Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019; 62:933-967. [DOI: https:/doi.org/10.1007/s11426-019-9492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 06/25/2023]
|
39
|
Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9492-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Zhang H, Peng L, Chen A, Shang C, Lei M, He K, Luo S, Shao J, Zeng Q. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr Polym 2019; 214:276-285. [DOI: 10.1016/j.carbpol.2019.03.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
|
41
|
Zänker H, Heine K, Weiss S, Brendler V, Husar R, Bernhard G, Gloe K, Henle T, Barkleit A. Strong Uranium(VI) Binding onto Bovine Milk Proteins, Selected Protein Sequences, and Model Peptides. Inorg Chem 2019; 58:4173-4189. [PMID: 30860361 DOI: 10.1021/acs.inorgchem.8b03231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hexavalent uranium is ubiquitous in the environment. In view of the chemical and radiochemical toxicity of uranium(VI), a good knowledge of its possible interactions in the environment is crucial. The aim of this work was to identify typical binding and sorption characteristics of uranium(VI) with both the pure bovine milk protein β-casein and diverse related protein mixtures (caseins, whey proteins). For comparison, selected model peptides representing the amino acid sequence 13-16 of β-casein and dephosphorylated β-casein were also studied. Complexation studies using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy revealed that the phosphoryl-containing proteins form uranium(VI) complexes of higher stability than the structure-analog phosphoryl-free proteins. That is in agreement with the sorption experiments showing a significantly higher affinity of caseins toward uranium(VI) in comparison to whey proteins. On the other hand, the total sorption capacity of caseins is lower than that of whey proteins. The discussed binding behavior of milk proteins to uranium(VI) might open up interesting perspectives for sustainable techniques of uranium(VI) removal from aqueous solutions. This was further demonstrated by batch experiments on the removal of uranium(VI) from mineral water samples.
Collapse
Affiliation(s)
- Harald Zänker
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Katja Heine
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany.,Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Weiss
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Richard Husar
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Gert Bernhard
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Karsten Gloe
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Thomas Henle
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Astrid Barkleit
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|
42
|
Zeng H, Lu L, Gong Z, Guo Y, Mo J, Zhang W, Li H. Nanoscale composites of hydroxyapatite coated with zero valent iron: preparation, characterization and uranium removal. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06451-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Zhou WH, Liu F, Yi S, Chen YZ, Geng X, Zheng C. Simultaneous stabilization of Pb and improvement of soil strength using nZVI. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:877-884. [PMID: 30257228 DOI: 10.1016/j.scitotenv.2018.09.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
This study demonstrates the feasibility of nanoscale Zero-Valent Iron (nZVI) for simultaneous stabilization of Pb and improvement of soil strength via batch experiments. The soil samples were prepared using slurry and pre-consolidation method at nZVI doses of 0.2%, 1%, 5%, and 10% (by dry weight). The physicochemical and geotechnical properties of Pb-contaminated soil treated by nZVI were analyzed. The results indicate that the contamination of Pb(II) resulted in a notable reduction in the undrained shear strength of soil from 16.85 kPa to 7.25 kPa. As expected, the Pb in exchangeable and carbonate-bound fractions decreased significantly with the increasing doses of nZVI. Meanwhile, the undrained shear strength of Pb-contaminated soil enhanced substantially as the increase of nZVI, from 25.83 kPa (0.2% nZVI treatment) to 69.33 kPa (10% nZVI treatment). An abundance of bubbles, generated from the oxidation of nZVI, was recorded. The mechanisms for simultaneous stabilization of Pb and soil improvement primarily include: 1) the precipitation and transformation of Pb-/Fe-hydrated oxides on the soil particles and their induced bounding effects; 2) the increased drainage capability of soil as the occupation of nZVI aggregates and bubbles in the macropores space and 3) the lower soil density derived from the increase in microbubbles retained in the soil. This study is provided to facilitate the application of nZVI in the redevelopment of contaminated soil.
Collapse
Affiliation(s)
- Wan-Huan Zhou
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Fuming Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China
| | - Shuping Yi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China.
| | - Yong-Zhan Chen
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Xueyu Geng
- Geotechnical Engineering School of Engineering, The University of Warwick, Coventry, UK
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China
| |
Collapse
|
44
|
Ge M, Wang D, Yang J, Jin Q, Chen Z, Wu W, Guo Z. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: Role of U(VI) concentration, pH and ionic strength. WATER RESEARCH 2018; 147:350-361. [PMID: 30321825 DOI: 10.1016/j.watres.2018.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 05/13/2023]
Abstract
Remediating uranium contamination becomes a worldwide interest because of increasing uranium release from mining activities. Due to ubiquitous presence of pyrite and the application of iron-based technology, colloidal iron oxy-hydroxides such as akaganéite colloid (AKC) extensively exist in uranium polluted water at uranium tailing sites. In this context, we studied individual and co-transport of U(VI) and AKC in water-saturated sand columns at 50 mg/L AKC and environmentally relevant U(VI) concentrations (5.0 × 10-7 ∼ 5.0 × 10-5 M). It was found that, in addition to the impact of pH and ionic strength, whether AKC facilitated U(VI) transport depended on U(VI) concentration as well. The presence of AKC facilitated U(VI) transport at relatively low U(VI) concentration (5.0 × 10-7 ∼ 5.0 × 10-6 M), which was due to the strong adsorption of U(VI) on AKC and faster transport of AKC than that U(VI) as observed in their individual transport experiments. At relatively high U(VI) concentrations (5.0 × 10-5 M), however, AKC impeded U(VI) transport because U(VI) of high concentration decreased AKC colloidal stability and increased AKC aggregation and attachment. Thus, U(VI) and AKC co-transport was even blocked completely at relatively high pH and ionic strength. The mechanisms behind the co-transport of U(VI) and AKC were also confirmed by assessing the evolutions of aqueous pH and AKC zeta potential and particle size distribution in the column effluents. A two-site non-equilibrium model and a two-site kinetic attachment/detachment model well-described the breakthrough curves of U(VI) and AKC, respectively. Knowledge generated from this study provides a thorough understanding of uranium transport in the absence/presence of AKC, and brings new insights into the influence of contaminant concentration on co-transport in the presence of colloids.
Collapse
Affiliation(s)
- Mengtuan Ge
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Dengjun Wang
- National Research Council Resident Research Associate at the U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA
| | - Junwei Yang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Qiang Jin
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Zongyuan Chen
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China; The Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China.
| | - Wangsuo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China; The Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China
| | - Zhijun Guo
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, China; The Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China.
| |
Collapse
|
45
|
Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson JK, Zheng L, Chai Z, Shi W. Efficient U(VI) Reduction and Sequestration by Ti 2CT x MXene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10748-10756. [PMID: 30149698 DOI: 10.1021/acs.est.8b03711] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although reduction of highly mobile U(VI) to less soluble U(IV) has been long considered an effective approach to in situ environmental remediation of uranium, candidate reducing agents are largely limited to Fe-based materials and microbials. The importance of titanium-containing compounds in natural uranium ore deposits suggests a role for titanium in uranium migration. Herein, for the first time, a two-dimensional transition metal carbide, Ti2CT x, is shown to efficiently remove uranium via a sorption-reduction strategy. Batch experiments demonstrate that TiC2T x exhibits excellent U(VI) removal over a wide pH range, with an uptake capacity of 470 mg g-1 at pH 3.0. The mechanism for U(VI) to U(IV) reduction by Ti2CT x was deciphered by X-ray absorption spectroscopy and diffraction and photoelectron spectroscopy. The reduced U(IV) species at low pH is identified as mononuclear with bidendate binding to the MXene substrate. At near-neutral pH, nanoparticles of the UO2+ x phase adsorb to the substrate with some Ti2CT x transformed to amorphous TiO2. A subsequent in-depth study suggests Ti2CT x materials may be potential candidates for permeable reactive barriers in the treatment of wastewaters from uranium mining. This work highlights reduction-induced immobilization of U(VI) by Ti2CT x MXene including a pH-dependent reduction mechanism that might promote applications of titanium-based materials in the elimination of other oxidized contaminants.
Collapse
Affiliation(s)
- Lin Wang
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Huan Song
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001 , China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Yujuan Zhang
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - John K Gibson
- Chemical Sciences Division , Lawrence Berkeley National Laboratory (LBNL) , Berkeley , California 94720 , United States
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
46
|
Kong L, Zhang H, Shih K, Su M, Diao Z, Long J, Hou L, Song G, Chen D. Synthesis of FC-supported Fe through a carbothermal process for immobilizing uranium. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:168-174. [PMID: 29886361 DOI: 10.1016/j.jhazmat.2018.05.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/15/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
The abundant generation of uranium (U), a radioactive nuclide, engenders a severe hazard to the environment. Iron based materials were used to immobilize U from water, however, the immobilization is limited by the agglomeration of nanoparticle Fe. In this study, a novel carbothermal process was proposed to synthesize flour carbon (FC) supported nano-flake Fe (Fe-FC). Scanning electron microscopy (SEM) and nitrogen isotherm adsorption-desorption analysis were conducted to characterize Fe-FC. The immobilization characteristics were investigated through batch sorption experiments. Results indicated that nano-flake was appropriately dispersed on the surface. The sorption capacity reached 19.12 mg/g when the initial concentration of U and the dosage of Fe-FC were 20 mg/L and 1 g/L, respectively. Langmuir isotherm sorption and pseudo-second-order models were fitted well to sorption experimental data. The sorption mechanism is ascribed to surface chemisorptions between U(VI) and Fe-FC. Subsequently, X-ray diffraction (XRD) analysis validated that formation of Fe2UO3 contributed to the favorable immobilization of U and that Fe2UO3 was the fate of U.
Collapse
Affiliation(s)
- Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Huimin Zhang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zenghui Diao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianyou Long
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li'an Hou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Hua Y, Wang W, Huang X, Gu T, Ding D, Ling L, Zhang WX. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. CHEMOSPHERE 2018; 201:603-611. [PMID: 29544215 DOI: 10.1016/j.chemosphere.2018.03.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Bicarbonate, ubiquitous in natural and waste waters is an important factor regulating the rate and efficiency of pollutant separation and transformation. For example, it can form complexes with U(VI) in the aqueous phase and at the solid-water interface. In this work, we investigated the effect of bicarbonate on the aging of nanoscale zero-valent (nZVI) in the context of U(VI) reduction and removal from wastewater. For fresh nZVI, over 99% aqueous uranium was separated in less than 10 min, of which 83% was reduced from U(VI) to U(IV). When nZVI was aged in water, its activity for U(VI) sequestration and reduction was significantly reduced. Batch experiments showed that for nZVI aged in the presence of 10 mM bicarbonate, only 20.3% uranium was reduced to U(IV) after 6 h reactions. Characterizations of the iron nanoparticles with spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) suggest that in fresh nZVI, uranium was concentrated at the nanoparticle center; whereas in nZVI aged in bicarbonate, uranium was largely deposited on the outer surface of the nanoparticles. Furthermore, aged nZVI without bicarbonate contained more lepidocrocite (γ-FeOOH) while aged nZVI in the presence of bicarbonate had more magnetite/maghemite (Fe3O4/γ-Fe2O3). This could be attributed to the formation of carbonate green rust and pH buffer effect of . Primary mechanisms for U(VI) removal with nZVI include reduction, sorption and/or precipitation. Results demonstrate that bicarbonate alter the aging products of nZVI, and reduces the separation efficiency and reduction capability for uranium removal.
Collapse
Affiliation(s)
- Yilong Hua
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tianhang Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, China
| | - Lan Ling
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
48
|
Xia M, Chai Z, Wang D. Polarizable and Non-Polarizable Force Field Representations of Ferric Cation and Validations. J Phys Chem B 2017; 121:5718-5729. [PMID: 28508639 DOI: 10.1021/acs.jpcb.7b02010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The AMOEBA polarizable force field of ferric ion was optimized and applied to study the hydration of ferric ion and its complexation with porphine in the aqueous phase. The nonpolarizable force field was also optimized for comparison. The AMOEBA force field was found to give a more accurate hydration free energy than the nonpolarizable force field with respect to experimental data, and correctly predict the most stable electronic state of hydrated Fe3+, which is the sextet state, and of the Fe(III)-Por complex, which is the quartet state, consistent with the literature that was carried out using the DFT method. The explicit inclusion of charge transfer between Fe3+ and ligand was found to be important in order to obtain a precise picture of polarization energy and van der Waals energy, which otherwise deviate from the corresponding energy components derived from ab initio calculations. The successful application of the AMOEBA force field in the characterization of aquo Fe(III)-Por complexes suggests that its use may be extended to the study of the dynamics of metalloenzyme containing highly charged metal ions in the condensed phase with reliable treatment of the interactions between metal atom and protein.
Collapse
Affiliation(s)
- Miaoren Xia
- Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhifang Chai
- Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China.,School of Radiation Medicine and Interdisciplinary Sciences (RAD-X), Soochow University , Suzhou 215123, China
| | - Dongqi Wang
- Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|