1
|
Molino C, Lacchetti I, Cristiano W, di Domenico K, Carere M, Angeletti D. Zebrafish Embryo Model as a Tool for Ecotoxicological Studies in Central Italy's Transitional Waters. ENVIRONMENTAL MANAGEMENT 2025:10.1007/s00267-025-02178-2. [PMID: 40285848 DOI: 10.1007/s00267-025-02178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Thousands of chemical pollutants are commonly widespread in European water bodies. The Water Framework Directive obliges the European Member States to monitor and assess waterbodies quality to minimize the adverse effects of such pollution on ecosystems and human health. In this context, Effect-based methods represent key tools for investigating the potential impacts of water pollution on ecosystems as they provide essential information on different chemical modes of action and their related effects on living organisms. In this study, we used the Fish Embryo Acute Toxicity test with the zebrafish model to analyze transitional and artificial waterbodies of the Tyrrhenian coastal area in Central Italy. Five samples were collected in a highly populated coastal area in two different periods of the year. Both lethal and sublethal effects across 96 hours of exposure post-fertilization were assessed. All the samples showed high acute toxicity within 96 hours of exposure, leading to increased mortality rates (>30%) and sublethal effects on embryos. Overall, different sublethal endpoints were observed such as spine deformation, unhatched embryos, depigmentation, and pericardial oedema. Comparing the sampling campaigns, a significant difference between mortality rates was detected for two samples, potentially indicating the influence of seasonality in the chemical fingerprinting. The use of the zebrafish model has confirmed to be a very sensitive tool in environmental monitoring closely linked with human health. Our findings might be further investigated to better understand the potential risks for the environment and human health within the study area.
Collapse
Affiliation(s)
- Chiara Molino
- Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Center (CISMAR), University of Tuscia, Borgo Le Saline, 01016, Tarquinia, VT, Italy.
- Stazione Zoologica Anton Dohrn - CRIMAC, Calabria Marine Centre, Department of Integrative Marine Ecology, C.da Torre Spaccata, 87071, Amendolara, CS, Italy.
| | - Ines Lacchetti
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Walter Cristiano
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Kevin di Domenico
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Mario Carere
- Unit of Ecosystems and Health, Department of Environment and Health, Italian National Institute of Health (ISS), 00161, Rome, Italy
| | - Dario Angeletti
- Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Center (CISMAR), University of Tuscia, Borgo Le Saline, 01016, Tarquinia, VT, Italy
| |
Collapse
|
2
|
Su S, Ma K, Zhou T, Yao Y, Xin H. Advancing methodologies for assessing the impact of land use changes on water quality: a comprehensive review and recommendations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:101. [PMID: 40042544 DOI: 10.1007/s10653-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
With increasing scholarly focus on the ramifications of land use changes on water quality, although substantial research has been undertaken, the findings demonstrate pronounced spatial variability and the heterogeneity of research methodologies. To address this critical gap, this review offers a rigorous evaluation of the strengths and limitations of current research methodologies, providing targeted recommendations for refinement. It systematically assesses the existing body of literature concerning the influence of land use changes on water quality, with particular emphasis on the spatial heterogeneity of research results and the uniformity of employed methodologies. Despite variations in geographical contexts and research subjects, the methodological paradigms remain largely consistent, typically encompassing the acquisition and analysis of water quality and land use data, the delineation of buffer zones, and the application of correlation and regression analyses. However, these approaches encounter limitations in addressing regional disparities, nonlinear interactions, and real-time monitoring complexities. The review advocates for methodological advancements, such as the integration of automated monitoring systems and IoT technologies, alongside the fusion of deep learning algorithms with remote sensing techniques, to enhance both the precision and efficiency of data collection. Furthermore, it recommends the standardization of buffer zone delineation, the reinforcement of foundational water quality assessments, and the utilization of catchment-scale analyses to more accurately capture the influence of land use changes on water quality. Future inquiries should prioritize the development of interdisciplinary ecological models to elucidate the interaction and feedback mechanisms between land use, water quality, and climate change.
Collapse
Affiliation(s)
- Silin Su
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yuting Yao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huijuan Xin
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Staub PF, Salomon M, Assoumani A, Blard-Zakar A. Multiyear and seasonal wide-scale indicators for French surface waters contamination by WFD substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7513-7599. [PMID: 39714761 PMCID: PMC11950050 DOI: 10.1007/s11356-024-35511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
This study offers an unprecedented valuation of the French surface waters WFD chemical monitoring dataset, covering 101 substances (metals, industrial and persistent organic pollutants (POPs), plant protection product (PPP) and biocides active substances, combustion residues) measured monthly on 4000 sites of the 6 main continental river basins, during 12 years (2009-2020). The concentration data were first made comparable through an original process removing the bias induced by the space-and-time heterogeneity of the monitoring labs performance, to gather a reference workable set of monthly contamination indicators. These were then used to display the substances' seasonal and interannual timeseries, revealing, e.g. the succession of PPP active substances contamination peaking periods in the 6 basins, or the long-term trends of the concentrations of the various chemicals, sometimes evidencing insufficiencies in the monitoring performance. These environmental observations were put in regard of the knowledge of the substances ban, restriction or reduction measures, to assess how streams' chemical quality responds to them. Additionally, the observed contamination features and their variations over the years are discussed in terms of changes in their usages, product substitution, emission sources, and linked to environmental processes like runoff, river dilution and physicochemical conditions. Some original findings and interpretation are provided on glyphosate and AMPA wide-scale data inter-relation, and some light is cast on the efficacy of the recent national policies restricting pesticides use in populated areas. For PPPs, the developed water contamination indicators were compared to tonnage data. We assessed their degree of linear relationship, which we propose to quantitatively express through a substance specific basin-to-river contamination coefficient. The interannual variations of this coefficient appear to be related to the changes in the water contamination seasonal patterns. We were also able to describe and validate the dependency of this coefficient on the molecular properties of the substances, conferring some capabilities for predicting the relative environmental risk induced by non-yet monitored compounds. We finally discuss the relevance of the developed indicators to complement the national chemical pollutants management system currently in place.
Collapse
Affiliation(s)
- Pierre-François Staub
- Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France.
| | - Morgane Salomon
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata - BP 2 - F-60550, Verneuil-en-Halatte, France
| | - Azziz Assoumani
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata - BP 2 - F-60550, Verneuil-en-Halatte, France
| | - Adeline Blard-Zakar
- Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France
| |
Collapse
|
4
|
Cant A, Bado-Nilles A, Porcher JM, Bolzan D, Prygiel J, Catteau A, Turiès C, Geffard A, Bonnard M. Application of the Fpg-modified comet assay on three-spined stickleback in freshwater biomonitoring: toward a multi-biomarker approach of genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3357-3373. [PMID: 37989949 DOI: 10.1007/s11356-023-30756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.
Collapse
Affiliation(s)
- Amélie Cant
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Dorothée Bolzan
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Jean Prygiel
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Cyril Turiès
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France.
| |
Collapse
|
5
|
Oates C, Fajardo H, Grieger K, Obenour D, Muenich RL, Nelson NG. Effective Nutrient Management of Surface Waters in the United States Requires Expanded Water Quality Monitoring in Agriculturally Intensive Areas. ACS ENVIRONMENTAL AU 2025; 5:1-11. [PMID: 39830715 PMCID: PMC11740920 DOI: 10.1021/acsenvironau.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025]
Abstract
The U.S. Clean Water Act is believed to have driven widespread decreases in pollutants from point sources and developed areas, but has not substantially affected nutrient pollution from agriculture. Today, the highest nutrient concentrations in surface waters are often associated with agricultural production. In this Perspective, we explore whether challenges stemming from the Clean Water Act's inability to mitigate agricultural nutrient pollution are also exacerbated by coarse nutrient monitoring. We evaluate the current state of nutrient monitoring in surface waters of the contiguous U.S. relative to agricultural nutrient inputs to assess how monitoring effort varies across agriculturally intensive areas. The locations of nutrient monitoring stations with approximately seasonal sampling frequency (4 samples per year, on average) from 2012 to 2021 were compiled from the U.S. Water Quality Portal. Monitoring station locations were then compared to watershed-scale (HUC-8) nutrient inventory estimates for agricultural fertilizer and livestock manure inputs. From this assessment, we found that many, but not all, of the nation's most agriculturally intensive areas are under-monitored, and often unmonitored. While it is well-known that the Midwest is the epicenter of agricultural production in the U.S., our results reveal it is poorly monitored relative to its agricultural nutrient inputs. Other regions, like the California Central Valley and parts of the southeastern Coastal Plain were also coarsely monitored relative to nutrient inputs. Conversely, some agriculturally intensive watersheds were moderately-to-well monitored (e.g., western Lake Erie basin, eastern North Carolina, and the Delmarva Peninsula), with these basins largely having established Total Maximum Daily Loads and discharging to prominent waterways. In closing, we argue that sparse monitoring across many of the nation's most agriculturally intensive areas motivate a need to re-envision nutrient monitoring networks, and that increased resources and advanced technologies are likely required to enable effective nutrient source identification throughout the nation.
Collapse
Affiliation(s)
- Christopher Oates
- Biological
and Agricultural Engineering, North Carolina
State University, Raleigh, North Carolina 27695, United States
- North
Carolina Plant Sciences Initiative, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hector Fajardo
- Biological
and Agricultural Engineering, North Carolina
State University, Raleigh, North Carolina 27695, United States
- North
Carolina Plant Sciences Initiative, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Khara Grieger
- North
Carolina Plant Sciences Initiative, North
Carolina State University, Raleigh, North Carolina 27695, United States
- Applied
Ecology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Daniel Obenour
- Civil,
Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Geospatial Analytics, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Rebecca L. Muenich
- Biological
and Agricultural Engineering, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Natalie G. Nelson
- Biological
and Agricultural Engineering, North Carolina
State University, Raleigh, North Carolina 27695, United States
- North
Carolina Plant Sciences Initiative, North
Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Geospatial Analytics, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
de Campos Júnior EO, de Campos JMS, Dias RJP, Barros NO. Novelties on tradescantia: Perspectives on water quality monitoring. CHEMOSPHERE 2024; 368:143732. [PMID: 39566690 DOI: 10.1016/j.chemosphere.2024.143732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
In the face of intense urban expansion, the assessment of water quality plays a crucial role in environmental preservation. Here, we evaluated aquatic genotoxicity in three locations with different degrees of urbanization using Tradescantia pallida var. purpurea and Daphnia magna as bioindicators. The objective was to investigate the influence of urbanization on water quality and the efficiency of the TRAD-MCN biological test in monitoring aquatic genotoxicity. Therefore, we established the genotoxic potential by evaluating micronucleus frequency in T. pallida and immobilization and DNA damage in the standard test with D. magna during two seasons of the year (dry and rainy). Our results showed that the frequency of micronuclei in T. pallida (TRAD-MCN) was significantly higher in the locations with a higher degree of urbanization, independently of the seasons. The tests with D. magna revealed a higher rate of immobilization and DNA damage in the location most impacted by residential and industrial effluents (especially mining activities). Additionally, the TRAD-MCN proved to be equivalent to the standard test for genotoxicity assessment, supporting its potential applicability in environmental monitoring. Finally, we observed that urbanization significantly influences water quality, and among the evaluated physicochemical parameters, dissolved oxygen was shown to be the most important driver of the water quality index (WQI). Our findings have significant implications for water resource management, underlining the need for policies that consider the specificities of different regions. This highlights the robustness, flexibility, and reliability of T. pallida as an environmental monitoring tool.
Collapse
Affiliation(s)
| | | | - Roberto Júnio Pedroso Dias
- Department of Biology, ICB, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Nathan Oliveira Barros
- Department of Biology, ICB, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
7
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Tarábek P, Leonova N, Konovalova O, Kirchner M. Identification of organic contaminants in water and related matrices using untargeted liquid chromatography high-resolution mass spectrometry screening with MS/MS libraries. CHEMOSPHERE 2024; 366:143489. [PMID: 39374668 DOI: 10.1016/j.chemosphere.2024.143489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Nontargeted and suspect screening with liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become an indispensable tool for quality assessment in the aquatic environment - complementary to targeted analysis of organic (micro)contaminants. An LC-HRMS method is presented, suitable for the analysis of a wide variety of water related matrices: surface water, groundwater, wastewater, sediment and sludge, including extracts from passive samplers and on-site solid phase enrichment, while focusing on the data processing aspect of the method. A field study is included to demonstrate the practical application and versatility of the whole process. HRMS/MS data were recorded following LC separation in both (ESI) positive and negative ionization modes using data dependent as well as data independent acquisition. Two vendor (Agilent's Personal Compound Database and Library and from National Institute of Standards and Technology) and one open (MassBank/EU) tandem mass spectral libraries were utilized for the identification of compounds via mass spectral match. The development of a novel software tool for parsing, grouping and reduction of MS/MS features in data files converted to mascot generic format (MGF) helped to substantially decrease the amount of time and effort needed for MS library search. While applying the method, in the course of the entire field study, 18771 detections (from 870 individual compounds) in total were recorded in 275 samples, resulting in 68.3 identified compounds per sample, on average. Among the top ten most frequently detected contaminants across all samples and sample types were pharmaceutical compounds carbamazepine, 4-acetamidoantipyrine, 4-formylaminoantipyrine, tramadol, lamotrigine and phenazone and industrial contaminants toluene-2-sulfonamide, tolytriazole, tris(2-butoxyethyl) phosphate and benzotriazole. Exploratory data analysis methods and tools enabled us to discover organic pollutant occurrence patterns within the comprehensive sets of qualitative data collected from various projects between the years 2018-2023. The results may be used as valuable inputs for future water quality monitoring programs.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia.
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Michal Kirchner
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| |
Collapse
|
9
|
Lin MW, Chen JY, Ye YX, Chen WY, Chan HL, Chou HC. Genotoxicity and cytotoxicity in male reproductive cells caused by sediment pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173578. [PMID: 38810737 DOI: 10.1016/j.scitotenv.2024.173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
In recent years, mounting evidence has highlighted a global decline in male semen quality, paralleling an increase in male infertility problems. Such developments in the male reproductive system are likely due to a range of environmental factors, which could negatively affect the outcomes of pregnancy, reproductive health, and the well-being of fetuses. Different environmental contaminants ultimately accumulate in riverbed sediments due to gravity, so these sediments are frequently considered hotspots for pollutants. Therefore, understanding the detrimental effects of river sediment pollution on human reproductive health is crucial. This study indicates male germ cells' high vulnerability to environmental contaminants. There is a strong positive correlation between the concentration of complex accumulated pollutants from human activities and the reproductive toxicity observed in human testicular embryonic cell lines NCCIT and NTERA-2. This toxicity is characterized by increased levels of reactive oxygen species, disruption of critical cellular functions, genotoxic impacts, and the induction of cell apoptosis. This research marks a significant step in providing in vitro evidence of the damaging effects of environmental pollutants on the human male germline.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Jai-Yu Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Xuan Ye
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Yi Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Carvalhal Silva H, Montero N, Belzunce-Segarra MJ, Menchaca I. Assessment of the effects of dredging on metal levels in port waters using DGT passive samplers and spot sampling. MARINE POLLUTION BULLETIN 2024; 205:116653. [PMID: 38964188 DOI: 10.1016/j.marpolbul.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Aiming at assessing the effect of dredging activities on the levels of metals in Bilbao Port (northern Spain), dissolved and labile metal concentrations in the water were concurrently measured, before, during, and after dredging activities by spot sampling and Diffusive Gradients in Thin-films (DGTs) passive samplers, respectively. Most of the dissolved metal results were below the quantification limits (Cd, <0.06-0.26 μg/L; Co, <5 μg/L; Cu, <5-15 μg/L; Fe, <10-48 μg/L; Mn, <10-22 μg/L; Ni, <2.6-7 μg/L; Pb, <0.39-0.8 μg/L; Zn, <9-24 μg/L). In contrast, DGT results for all sampling times and stations were obtained (Cd, 0.02-0.12 μg/L; Co, 0.08-0.15 μg/L; Cu, 0.5-2.8 μg/L; Fe, 1.0-3.6 μg/L; Mn, 4.7-23.5 μg/L; Ni, 0.5-0.9 μg/L; Pb, 0.15-0.28 μg/L; Zn, 2.6-7.2 μg/L), enabling to determine those metals affected by dredging. Only labile-Pb concentration surpassed momentarily the DGT-Environmental Quality Standard, enabling to rule out biological effects on biota. DGTs are a promising technique for facilitating decision-making during dredging operations.
Collapse
Affiliation(s)
- H Carvalhal Silva
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain; Future Industries Institute, University of South Australia (UniSA), Mawson Lakes Blvd, Adelaide 5095, Australia.
| | - N Montero
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| | - M J Belzunce-Segarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| | - I Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| |
Collapse
|
11
|
Li X, Shen X, Jiang W, Xi Y, Li S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116420. [PMID: 38701654 DOI: 10.1016/j.ecoenv.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Emerging contaminants (ECs) are a diverse group of unregulated pollutants increasingly present in the environment. These contaminants, including pharmaceuticals, personal care products, endocrine disruptors, and industrial chemicals, can enter the environment through various pathways and persist, accumulating in the food chain and posing risks to ecosystems and human health. This comprehensive review examines the chemical characteristics, sources, and varieties of ECs. It critically evaluates the current understanding of their environmental and health impacts, highlighting recent advancements and challenges in detection and analysis. The review also assesses existing regulations and policies, identifying shortcomings and proposing potential enhancements. ECs pose significant risks to wildlife and ecosystems by disrupting animal hormones, causing genetic alterations that diminish diversity and resilience, and altering soil nutrient dynamics and the physical environment. Furthermore, ECs present increasing risks to human health, including hormonal disruptions, antibiotic resistance, endocrine disruption, neurological effects, carcinogenic effects, and other long-term impacts. To address these critical issues, the review offers recommendations for future research, emphasizing areas requiring further investigation to comprehend the full implications of these contaminants. It also suggests increased funding and support for research, development of advanced detection technologies, establishment of standardized methods, adoption of precautionary regulations, enhanced public awareness and education, cross-sectoral collaboration, and integration of scientific research into policy-making. By implementing these solutions, we can improve our ability to detect, monitor, and manage ECs, reducing environmental and public health risks.
Collapse
Affiliation(s)
- Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaojing Shen
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Jiang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Yongkai Xi
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Song Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
12
|
Toth J, Fugère V, Yargeau V. Relationship between stream size, watershed land use, and pesticide concentrations in headwater streams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123940. [PMID: 38599268 DOI: 10.1016/j.envpol.2024.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.
Collapse
Affiliation(s)
- Jonah Toth
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec, H3A 0C5, Canada
| | - Vincent Fugère
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec, H3A 0C5, Canada.
| |
Collapse
|
13
|
Silva C, Santos JI, Vidal T, Silva S, Almeida SFP, Gonçalves FJM, Abrantes N, Pereira JL. Potential effects of the discharge of wastewater treatment plant (WWTP) effluents in benthic communities: evidence from three distinct WWTP systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34492-34506. [PMID: 38709406 PMCID: PMC11136724 DOI: 10.1007/s11356-024-33462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Wastewater treatment plant (WWTP) effluents can be sources of environmental contamination. In this study, we aimed to understand whether effluents of three different WWTPs may have ecological effects in riverine recipient ecosystems. To achieve this, we assessed benthic phytobenthos and macroinvertebrate communities at three different locations relative to the effluent discharge: immediately upstream, immediately downstream and 500-m downstream the effluent discharge. Two approaches were employed: the ecological status classification as defined in the Water Framework Directive (WFD) based on biological indicators; constrained multivariate analysis to disentangle the environmental drivers (physicochemical variables and contaminants, namely metals, polycyclic aromatic hydrocarbons, pharmaceuticals, and personal care products) of ecological changes across the study sites. The results showed inconsistencies between the WFD approach and the multivariate approach, as well as between the responses of macroinvertebrates and diatoms. The WWTP effluents impacted benthic communities in a single case: macroinvertebrates were negatively affected by one of the WWTP effluents, likely by the transported pharmaceuticals (other stressors are essentially homogeneous among sites). Given the findings and the scarcity of consistent evidence on ecological impacts that WWTP effluents may have in recipient ecosystems, further research is needed towards more sustainable regulation and linked environmental protection measures.
Collapse
Affiliation(s)
- Carlos Silva
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Isabel Santos
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Vidal
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Silva
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Salomé Fernandes Pinheiro Almeida
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- GeoBioTec - Geobiociências, Geotecnologias E Geo-Engenharias, University of Aveiro, Aveiro, Portugal
| | - Fernando José Mendes Gonçalves
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Abu-Rmailah N, Moscovici L, Riegraf C, Atias H, Buchinger S, Reifferscheid G, Belkin S. Enhanced Detection of Estrogen-like Compounds by Genetically Engineered Yeast Sensor Strains. BIOSENSORS 2024; 14:193. [PMID: 38667186 PMCID: PMC11048378 DOI: 10.3390/bios14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The release of endocrine-disrupting compounds (EDCs) to the environment poses a health hazard to both humans and wildlife. EDCs can activate or inhibit endogenous endocrine functions by binding hormone receptors, leading to potentially adverse effects. Conventional analytical methods can detect EDCs at a high sensitivity and precision, but are blind to the biological activity of the detected compounds. To overcome this limitation, yeast-based bioassays have previously been developed as a pre-screening method, providing an effect-based overview of hormonal-disruptive activity within the sample prior to the application of analytical methods. These yeast biosensors express human endocrine-specific receptors, co-transfected with the relevant response element fused to the specific fluorescent protein reporter gene. We describe several molecular manipulations of the sensor/reporter circuit in a Saccharomyces cerevisiae bioreporter strain that have yielded an enhanced detection of estrogenic-like compounds. Improved responses were displayed both in liquid culture (96-well plate format) as well as in conjunction with sample separation using high-performance thin-layer chromatography (HPTLC). The latter approach allows for an assessment of the biological effect of individual sample components without the need for their chemical identification at the screening stage.
Collapse
Affiliation(s)
- Nidaa Abu-Rmailah
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Liat Moscovici
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Carolin Riegraf
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Hadas Atias
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BfG), Department Biochemistry, Ecotoxicology, 56068 Koblenz, Germany; (C.R.); (S.B.); (G.R.)
| | - Shimshon Belkin
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (N.A.-R.); (L.M.); (H.A.)
| |
Collapse
|
15
|
Whaibeh E, Mrad-Nakhlé M, Aouad N, Annesi-Maesano I, Abbas N, Chaiban C, Abi Hanna J, Abi Tayeh G. The Environmental Exposures in Lebanese Infants (EELI) birth cohort: an investigation into the Developmental Origins of Health and Diseases (DOHaD). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1675-1686. [PMID: 37429297 DOI: 10.1080/09603123.2023.2234834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The EELI Study is a longitudinal birth cohort launched in 2021 in Lebanon to examine the long-term impact of environmental exposures on the health of prospective Lebanese mothers and infants and disease outcomes. This article delineates the adopted study design and protocols, current progress, and contextual considerations for the planning and launching of a birth cohort in a resource-limited setting. A sample of n = 135 pregnant women expecting to give birth at the Hôtel-Dieu de France University Hospital has been recruited since the study launch. Over 500 variables have been recorded for each participant, and over 1000 biological specimens have been processed and stored in a biobank for further analysis. The EELI study establishes methodological and logistic basis to explore the concept of the exposome and its implementation and to establish a toolkit of the SOPs and questionnaires that can be employed by the other countries in the Eastern Mediterranean region.
Collapse
Affiliation(s)
- Emile Whaibeh
- Doctoral School of Health and Sciences (EDSS), Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Myriam Mrad-Nakhlé
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Norma Aouad
- Obstetrics and Reproduction, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Nivine Abbas
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Clara Chaiban
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Jowy Abi Hanna
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Georges Abi Tayeh
- Doctoral School of Health and Sciences (EDSS), Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
- Obstetrics and Reproduction, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| |
Collapse
|
16
|
Jiang H, Li R, Zhao M, Peng X, Sun M, Liu C, Liu G, Xue H. Toxic effects of combined exposure to cadmium and diclofenac on freshwater crayfish (Procambarus clarkii): Insights from antioxidant enzyme activity, histopathology, and gut microbiome. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106844. [PMID: 38295602 DOI: 10.1016/j.aquatox.2024.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
In recent years, excessive discharge of pollutants has led to increasing concentrations of cadmium (Cd) and diclofenac (DCF) in water; however, the toxicity mechanism of combined exposure of the two pollutants to aquatic animals has not been fully studied. Procambarus clarkii is an economically important aquatic species that is easily affected by Cd and DCF. This study examined the effects of combined exposure to Cd and DCF on the tissue accumulation, physiology, biochemistry, and gut microflora of P. clarkii. The results showed that Cd and DCF accumulated in tissues in the order of hepatopancreas > gill > intestine > muscle. The hepatopancreas and intestines were subjected to severe oxidative stress, with significantly increased antioxidant enzyme activity. Pathological examination revealed lumen expansion and epithelial vacuolisation in the hepatopancreas and damage to the villous capillaries and wall in the intestine. The co-exposure to Cadmium (Cd) and Diclofenac (DCF) disrupts the Firmicutes/Bacteroidetes (F/B) ratio, impairing the regular functioning of intestinal microbiota in carbon (C) and nitrogen (N) cycling. This disturbance consequently hinders the absorption and utilization of energy and nutrients in Procambarus clarkii. This study offers critical insights into the toxicological mechanisms underlying the combined effects of Cd and DCF, and suggests potential approaches to alleviate their adverse impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Runbo Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Muzi Zhao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Xinran Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Chongwan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Hui Xue
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China.
| |
Collapse
|
17
|
Spilsbury FD, Inostroza PA, Svedberg P, Cannata C, Ragas AMJ, Backhaus T. Defining the data gap: What do we know about environmental exposure, hazards and risks of pharmaceuticals in the European aquatic environment? WATER RESEARCH 2024; 251:121002. [PMID: 38309057 DOI: 10.1016/j.watres.2023.121002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 02/05/2024]
Abstract
Active pharmaceutical ingredients (APIs) and their transformation products inevitably enter waterways where they might cause adverse effects to aquatic organisms. Identifying the potential risks of APIs in the environment is therefore a goal and current strategic direction of environmental management described in the EU Strategic Approach to Pharmaceuticals in the Environment and the Green Deal. This is challenged by a paucity of monitoring and ecotoxicity data to adequately describe risks. In this study we analyze measured environmental concentrations (MECs) of APIs from 5933 sites in 25 European countries as documented in the EMPODAT database or collected by the German Environment Agency for the time period between 1997 and 2020. These data were compared with empirical data on the ecotoxicity of APIs from the U.S. EPA ECOTOX database. Although 1763 uniquely identifiable APIs are registered with the European Medicines Agency (EMA) for sale in the European Economic Area (EEA), only 312 (17.7%) of these are included in publicly available monitoring data, 36 (1.8%) compounds have sufficient ecotoxicological data to derive a PNEC, and only 27 (1.5%) compounds meet both the hazard and exposure data requirements required to to perform an environmental risk assessment according to EMA guidelines. Four of these compounds (14.8%) had a median risk quotient (RQ) > 1. Endocrine disruptors had the highest median RQ, with 7.0 and 5.6 for 17α-ethinyl-estradiol and 17β-estradiol respectively. A comparison of in-silico and empirical exposure data for 72 APIs demonstrated the high protectiveness of the current EMA guidelines, with predicted environmental concentrations (PECs) exceeding median MECs in 98.6% of cases, with a 100-fold median increase. This study describes the data shortfalls hindering an accurate assessment of the risk posed to European waterways by APIs, and identifies 68 APIs for prioritized inclusion in monitoring programs, and 66 APIs requiring ecotoxicity testing to fill current data gaps.
Collapse
Affiliation(s)
- F D Spilsbury
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden.
| | - P A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| | - P Svedberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - C Cannata
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500GL, Nijmegen, the Netherlands
| | - A M J Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500GL, Nijmegen, the Netherlands
| | - T Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
18
|
Wieringa N, Droge STJ, Ter Laak TL, Nair AAK, Walker K, Verdonschot PFM, Kraak MHS. Combining Passive Sampling and Dosing to Unravel the Contribution of Hydrophobic Organic Contaminants to Sediment Ecotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:269-279. [PMID: 38153417 PMCID: PMC10785821 DOI: 10.1021/acs.est.3c07807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Contaminated sediments are ubiquitous repositories of pollutants and cause substantial environmental risks. Results of sediment bioassays remain difficult to interpret, however, as observed effects may be caused by a variety of (un)known stressors. This study aimed therefore to isolate the effects of hydrophobic organic contaminants from other (non)chemical stressors present in contaminated sediments, by employing a newly developed passive sampling-passive dosing (PSPD) test. The results showed that equilibrium partitioning between pesticides or polyaromatic hydrocarbons (PAHs) in contaminated sediments and a silicone rubber (SR) passive sampler was achieved after 1-3 days. Chlorpyrifos concentrations in pore water of spiked sediment matched very well with concentrations released from the SR into an aqueous test medium, showing that SR can serve as a passive dosing device. Subjecting the 96 h PSPD laboratory bioassay with nonbiting midge (Chironomus riparius) larvae to field-collected sediments showed that at two locations, concentrations of the hydrophobic organic contaminant mixtures were high enough to affect the test organisms. In conclusion, the developed PSPD test was able to isolate the effects of hydrophobic organic contaminants and provides a promising simplified building block for a suite of PSPD tests that after further validation could be used to unravel the contribution of hydrophobic organic chemicals to sediment ecotoxicity.
Collapse
Affiliation(s)
- Nienke Wieringa
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Steven T. J. Droge
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Wageningen
Environmental Research, Wageningen University
and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Thomas L. Ter Laak
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- KWR
Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Aishwarya A. K. Nair
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Kelsey Walker
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Piet F. M. Verdonschot
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Wageningen
Environmental Research, Wageningen University
and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Michiel H. S. Kraak
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
19
|
Soriano Y, Alvarez-Ruiz R, Clokey JE, Gorji SG, Kaserzon SL, Picó Y. Determination of organic contaminants in L'Albufera Natural Park using microporous polyethylene tube passive samplers: An environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166594. [PMID: 37640071 DOI: 10.1016/j.scitotenv.2023.166594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
L'Albufera Natural Park (Valencia, Spain) is a protected wetland of international significance that provides critical habitats to endemic and threatened bird and plant species. This study aims to use multiple cross-validation techniques to generate an accurate estimation of the environmental risk of organic contaminants (OCs) in an internationally important coastal wetland, to identify compounds of concern and their potential sources and risk factors. Microporous polyethylene tube (MPT) passive samplers were deployed at 12 locations across L'Albufera Natural Park with concurrent grab samples collected. A subset of MPT samplers were also analysed by an additional laboratory in Australia to widen the range of contaminants and assess interlaboratory reproducibility of results. Forty-three pesticides, 20 pharmaceuticals and personal care products (PPCPs), 20 per-and polyfluoroalkyl substances (PFAS) and 4 organophosphorus flame retardants (OPFRs) were detected in the MPT samplers. The fungicides tebuconazole and difenoconazole were detected at the highest concentrations in passive samplers (maximum concentrations, 153 ng sampler-1 and 106 ng sampler-1, respectively). Several other pesticides were detected in all locations (mean concentrations >1 ng sampler-1). The compounds fenamiphos, propyzamide, difenoconazole, propiconazole, metsulfuron methyl, sodium bis (perfluorohexyl) phosphinate (6:6 PFPiA), 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), 6:2 fluorotelomersulfonate (6:2 FTS), citalopram desmethyl and citalopram were reported in the wetland for the first time. Spatial distribution analysis revealed higher pesticide concentrations in the North of L'Albufera. A risk quotient (RQ) analysis showed that ibuprofen is of concern in the area. Overall, the MPT sampling approach is promising as a risk assessment tool for better understanding the transport and fate of OCs in protected areas.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain.
| | - Rodrigo Alvarez-Ruiz
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Joseph E Clokey
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sara Ghorbani Gorji
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| |
Collapse
|
20
|
Nisa ZU, Zulfiqar S, Fazal A, Sajid M, Khalid A, Mehmood Z, Othman SI, Abukhadra MR. Study of synergistic effects induced by novel base composites on heavy metals removal and pathogen inactivation. CHEMOSPHERE 2023; 340:139718. [PMID: 37567273 DOI: 10.1016/j.chemosphere.2023.139718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
The green-collar strategies for nanomaterial synthesis with novel structural competencies have received significant attention in nanotechnology owing to their potential benefits. The utilization of silica nanoparticles for wastewater treatment through heavy metal ions remediation is the focal point of the present study. With this intent, silica was extracted from bagasse ash by the sol-gel method and modified using chitosan. Chemical and physical characteristics of silica(S), silica/Chitosan (SCs), were reckoned through X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) and the efficiency of synthesized biomaterials for removing heavy metal ions. Cadmium and Lead from wastewater was evaluated by conducting closed batch experiments. Isotherm and kinetics models were applied to understand the adsorption mechanism. Results of heavy metal ions removal showed that the S possesses the highest removal efficiency of 88% for cadmium. Equilibrium was established within 56 min following a Langmuir isotherm model and pseudo-second-order reaction. The synthesized biomaterials were also tested against the fungal (Aspergillus Niger) and bacterial strains (Escherichia coli and Staphylococcus aureus) to determine their antimicrobial properties Maximum inhibition of 26 mm was shown by SCs for E.coli. Synthesized samples were not so effective for A.niger. The high adsorption potential of silica nanoparticles reveals their potential to treat wastewater containing inorganic pollutants like calcium and lead released from the sugar industry firsthand, thereby building a circular economy by controlling the pollution from source to sink. The synthesized silica nanoparticles and silica/chitosan biomaterials demonstrated high adsorption potential for heavy metal ions, making them promising candidates for integration into Algal Membrane Bioreactors to enhance wastewater treatment efficiency and remove toxic pollutants. Their multifunctional properties, including antimicrobial activity, also offer potential for improving microbial control within AMBRs, ensuring a more effective and sustainable wastewater treatment process.
Collapse
Affiliation(s)
- Zaib-Un Nisa
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Sana Zulfiqar
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| | - Aliya Fazal
- Department of Chemistry, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Minahil Sajid
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Amina Khalid
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Zahid Mehmood
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, 65211, Egypt
| |
Collapse
|
21
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Betz-Koch S, Jacobs B, Oehlmann J, Ratz D, Reutter C, Wick A, Oetken M. Pesticide dynamics in three small agricultural creeks in Hesse, Germany. PeerJ 2023; 11:e15650. [PMID: 37483984 PMCID: PMC10361075 DOI: 10.7717/peerj.15650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Background Due to their high biodiversity, small water bodies play an important role for freshwater ecosystems. Nonetheless, systematic pesticide monitoring in small creeks with a catchment <30 km2 is rarely conducted. Methods In this study, event-driven water samples were taken from May until November 2017 and March until July 2018 after 20 rain events at three sampling sites with catchment areas of <27 km2 in the Wetterau, a region with intensive agriculture in Southern Hesse, Germany. Additionally, enriched extracts of the native water samples from the campaign in 2018 were used for the Microtox assay to determine baseline toxicity to invertebrates over time and sum of toxic units (STU) were calculated to compare the potential toxicity of the samples. Results Overall, 37 pesticides and 17 transformation products were found, whereby the herbicide metamitron (79 µg/L) showed the highest concentration. Regularly, pesticide concentrations peaked at the time of the highest water level within each sampling event. Within each sampling event maximum pesticide concentration was mostly reached in water samples taken during the first two hours. The sum of the time-weighted mean concentration values of all pesticides was between 2.0 µg/L and 7.2 µg/L, whereby the measured concentrations exceeded their regulatory acceptable concentration (RAC) at 55% of all sampling events for at least one pesticide. The mean EC50 values varied between 28.6 ± 13.1 to 41.3 ± 12.1 REF (relative enrichment factor). The results indicated that several samples caused baseline toxicity, whereby the highest activity was measured at the time of highest water levels and pesticides concentrations, and then steadily decreased in parallel with the water level. Median STUs of invertebrates ranged from -2.10 to -3.91, of algae/aquatic plants from -0.79 to -1.84 and of fish from -2.47 to -4.24. For one of the three sampling sites, a significant linear correlation between baseline toxicity and STUinvertebratewas found (r2 = 0.48). Conclusion The results of the present study suggest that (1) current pesticide monitoring programs underestimate risks posed by the exposure to pesticides for aquatic organisms and (2) pre-authorization regulatory risk assessment schemes are insufficient to protect aquatic environments.
Collapse
Affiliation(s)
- Sarah Betz-Koch
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt/Main, Germany
| | - Björn Jacobs
- German Federal Institute of Hydrology, Bundesanstalt für Gewässerkunde (BfG), Koblenz, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt/Main, Germany
| | - Dominik Ratz
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt/Main, Germany
| | - Christian Reutter
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt/Main, Germany
| | - Arne Wick
- German Federal Institute of Hydrology, Bundesanstalt für Gewässerkunde (BfG), Koblenz, Germany
| | - Matthias Oetken
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt/Main, Germany
| |
Collapse
|
24
|
Arhab M, Huang J. Determination of Optimal Predictors and Sampling Frequency to Develop Nutrient Soft Sensors Using Random Forest. SENSORS (BASEL, SWITZERLAND) 2023; 23:6057. [PMID: 37447905 DOI: 10.3390/s23136057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Despite advancements in sensor technology, monitoring nutrients in situ and in real-time is still challenging and expensive. Soft sensors, based on data-driven models, offer an alternative to direct nutrient measurements. However, the high demand for data required for their development poses logistical issues with data handling. To address this, the study aimed to determine the optimal subset of predictors and the sampling frequency for developing nutrient soft sensors using random forest. The study used water quality data at 15-min intervals from 2 automatic stations on the Main River, Germany, and included dissolved oxygen, temperature, conductivity, pH, streamflow, and cyclical time features as predictors. The optimal subset of predictors was identified using forward subset selection, and the models fitted with the optimal predictors produced R2 values above 0.95 for nitrate, orthophosphate, and ammonium for both stations. The study then trained the models on 40 sampling frequencies, ranging from monthly to 15-min intervals. The results showed that as the sampling frequency increased, the model's performance, measured by RMSE, improved. The optimal balance between sampling frequency and model performance was identified using a knee-point determination algorithm. The optimal sampling frequency for nitrate was 3.6 and 2.8 h for the 2 stations, respectively. For orthophosphate, it was 2.4 and 1.8 h. For ammonium, it was 2.2 h for 1 station. The study highlights the utility of surrogate models for monitoring nutrient levels and demonstrates that nutrient soft sensors can function with fewer predictors at lower frequencies without significantly decreasing performance.
Collapse
Affiliation(s)
- Muhammad Arhab
- Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
| | - Jingshui Huang
- Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
| |
Collapse
|
25
|
Heß S, Hof D, Oetken M, Sundermann A. Effects of multiple stressors on benthic invertebrates using Water Framework Directive monitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162952. [PMID: 36948311 DOI: 10.1016/j.scitotenv.2023.162952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
Multiple stressors affect freshwater systems and cause a deficient ecological status according to the European Water Framework Directive (WFD). To select effective mitigation measures and improve the ecological status, knowledge on the stressor hierarchy and individual and joined effects is necessary. However, compared to common stressors like nutrient enrichment and morphological degradation, the relative importance of micropollutants such as pesticides and pharmaceuticals is largely unaddressed. We used WFD monitoring data from Saxony (Germany) to investigate the importance of 85 environmental variables (including 34 micropollutants) for 18 benthic invertebrate metrics at 108 sites. The environmental variables were assigned to five groups (natural factors, nutrient enrichment, metals, micropollutants and morphological degradation) and were ranked according to their relative importance as group and individually within and across groups using Principal Component Analyses (PCAs) and Boosted Regression Trees (BRTs). Overall, natural factors contributed the most to the total explained deviance of the models. This variable group represented not only typological differences between sampling sites but also a gradient of human impact by strongly anthropogenically influenced variables such as electric conductivity and dissolved oxygen. These large-scale effects can mask the individual importance of the other variable groups, which may act more specifically at a subset of sites. Accordingly, micropollutants were not represented by a few dominant variables but rather a diverse palette of different chemicals with similar contribution. As a group, micropollutants contributed similarly as metals, nutrient enrichment and morphological degradation. However, the importance of micropollutants might be underestimated due to limitations of the current chemical monitoring practices.
Collapse
Affiliation(s)
- Sebastian Heß
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt, Faculty of Biology, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Delia Hof
- Goethe University Frankfurt, Faculty of Biology, Department of Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Matthias Oetken
- Goethe University Frankfurt, Faculty of Biology, Department of Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt, Faculty of Biology, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Hernández F, Fabregat-Safont D, Campos-Mañas M, Quintana JB. Efficient Validation Strategies in Environmental Analytical Chemistry: A Focus on Organic Micropollutants in Water Samples. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:401-428. [PMID: 37068748 DOI: 10.1146/annurev-anchem-091222-112115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.
Collapse
Affiliation(s)
- Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
- Applied Metabolomics Research Laboratory, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
27
|
Pinasseau L, Mermillod-Blondin F, Fildier A, Fourel F, Vallier F, Guillard L, Wiest L, Volatier L. Determination of groundwater origins and vulnerability based on multi-tracer investigations: New contributions from passive sampling and suspect screening approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162750. [PMID: 36907410 DOI: 10.1016/j.scitotenv.2023.162750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Knowledge about groundwater origins and their interactions with surface water is fundamental to assess their vulnerability. In this context, hydrochemical and isotopic tracers are useful tools to investigate water origins and mixing. More recent studies examined the relevance of contaminants of emerging concern (CECs) as co-tracers to distinguish sources contributing to groundwater bodies. However, these studies focused on known and targeted CECs a priori selected regarding their origin and/or concentrations. This study aimed to improve these multi-tracer approaches using passive sampling and qualitative suspect screening by exploring a larger variety of historical and emerging concern contaminants in combination with hydrochemistry and water molecule isotopes. With this objective, an in-situ study was conducted in a drinking water catchment area located in an alluvial aquifer recharged by several water sources (both surface and groundwater sources). CECs determined by passive sampling and suspect screening allowed to provide in-depth chemical fingerprints of groundwater bodies by enabling the investigation of >2500 compounds with an increased analytical sensitivity. Obtained cocktails of CECs were discriminating enough to be used as chemical tracer in combination with hydrochemical and isotopic tracers. In addition, the occurrence and type of CECs contributed to a better understanding of groundwater-surface water interactions and highlighted short-time hydrological processes. Furthermore, the use of passive sampling with suspect screening analysis of CECs lead to a more realistic assessment and mapping of groundwater vulnerability.
Collapse
Affiliation(s)
- Lucie Pinasseau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622 Villeurbanne, France.
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - François Fourel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Félix Vallier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Ludovic Guillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Laurence Volatier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622 Villeurbanne, France
| |
Collapse
|
28
|
Lungu-Mitea S, Han Y, Lundqvist J. Development, scrutiny, and modulation of transient reporter gene assays of the xenobiotic metabolism pathway in zebrafish hepatocytes. Cell Biol Toxicol 2023; 39:991-1013. [PMID: 34654992 PMCID: PMC10406726 DOI: 10.1007/s10565-021-09659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The "toxicology in the twenty-first century" paradigm shift demands the development of alternative in vitro test systems. Especially in the field of ecotoxicology, coverage of aquatic species-specific assays is relatively scarce. Transient reporter gene assays could be a quick, economical, and reliable bridging technology. However, the user should be aware of potential pitfalls that are influenced by reporter vector geometry. Here, we report the development of an AhR-responsive transient reporter-gene assay in the permanent zebrafish hepatocytes cell line (ZFL). Additionally, we disclose how viral, constitutive promoters within reporter-gene assay cassettes induce squelching of the primary signal. To counter this, we designed a novel normalization vector, bearing an endogenous zebrafish-derived genomic promoter (zfEF1aPro), which rescues the squelching-delimited system, thus, giving new insights into the modulation of transient reporter systems under xenobiotic stress. Finally, we uncovered how the ubiquitously used ligand BNF promiscuously activates multiple toxicity pathways of the xenobiotic metabolism and cellular stress response in an orchestral manner, presumably leading to a concentration-related inhibition of the AhR/ARNT/XRE-toxicity pathway and non-monotonous concentration-response curves. We named such a multi-level inhibitory mechanism that might mask effects as "maisonette squelching." A transient reporter gene assay in zebrafish cell lines utilizing endogenous regulatory gene elements shows increased in vitro toxicity testing performance. Synthetic and constitutive promotors interfere with signal transduction ("squelching") and might increase cellular stress (cytotoxicity). The squelching phenomenon might occur on multiple levels (toxicity pathway crosstalk and normalization vector), leading to a complete silencing of the reporter signal.
Collapse
Affiliation(s)
- Sebastian Lungu-Mitea
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| | - Yuxin Han
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
29
|
Botle A, Salgaonkar S, Tiwari R, Ambadekar S, Barabde GR. Brief status of contamination in surface water of rivers of India by heavy metals: a review with pollution indices and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2779-2801. [PMID: 36583797 DOI: 10.1007/s10653-022-01463-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Water is polluted via various means; among these, heavy metal (HM) contamination is of great concern because of the involvement of metal toxicity and its effect on aquatic environment. The significance and novelty of this study is that it focuses on assessment of HMs in the surface water of Indian rivers only from 1991 to 2021. For this, multivariate studies were used to find multiple sources of HMs. The average concentrations of Fe, Cr, Pb, Ni, Cd, Mn, Hg, Co, and As in surface water of rivers were found to far exceed the permitted limits established by both World Health Organisation and Bureau of Indian Standards. The HM indices like HM pollution, degree of contamination, evaluation index, water pollution, and toxicity load data all indicated that the rivers under investigation are heavily polluted by HMs. In this study, health risk assessment indicated non-carcinogenic effects of Fe, Cr, Cu, Pb, Cd, Mn, Hg, Co, and As in children and those of Fe, Cr, Pb, Cd, Hg, Co, and As in adults. Values investigated for Cancer index were higher for Cr, Pb, Ni, Cd, and As indicating a high risk of cancer development in adults and children via the ingestion pathway than the cutaneous pathway. Moreover, children are more prone to be exposed to both non-carcinogenic and carcinogenic effects of HMs than adults. To reduce human dangers, remediation approaches, such as environment-friendly, cost-effective adsorbents, phytoremediation and bio-remediation, as well as tools like bio-sensors, should be included in river management plans.
Collapse
Affiliation(s)
- Akshay Botle
- Department of Environmental Science, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, 400032, India
| | - Sayli Salgaonkar
- Department of Environmental Science, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, 400032, India
| | - Rahul Tiwari
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
| | - Shushama Ambadekar
- Department of Analytical Chemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, 400032, India
| | - Gayatri R Barabde
- Department of Environmental Science, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, 400032, India.
- Department of Analytical Chemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, 400032, India.
| |
Collapse
|
30
|
Macías M, Jiménez JA, Rodríguez de San Miguel E, Moreira-Santos M. Appraisal on the role of passive sampling for more integrative frameworks on the environmental risk assessment of contaminants. CHEMOSPHERE 2023; 324:138352. [PMID: 36898436 DOI: 10.1016/j.chemosphere.2023.138352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Over time multiple lines of research have been integrated as important components of evidence for assessing the ecological quality status of water bodies within the framework of Environmental Risk Assessment (ERA) approaches. One of the most used integrative approaches is the triad which combines, based on the weight-of-evidence, three lines of research, the chemical (to identify what is causing the effect), the ecological (to identify the effects at the ecosystem level) and the ecotoxicological (to ascertain the causes of ecological damage), with the agreement between the different lines of risk evidence increasing the confidence in the management decisions. Although the triad approach has proven greatly strategic in ERA processes, new assessment (and monitoring) integrative and effective tools are most welcome. In this regard, the present study is an appraisal on the boost that passive sampling, by allowing to increase information reliability, can give within each of the triad lines of evidence, for more integrative ERA frameworks. In parallel to this appraisal, examples of works that used passive samplers within the triad are presented providing support for the use of these devices in a complementary form to generate holistic information for ERA and ease the process of decision-making.
Collapse
Affiliation(s)
- Mariana Macías
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | - Jesús A Jiménez
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | | | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
31
|
Almeida JM, Palma C, Félix PM, Brito AC. Long-term variation of dissolved metals and metalloid in the waters of an Atlantic mesotidal estuary (Sado Estuary, Portugal). MARINE POLLUTION BULLETIN 2023; 188:114615. [PMID: 36708617 DOI: 10.1016/j.marpolbul.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Estuaries have long been preferred sites of human settlement due to the benefits regarding proximity to fresh water and the ocean. As such, these environments have been subject to increasing anthropogenic pressures, resulting in issues of pollution and contamination. However, since the second half of the 20th century an environmental concern has reflected in the development of legislation, monitoring programmes and measures to diminish and control those impacts. The study presented herein integrates metals and metalloid concentrations from surface water samples obtained in a long-term monitoring programme (1986-2020) conducted in the Sado Estuary. The results obtained show a decrease and stabilisation of the concentrations of elements (between 81 % for Pb and 11 % for As in the average concentrations, between 83 % for Pb and 11 % for Cd in the median concentrations, and an increase of 1 % in the As median values). Nevertheless, high concentrations were still observed in the stations closest to the industrial area and the main freshwater to confluence with the estuary. Despite the efforts in improving the environmental quality of the Sado Estuary, possible effects in native species such as cuttlefishes and oysters are still a possibility, particularly in the stations where higher concentrations were registered, as well as close to nurseries as a result of trace metal transport through currents and tides.
Collapse
Affiliation(s)
| | - Carla Palma
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal
| | - Pedro M Félix
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research NETwork, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana C Brito
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research NETwork, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
32
|
Lin MW, Yu XR, Chen JY, Wei YS, Chen HY, Tsai YT, Lin LH, Liao EC, Kung HY, Young SS, Chan HL, Chou HC. Sediment pollutant exposures caused hepatotoxicity and disturbed glycogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114559. [PMID: 36669277 DOI: 10.1016/j.ecoenv.2023.114559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3β (GSK3β)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xin-Ru Yu
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jai-Yu Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Kung
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuh-Sen Young
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
33
|
Brix KV, Blust R, Mertens J, Baken S, Middleton ET, Cooper C. Evaluation of effects-based methods as monitoring tools for assessing ecological impacts of metals in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:24-31. [PMID: 35656908 PMCID: PMC10084288 DOI: 10.1002/ieam.4645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Effects-based methods (EBMs) are considered part of a more integrative strategy for regulating substances of concern under the European Union Water Framework Directive. In general, EBMs have been demonstrated as useful indicators of effects on biota, although links to population and community-level effects are sometimes uncertain. When EBMs are sufficiently specific and sensitive, and links between measured endpoints and apical or higher level effects are established, they can be a useful tool in assessing effects from a specific toxicant or class of toxicants. This is particularly valuable for toxicants that are difficult to measure and for assessing the effects of toxicant mixtures. This paper evaluates 12 EBMs that have been proposed for potential use in the assessment of metals. Each EBM was evaluated with respect to metal specificity and sensitivity, sensitivity to other classes of toxicants, and the strength of the relationship between EBM endpoints and effects observed at the whole organism or population levels of biological organization. The evaluation concluded that none of the EBMs evaluated meet all three criteria of being sensitive to metals, insensitive to other classes of toxicants, and a strong indicator of effects at the whole organism or population level. Given the lack of suitable EBMs for metals, we recommended that the continued development of mixture biotic ligand models (mBLMs) may be the most effective way to achieve the goal of a more holistic approach to regulating metals in aquatic ecosystems. Given the need to further develop and validate mBLMs, we suggest an interim weight-of-evidence approach that includes mBLMs, macroinvertebrate community bioassessment, and measurement of metals in key macroinvertebrate species. This approach provides a near-term solution and simultaneously generates data needed for the refinement and validation of mBLMs. Once validated, it should be possible to rely primarily on mBLMs as an alternative to EBMs for metals. Integr Environ Assess Manag 2023;19:24-31. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoTox LLCMiamiFloridaUSA
- University of Miami, RSMASMiamiFloridaUSA
| | | | | | | | | | | |
Collapse
|
34
|
Miranda MN, Lado Ribeiro AR, Silva AMT, Pereira MFR. Can aged microplastics be transport vectors for organic micropollutants? - Sorption and phytotoxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158073. [PMID: 35981591 DOI: 10.1016/j.scitotenv.2022.158073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Microplastics have been investigated over the last decade as potential transport vectors for other pollutants. However, the specific role of plastic aging, in which plastics change their characteristics over time when exposed to environmental agents, has been overlooked. Therefore, sorption experiments were herein conducted using virgin and aged (by ozone treatment or rooftop weathering) microplastic particles of LDPE - low-density polyethylene, PET - poly(ethylene terephthalate), or uPVC - unplasticized poly(vinyl chloride). The organic micropollutants (OMPs) selected as sorbates comprise a diversified group of priority substances and contaminants of emerging concern, including pharmaceutical substances (florfenicol, trimethoprim, diclofenac, tramadol, citalopram, venlafaxine) and pesticides (alachlor, clofibric acid, diuron, pentachlorophenol), analyzed at trace concentrations (each ≤100 μg L-1). Sorption kinetics and equilibrium isotherms were obtained, as well as the confirmation that the aging degree of microplastics plays a major role in their sorption capacities. The results show an increased sorption of several OMPs on aged microplastics when compared to pristine samples, i.e. the sorption capacity increasing from one or two sorbed substances (maximum 3 μg g-1 per sorbate) up to nine after aging (maximum 10 μg g-1 per sorbate). The extent of sorption depends on the OMP, polymer and the effectiveness of the aging treatment. The modifications (e.g. in the chemical structure) between virgin and aged microplastics were linked to the increased sorption capacity of certain OMPs, allowing to better understand the different affinities observed. Additionally, phytotoxicity tests were performed to evaluate the mobility of the OMPs sorbed on the microplastics and the potential effects (on germination and early growth) of the combo on two species of plants (Lepidium sativum and Sinapis alba). These tests suggest low or no phytotoxicity effect under the conditions tested but indicate a need for further research on the behavior of microplastics on soil-plant systems.
Collapse
Affiliation(s)
- Mariana N Miranda
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R Lado Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
35
|
Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: A comparative and perspective review. Adv Colloid Interface Sci 2022; 309:102793. [DOI: 10.1016/j.cis.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
36
|
Wieringa N, van der Lee GH, de Baat ML, Kraak MHS, Verdonschot PFM. Contribution of sediment contamination to multi-stress in lowland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157045. [PMID: 35779724 DOI: 10.1016/j.scitotenv.2022.157045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Water bodies in densely populated lowland areas are often impacted by multiple stressors. At these multi-stressed sites, it remains challenging to quantify the contribution of contaminated sediments. This study, therefore, aimed to elucidate the contribution of sediment contamination in 16 multi-stressed drainage ditches throughout the Netherlands. To this end an adjusted TRIAD framework was applied, where 1) contaminants and other variables in the sediment and the overlying water were measured, 2) whole-sediment laboratory bioassays were performed using larvae of the non-biting midge Chironomus riparius, and 3) the in situ benthic macroinvertebrate community composition was determined. It was hypothesized that the benthic macroinvertebrate community composition would respond to all jointly present stressors in both water and sediment, whereas the whole-sediment bioassays would only respond to the stressors present in the sediment. The benthic macroinvertebrate community composition was indeed related to multiple stressors in both water and sediment. Taxa richness was positively correlated with the presence of PO4-P in the water, macrophyte cover and some pesticides. Evenness, the number of Trichoptera families and the SPEARpesticides were positively correlated to the C:P ratios in the sediment, whilst negative correlations were observed with various contaminants in both the water and sediment. The whole-sediment bioassays with C. riparius positively related to the nutrient content of the sediment, whereas no negative relations to the sediment-associated contaminants were observed, even though the lowered SPEARpesticides index indicated contaminant effects in the field. Therefore, it was concluded that sediment contamination was identified as one of the various stressors that potentially drove the benthic macroinvertebrate community composition in the multi-stressed drainage ditches, but that nutrients may have masked the adverse effects caused by low and diverse sediment contaminants on C. riparius in the bioassays.
Collapse
Affiliation(s)
- N Wieringa
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - G H van der Lee
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - M L de Baat
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - M H S Kraak
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - P F M Verdonschot
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
37
|
Virro H, Kmoch A, Vainu M, Uuemaa E. Random forest-based modeling of stream nutrients at national level in a data-scarce region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156613. [PMID: 35700783 DOI: 10.1016/j.scitotenv.2022.156613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient runoff from agricultural production is one of the main causes of water quality deterioration in river systems and coastal waters. Water quality modeling can be used for gaining insight into water quality issues in order to implement effective mitigation efforts. Process-based nutrient models are very complex, requiring a lot of input parameters and computationally expensive calibration. Recently, ML approaches have shown to achieve an accuracy comparable to the process-based models and even outperform them when describing nonlinear relationships. We used observations from 242 Estonian catchments, amounting to 469 yearly TN and 470 TP measurements covering the period 2016-2020 to train random forest (RF) models for predicting annual N and P concentrations. We used a total of 82 predictor variables, including land cover, soil, climate and topography parameters and applied a feature selection strategy to reduce the number of dependent features in the models. The SHAP method was used for deriving the most relevant predictors. The performance of our models is comparable to previous process-based models used in the Baltic region with the TN and TP model having an R2 score of 0.83 and 0.52, respectively. However, as input data used in our models is easier to obtain, the models offer superior applicability in areas, where data availability is insufficient for process-based approaches. Therefore, the models enable to give a robust estimation for nutrient losses at national level and allows to capture the spatial variability of the nutrient runoff which in turn enables to provide decision-making support for regional water management plans.
Collapse
Affiliation(s)
- Holger Virro
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51003, Estonia.
| | - Alexander Kmoch
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51003, Estonia
| | - Marko Vainu
- Institute of Ecology, Tallinn University, Uus-Sadama 5, Tallinn 10120, Estonia
| | - Evelyn Uuemaa
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu 51003, Estonia
| |
Collapse
|
38
|
Richardson AK, Irlam RC, Wright HR, Mills GA, Fones GR, Stürzenbaum SR, Cowan DA, Neep DJ, Barron LP. A miniaturized passive sampling-based workflow for monitoring chemicals of emerging concern in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156260. [PMID: 35644406 DOI: 10.1016/j.scitotenv.2022.156260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The miniaturization of a full workflow for identification and monitoring of contaminants of emerging concern (CECs) is presented. Firstly, successful development of a low-cost small 3D-printed passive sampler device (3D-PSD), based on a two-piece methacrylate housing that held up to five separate 9 mm disk sorbents, is discussed. Secondly, a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method reduced the need for large scale in-laboratory apparatus, solvent, reagents and reference material quantities for in-laboratory passive sampler device (PSD) calibration and extraction. Using hydrophilic-lipophilic balanced sorbents, sampling rates (Rs) were determined after a low 50 ng L-1 exposure over seven days for 39 pesticides, pharmaceuticals, drug metabolites and illicit drugs over the range 0.3 to 12.3 mL day-1. The high sensitivity LC-MS/MS method enabled rapid analysis of river water using only 10 μL of directly injected sample filtrate to measure occurrence of 164 CECs and sources along 19 sites on the River Wandle, (London, UK). The new 3D-PSD was then field-tested over seven days at the site with the highest number and concentration of CECs, which was down-river from a wastewater treatment plant. Almost double the number of CECs were identified in 3D-PSD extracts across sites in comparison to water samples (80 versus 42 CECs, respectively). Time-weighted average CEC concentrations ranged from 8.2 to 845 ng L-1, which were generally comparable to measured concentrations in grab samples. Lastly, high resolution mass spectrometry-based suspect screening of 3D-PSD extracts enabled 113 additional compounds to be tentatively identified via library matching, many of which are currently or are under consideration for the EU Watch List. This miniaturized workflow represents a new, cost-effective, and more practically efficient means to perform passive sampling chemical monitoring at a large scale. SYNOPSIS: Miniaturized, low cost, multi-disk passive samplers enabled more efficient multi-residue chemical contaminant characterization, potentially for large-scale monitoring programs.
Collapse
Affiliation(s)
- Alexandra K Richardson
- Dept. Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom; Environmental Research Group, MRC Centre for Environment & Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, United Kingdom
| | - Rachel C Irlam
- Dept. Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Helena Rapp Wright
- Environmental Research Group, MRC Centre for Environment & Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, United Kingdom
| | - Graham A Mills
- Faculty of Science and Health, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Gary R Fones
- Faculty of Science and Health, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Stephen R Stürzenbaum
- Dept. Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - David A Cowan
- Dept. Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - David J Neep
- Agilent Technologies UK Ltd, Essex Road, Church Stretton SY6 6AX, United Kingdom
| | - Leon P Barron
- Environmental Research Group, MRC Centre for Environment & Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, United Kingdom.
| |
Collapse
|
39
|
Kreutzer A, Faetsch S, Heise S, Hollert H, Witt G. Passive dosing: Assessing the toxicity of individual PAHs and recreated mixtures to the microalgae Raphidocelis subcapitata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106220. [PMID: 35777163 DOI: 10.1016/j.aquatox.2022.106220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Risk assessment of hydrophobic organic compounds (HOCs) is difficult because maintaining a well-defined exposure during aquatic toxicity testing is challenging due to the limited water solubility and various loss processes such as volatilization, biodegradation and sorption. Passive dosing techniques help to overcome these challenges by providing a well-controlled and solvent-free exposure. In this study, the algal growth inhibition test (DIN EN ISO 8692) was converted into a miniaturized passive dosing setting. For this purpose, biocompatible O-rings were used as substance reservoirs and loaded with polycyclic aromatic hydrocarbons (PAHs). The growth inhibition of the microalgae Raphidocelis subcapitata induced by single PAHs (log KOW 3.24-5.91) was investigated. In addition, recreated PAH mixtures were tested representing field compositions of the pore water North Sea sediments. Some of the single PAHs revealed strong growth inhibiting effects on the algal growth, while the recreated mixture compositions had slightly lower effect on the growth inhibition in the highest concentrations. Overall, the toxicity of the PAHs generally increased with the maximum chemical activities (amax) of the PAHs and the inhibition data could be fitted with one maximum chemical activity response curve. Therefore, the miniaturized passive dosing approach appears as a promising practical and economical method that can be used for toxicity testing of the different trophic levels to improve comprehensive risk assessment.
Collapse
Affiliation(s)
- Anne Kreutzer
- Department Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt 60438, Germany; Department of Environmental Engineering, Faculty Life Sciences, Hamburg University of Applied Sciences, Hamburg 21033, Germany
| | - Sonja Faetsch
- Department of Biomedical Engineering, Faculty Life Sciences, Hamburg University of Applied Sciences, Hamburg 21033, Germany
| | - Susanne Heise
- Department of Biomedical Engineering, Faculty Life Sciences, Hamburg University of Applied Sciences, Hamburg 21033, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Gesine Witt
- Department of Environmental Engineering, Faculty Life Sciences, Hamburg University of Applied Sciences, Hamburg 21033, Germany.
| |
Collapse
|
40
|
Machate O, Schmeller DS, Loyau A, Paschke A, Krauss M, Carmona E, Schulze T, Moyer A, Lutz K, Brack W. Complex chemical cocktail, containing insecticides diazinon and permethrin, drives acute toxicity to crustaceans in mountain lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154456. [PMID: 35283126 DOI: 10.1016/j.scitotenv.2022.154456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Mountain lakes have long been perceived as pristine environments. However, atmospheric deposition of persistent organic pollutants (POPs) have been shown to expose these sensitive ecosystems to chemical pollution. Little is known on how this pollution impacts aquatic ecosystems at high altitudes. We combined passive sampling with liquid and gas chromatography high resolution mass spectrometry (LC- and GC-HRMS) to screen the water of eight lakes in three different regions of the French Pyrenees. In total, we screened for 479 organic chemicals including POPs, polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, biocides, and musk fragrances. We detected a complex cocktail of 151 individual chemicals and used their toxic unit summation (ΣTU) to assess toxicity for crustaceans and algae. While risks for algae never reached chronic risks, this was always the case for crustaceans. Acute toxic risk thresholds for crustaceans were even exceeded in several of our sites. At sites with acute toxic risk levels (> 0.1 ΣTU) crustaceans were completely absent or showed a low abundance. We conclude that crustaceans were at least partly impacted by the high toxic risks driven by the insecticides diazinon and permethrin. These drugs are widely used to protect livestock from blue tongue disease transmitted by sucking insects, suggesting free roaming livestock as local source. Our results provide important evidence on toxic chemical pollution in relatively remote mountain areas, with important consequences for aquatic mountain ecosystems.
Collapse
Affiliation(s)
- Oliver Machate
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Department of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Dirk S Schmeller
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.
| | - Adeline Loyau
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin D-16775, Germany.
| | - Albrecht Paschke
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Eric Carmona
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Alessandra Moyer
- Department of Biology, San Francisco State University, San Francisco, CA 94132-1722, United States of America
| | - Kurt Lutz
- Department of Biology, San Francisco State University, San Francisco, CA 94132-1722, United States of America
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse, 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Bruinen de Bruin Y, Franco A, Ahrens A, Morris A, Verhagen H, Kephalopoulos S, Dulio V, Slobodnik J, Sijm DTHM, Vermeire T, Ito T, Takaki K, De Mello J, Bessems J, Zare Jeddi M, Tanarro Gozalo C, Pollard K, McCourt J, Fantke P. Enhancing the use of exposure science across EU chemical policies as part of the European Exposure Science Strategy 2020-2030. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:513-525. [PMID: 34697409 PMCID: PMC9349036 DOI: 10.1038/s41370-021-00388-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND A scientific framework on exposure science will boost the multiuse of exposure knowledge across EU chemicals-related policies and improve risk assessment, risk management and communication across EU safety, security and sustainability domains. OBJECTIVE To stimulate public and private actors to align and strengthen the cross-policy adoption of exposure assessment data, methods and tools across EU legislation. METHODS By mapping and analysing the EU regulatory landscape making use of exposure information, policy and research challenges and key areas of action are identified and translated into opportunities enhancing policy and scientific efficiency. RESULTS Identified key areas of actions are to develop a common scientific exposure assessment framework, supported by baseline acceptance criteria and a shared knowledge base enhancing exchangeability and acceptability of exposure knowledge within and across EU chemicals-related policies. Furthermore, such framework will improve communication and management across EU chemical safety, security and sustainability policies comprising sourcing, manufacturing and global trade of goods and waste management. In support of building such a common framework and its effective use in policy and industry, exposure science innovation needs to be better embedded along the whole policymaking cycle, and be integrated into companies' safety and sustainability management systems. This will help to systemically improve regulatory risk management practices. SIGNIFICANCE This paper constitutes an important step towards the implementation of the EU Green Deal and its underlying policy strategies, such as the Chemicals Strategy for Sustainability.
Collapse
Affiliation(s)
- Yuri Bruinen de Bruin
- European Commission, Joint Research Centre, Directorate for Space, Security and Migration, Geel, Belgium.
- European Chemical Industry Council (Cefic), Brussels, Belgium.
| | - Antonio Franco
- European Commission, Joint Research Centre, Directorate on Health, Consumer and Reference Materials, Ispra, Italy
| | | | - Alick Morris
- European Commission, Directorate General Employment, Luxembourg, Luxembourg
| | - Hans Verhagen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- University of Ulster, Coleraine, Northern Ireland
| | - Stylianos Kephalopoulos
- European Commission, Joint Research Centre, Directorate on Health, Consumer and Reference Materials, Ispra, Italy
| | - Valeria Dulio
- INERIS - National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | | | - Dick T H M Sijm
- Dutch Food and Consumer Product Safety Authority, Utrecht, The Netherlands
- University College Venlo, Campus Venlo, Maastricht University, Maastricht, The Netherlands
| | - Theo Vermeire
- RIVM - National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Takaaki Ito
- Organisation for Economic Co-operation and Development, Paris, France
| | - Koki Takaki
- Organisation for Economic Co-operation and Development, Paris, France
| | | | - Jos Bessems
- Flemish Institute for Technological Research, Mol, Belgium
| | - Maryam Zare Jeddi
- RIVM - National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | - Josephine McCourt
- European Commission, Joint Research Centre, Directorate for Space, Security and Migration, Geel, Belgium
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
42
|
Sobotka J, Smedes F, Vrana B. Performance comparison of silicone and low-density polyethylene as passive samplers in a global monitoring network for aquatic organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119050. [PMID: 35218918 DOI: 10.1016/j.envpol.2022.119050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Contamination with hydrophobic organic compounds (HOCs) such as persistent organic pollutants negatively affects global water quality. Accurate and globally comparable monitoring data are required to understand better the HOCs distribution and environmental fate. We present the first results of a proof-of-concept global monitoring campaign, the Aquatic Global Passive Sampling initiative (AQUA-GAPS), performed between 2016 and 2020, for assessing trends of freely dissolved HOC concentrations in global surface waters. One of the pilot campaign aims was to compare performance characteristics of silicone (SSP) and low-density polyethylene (PE) sheets co-deployed in parallel under identical conditions, i.e. at the same site, using the same deployment design, and for an equal period. Individual exposures lasted between 36 and 400 days, and samples were collected from 22 freshwater and 40 marine locations. The sampler inter-comparability is based on a rationale of common underlying principles, i.e. HOC diffusion through a water boundary layer (WBL) and absorption by the polymer. In the integrative uptake phase, equal surface-specific uptake in both samplers was observed for HOCs with a molecular volume less than 300 Å3. For those HOCs, transport in the WBL controls the uptake as mass transfer in the polymer is over 20-times faster. In such a case, sampled HOC mass can be converted into aqueous concentrations using available models derived for WBL-controlled sampling using performance reference compounds. In contrast, for larger molecules, surface-specific uptake to PE was lower than to SSP. Diffusion in PE is slower than in SSP, and it is likely that for large molecules, diffusion in PE limits the transport from water to the sampler, complicating the interpretation. Although both samplers provided mostly well comparable results, we recommend, based on simpler practical handling, simpler data interpretation, and better availability of reliable polymer-water partition coefficients, silicone-based samplers for future operation in the worldwide monitoring programme.
Collapse
Affiliation(s)
- Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Foppe Smedes
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| |
Collapse
|
43
|
Austin T, Bregoli F, Höhne D, Hendriks AJ, Ragas AMJ. Ibuprofen exposure in Europe; ePiE as an alternative to costly environmental monitoring. ENVIRONMENTAL RESEARCH 2022; 209:112777. [PMID: 35074349 DOI: 10.1016/j.envres.2022.112777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The EU Water Framework Directive and Priority Substance Directive provide a framework to identify substances that potentially pose a risk to surface waters and provide a legal basis whereby member states are required to monitor and comply with environmental quality standards (EQSs) set for those substances. The cost and effort to continuously measure and analyse real world concentrations in all water bodies across Europe are high. Establishing the reliability of environmental exposure models to predict concentrations of priority substances is key, both to fill data gaps left by monitoring campaigns, and to predict the outcomes of actions that might be taken to reduce exposure. In this study, we aimed to validate the ePiE model for the pharmaceutical ibuprofen by comparing predictions made using the best possible consumption data with measured river concentrations. The results demonstrate that the ePiE model makes useful, conservative exposure predictions for ibuprofen, typically within a factor of 3 of mean measured values. This exercise was performed across a number of basins within Europe, representative of varying conditions, including consumption rates, population densities and climates. Incorporating specific information pertaining to the basin or country being assessed, such as custom WWTP removal rates, was found to improve the realism and accuracy of predictions. We found that the extrapolation of consumption data between countries should be kept to a minimum when modelling the exposure of pharmaceuticals, with the per capita consumption of ibuprofen varying by nearly a factor of 10.
Collapse
Affiliation(s)
- Tom Austin
- Reckitt, Dansom Lane, Hull, HU8 7DS, United Kingdom.
| | - Francesco Bregoli
- Department of Environmental Science, Radboud University Nijmegen, 6500GL, Nijmegen, the Netherlands
| | - Dominik Höhne
- Ramboll Deutschland GmbH, Werinherstraße 79, 81541 München, Germany
| | - A Jan Hendriks
- Department of Environmental Science, Radboud University Nijmegen, 6500GL, Nijmegen, the Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, 6500GL, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Buss J, Achten C. Spatiotemporal variations of surface water quality in a medium-sized river catchment (Northwestern Germany) with agricultural and urban land use over a five-year period with extremely dry summers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151730. [PMID: 34800458 DOI: 10.1016/j.scitotenv.2021.151730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Medium-sized rivers, which are used for intensive agriculture and urban infrastructure, are subject to manifold hydrochemical stressors. Identifying and monitoring these stressors is important for river basin management and a functioning ecosystem. To understand the spatiotemporal variation of surface water quality in a highly modified lowland river, the Münstersche Aa River (Northwestern Germany) with 62% of land used for agriculture and 26% urban/residential area, was exemplarily studied. A total of 519 samples were collected using two automated high-frequency samplers and five catchment-wide sampling campaigns. They covered the five-year period 2015-2020 and included two extremely dry summers. The Münstersche Aa catchment is dominated by low permeable strata resulting in surface water runoff (Baseflow Index: 0.41) which leads to a high amplitude of discharge variation (mean discharge: 0.7 m3/s) with high flow conditions in winter/spring, and low discharge during summer/fall. In wintertime, maximum nitrate concentrations (up to 73 mg NO3/L) and loads (up to 1300 t NO3/a; up to 98% in winter) correlate with high-flow conditions. δ18O and δ15N isotopic analysis indicated manure from farmland as the major source of nitrate whereas the impact of municipal wastewater treatment plants was neglectable. Increased nitrate concentrations are linked to the higher proportion of farmland in the upper catchment (77%) compared with the lower catchment (47%). In summertime, at extremely low flow conditions, surface water consisted of up to 100% of treated wastewater, resulting in the highest measured chloride, sodium and potassium concentrations. The river is impacted by strongly seasonal and different stressors, which can be expected to intensify with ongoing climate change. Results from this study may help to adapt monitoring schemes for the Münstersche Aa but also for other lowland streams with comparable land-use targeting the goals of the Water Framework Directive.
Collapse
Affiliation(s)
- Johanna Buss
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstrasse 24, 48149 Münster, Germany.
| |
Collapse
|
45
|
Schweizer M, von der Ohe PC, Gräff T, Kühnen U, Hebel J, Heid C, Kundy L, Kuttler J, Moroff FM, Schlösinger AF, Schulze-Berge P, Triebskorn R, Panagopoulou E, Damalas DE, Thomaidis NS, Köhler HR. Heart rate as an early warning parameter and proxy for subsequent mortality in Danio rerio embryos exposed to ionisable substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151744. [PMID: 34808159 DOI: 10.1016/j.scitotenv.2021.151744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Environmental risk assessments of organic chemicals usually do not consider pH as a key factor. Hence, most substances are tested at a single pH only, which may underestimate the toxicity of ionisable substances with a pKa in the range of 4-10. Thus, the ability to consider the pH-dependent toxicity would be crucial for a more realistic assessment. Moreover, there is a tendency in acute toxicity tests to focus on mortality only, while little attention is paid to sublethal endpoints. We used Danio rerio embryos exposed to ten ionisable substances (the acids diclofenac, ibuprofen, naproxen and triclosan and the bases citalopram, fluoxetine, metoprolol, propranolol, tramadol and tetracaine) at four external pH levels, investigating the endpoints mortality (LC50) and heart rate (EC20). Dose-response curves were fitted with an ensemble-model to determine the true uncertainty and variation around the mean endpoints. The ensemble considers eight (heart rate) or twelve (mortality) individual models for binominal and Poisson distributed data, respectively, selected based on the Akaike Information Criterion (AIC). In case of equally good models, the mean endpoint of all models in the ensemble was calculated, resulting in more robust ECx estimates with lower 'standard errors' as compared to randomly selected individual models. We detected a high correlation between mortality (LC50) at 96 hpf and reduced heart rate (EC20) at 48 hpf for all compounds and all external pH levels (r = 0.98). Moreover, the observed pH-dependent effects were strongly associated with log D and thus, likely driven by differences in uptake (toxicokinetic) rather than internal (toxicodynamic) processes. Prospectively, the a priori consideration of pH-dependent effects of ionisable substances might make testing at different pH levels redundant, while the endpoint of mortality might even be replaced by a reliable sublethal proxy that would reduce the exposure, accelerating the evaluation process.
Collapse
Affiliation(s)
- Mona Schweizer
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | | | - Thomas Gräff
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Ute Kühnen
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Janine Hebel
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Christoph Heid
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Lone Kundy
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Julia Kuttler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Friederike-Marie Moroff
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Anne-Frida Schlösinger
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Pia Schulze-Berge
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany; Steinbeis-Transfer Center Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg, Germany
| | - Elena Panagopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Dimitrios E Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Heinz-R Köhler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| |
Collapse
|
46
|
Simple Prediction of an Ecosystem-Specific Water Quality Index and the Water Quality Classification of a Highly Polluted River through Supervised Machine Learning. WATER 2022. [DOI: 10.3390/w14081235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water quality indices (WQIs) are used for the simple assessment and classification of the water quality of surface water sources. However, considerable time, financial resources, and effort are required to measure the parameters used for their calculation. Prediction of WQIs through supervised machine learning is a useful and simple approach to reduce the cost of the analysis through the development of predictive models with a reduced number of water quality parameters. In this study, regression and classification machine-learning models were developed to estimate the ecosystem-specific WQI previously developed for the Santiago-Guadalajara River (SGR-WQI), which involves the measurement of 17 water quality parameters. The best subset selection method was employed to reduce the number of significant parameters required for the SGR-WQI prediction. The multiple linear regression model using 12 parameters displayed a residual square error (RSE) of 3.262, similar to that of the multiple linear regression model using 17 parameters (RSE = 3.255), which translates into significant savings for WQI estimation. Additionally, the generalized additive model not only displayed an adjusted R2 of 0.9992, which is the best fit of all the models evaluated, but also fitted the rating curves of each parameter developed for the original algorithm for the SGR-WQI calculation with great accuracy. Regarding the classification models, an overall proportion of 93% and 86% of data were correctly classified using the logistic regression model with 17 and 12 parameters, respectively, while the linear discriminant functions using 12 parameters correctly classified an overall proportion of 84%. The models evaluated were found to be efficient in predicting the SGR-WQI with a reduced number of parameters as complementary tools to extend the current water quality monitoring program of the Santiago-Guadalajara River.
Collapse
|
47
|
Integration of Genotoxic Biomarkers in Environmental Biomonitoring Analysis Using a Multi-Biomarker Approach in Three-Spined Stickleback (Gasterosteus aculeatus Linnaeus, 1758). TOXICS 2022; 10:toxics10030101. [PMID: 35324726 PMCID: PMC8950626 DOI: 10.3390/toxics10030101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Water is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback (Gasterosteus aculeatus) through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach. Even if fish in all stations had high levels of DNA strand breaks, the multivariate analysis (PCA), followed by hierarchical agglomerative clustering (HAC), improved discrimination among stations by detecting an increase of nuclear DNA content variation (Etaing, St Rémy du Nord, Artres and Biache-St-Vaast) and erythrocyte necrosis (Etaing, St Rémy du Nord). The present work highlighted that the integration of these biomarkers of genotoxicity in a multi-biomarker approach is appropriate to expand physiological parameters which allow the targeting of new potential effects of contaminants.
Collapse
|
48
|
Veselská V, Šillerová H, Hudcová B, Ratié G, Lacina P, Lalinská-Voleková B, Trakal L, Šottník P, Jurkovič Ľ, Pohořelý M, Vantelon D, Šafařík I, Komárek M. Innovative in situ remediation of mine waters using a layered double hydroxide-biochar composite. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127136. [PMID: 34879539 DOI: 10.1016/j.jhazmat.2021.127136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The current demand for alternative water sources requires the incorporation of low-cost composites in remediation technologies. These represent a sustainable alternative to more expensive, commercially used adsorbents. The main objective of this comprehensive field-scale study was to incorporate the layered double hydroxides (LDHs) into the hybrid biochar-based composites and apply an innovative material to remediate As/Sb-rich mine waters. The presence of hydrous Fe oxides (HFOs) within the composite enhanced the total adsorption efficiency of the composite for As(V) and Sb(V). The kinetic data fitted a pseudo-second order model. Equilibrium experiments confirmed that the composite had a stronger interaction with As(V) than with Sb(V). The efficient removal of As(V) from mine water was achieved in both batch and continuous flow column systems, reaching up to 98% and 80%, respectively. Sb(V) showed different behavior to As(V) during mine water treatment, reaching adsorption efficiencies of up to 39% and 26% in batch and column experiments, respectively. The migration of Sb(V) in mine water was mostly attributed to its dispersion before it was able to show affinity to the composite. In general, the proposed column technology is suitable for the field remediation of small volumes of contaminated water, and thus has significant commercial potential.
Collapse
Affiliation(s)
- Veronika Veselská
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic.
| | - Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| | - Barbora Hudcová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| | - Gildas Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic; Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00 Brno, Czech Republic
| | | | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| | - Peter Šottník
- Department of Mineralogy, Petrology and Mineral Deposits, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague-Suchdol, Czech Republic; Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delphine Vantelon
- SOLEIL synchrotron, L'orme des Merisiers, Saint Aubin BP48 91192 Gif-sur-Yvette Cedex, France
| | - Ivo Šafařík
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| |
Collapse
|
49
|
Simon E, Duffek A, Stahl C, Frey M, Scheurer M, Tuerk J, Gehrmann L, Könemann S, Swart K, Behnisch P, Olbrich D, Brion F, Aït-Aïssa S, Pasanen-Kase R, Werner I, Vermeirssen ELM. Biological effect and chemical monitoring of Watch List substances in European surface waters: Steroidal estrogens and diclofenac - Effect-based methods for monitoring frameworks. ENVIRONMENT INTERNATIONAL 2022; 159:107033. [PMID: 34979407 DOI: 10.1016/j.envint.2021.107033] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17β-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.
Collapse
Affiliation(s)
- Eszter Simon
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland.
| | - Anja Duffek
- German Environment Agency (UBA), Berlin, Germany
| | - Cordula Stahl
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Germany
| | - Manfred Frey
- Steinbeis-Innovationszentrum Zellkulturtechnik, c/o University of Applied Sciences Mannheim, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Duisburg, Germany
| | - Linda Gehrmann
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Duisburg, Germany
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kees Swart
- BioDetection Systems B.V., Amsterdam, the Netherlands
| | - Peter Behnisch
- National Institute of Industrial Environment and Risks (INERIS), UMR-I 02 SEBIO, Verneuil-en-Halatte, France
| | - Daniel Olbrich
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - Franҫois Brion
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Selim Aït-Aïssa
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work, Bern, Switzerland
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | | |
Collapse
|
50
|
Weisner O, Arle J, Liebmann L, Link M, Schäfer RB, Schneeweiss A, Schreiner VC, Vormeier P, Liess M. Three reasons why the Water Framework Directive (WFD) fails to identify pesticide risks. WATER RESEARCH 2022; 208:117848. [PMID: 34781190 DOI: 10.1016/j.watres.2021.117848] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The Water Framework Directive (WFD) demands that good status is to be achieved for all European water bodies. While governmental monitoring under the WFD mostly concludes a good status with regard to pesticide pollution, numerous scientific studies have demonstrated widespread negative ecological impacts of pesticide exposure in surface waters. To identify reasons for this discrepancy, we analysed pesticide concentrations measured in a monitoring campaign of 91 agricultural streams in 2018 and 2019 using methodologies that exceed the requirements of the WFD. This included a sampling strategy that takes into account the periodic occurrence of pesticides and a different analyte spectrum designed to reflect current pesticide use. We found that regulatory acceptable concentrations (RACs) were exceeded for 39 different pesticides at 81% of monitoring sites. In comparison, WFD-compliant monitoring of the same sites would have detected only eleven pesticides as exceeding the WFD-based environmental quality standards (EQS) at 35% of monitoring sites. We suggest three reasons for this underestimation of pesticide risk under the WFD-compliant monitoring: (1) The sampling approach - the timing and site selection are unable to adequately capture the periodic occurrence of pesticides and investigate surface waters particularly susceptible to pesticide risks; (2) the measuring method - a too narrow analyte spectrum (6% of pesticides currently approved in Germany) and insufficient analytical capacities result in risk drivers being overlooked; (3) the assessment method for measured concentrations - the protectivity and availability of regulatory thresholds are not sufficient to ensure a good ecological status. We therefore propose practical and legal refinements to improve the WFD's monitoring and assessment strategy in order to gain a more realistic picture of pesticide surface water pollution. This will enable more rapid identification of risk drivers and suitable risk management measures to ultimately improve the status of European surface waters.
Collapse
Affiliation(s)
- Oliver Weisner
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany.
| | - Jens Arle
- German Environment Agency (UBA), Dessau-Roßlau 06844, Germany
| | - Liana Liebmann
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Department of Evolutionary Ecology and Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Moritz Link
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Anke Schneeweiss
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Philipp Vormeier
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ) Leipzig, Permoser Str. 15, Leipzig 04318, Germany; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|