1
|
Madge Pimentel I, Baikova D, Buchner D, Burfeid Castellanos A, David GM, Deep A, Doliwa A, Hadžiomerović U, Mayombo NAS, Prati S, Spyra MA, Vermiert AM, Beisser D, Dunthorn M, Piggott JJ, Sures B, Tiegs SD, Leese F, Beermann AJ. Assessing the response of an urban stream ecosystem to salinization under different flow regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171849. [PMID: 38537828 DOI: 10.1016/j.scitotenv.2024.171849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.
Collapse
Affiliation(s)
- Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Daria Baikova
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Dominik Buchner
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Gwendoline M David
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Stechlin, Germany
| | - Aman Deep
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Una Hadžiomerović
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Sebastian Prati
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anna-Maria Vermiert
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jeremy J Piggott
- Zoology and Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Bernd Sures
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Arne J Beermann
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Moyano Salcedo AJ, Prat N, Bertrans-Tubau L, Piñero-Fernandez M, Cunillera-Montcusí D, López-Doval JC, Abril M, Proia L, Cañedo-Argüelles M. What happens when salinization meets eutrophication? A test using stream microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168824. [PMID: 38030007 DOI: 10.1016/j.scitotenv.2023.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nutrient and salt pollution often co-occur in rivers and streams due to human activities (e.g., agriculture, urbanization). Thus, understanding the interactive effects of nutrients and salinity on freshwater ecosystems is critical for environmental management. We experimentally assessed the interactive effects of nutrient and salt pollution on stream microcosms using biofilm and macroinvertebrates as model systems. Six treatments were performed in triplicate: control (C: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 33.5 mg L-1), intermediate nutrient (IN: N-NH4+ = 0.4; P- PO43- = 0.271; Cl- = 33. 5 mg L-1), high nutrient (HN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 33.5 mg L-1), salt (S: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 3000 mg L-1), salt with intermediate nutrient (SIN: N-NH4+ = 0.4; P- PO43- = 0.27; Cl- = 3000 mg L-1) and salt with high nutrient (SHN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 3000 mg L-1). After 14 days of exposure, biofilm chlorophyll-a increased across all treatments, with cyanobacteria replacing diatoms and green algae. Treatments with no added nutrients (C and S) had more P uptake capacity than the rest. The indicator species analysis showed 8 significant taxa, with Orthocladius (Orthocladius) gr. Wetterensis and Virganytarsus significantly associated with the salinity treatment. Overall, salt pollution led to a very strong decline in macroinvertebrate richness and diversity. However, salt toxicity seemed to be ameliorated by nutrient addition. Finally, both structural equation models and biotic-abiotic interaction networks showed that complex biological interactions could be modulating the response of the biological communities to our treatments. Thus, our study calls for species-level assessments of salt and nutrient effects on river ecosystems and advocates for better management of co-occurring pollutants.
Collapse
Affiliation(s)
- Alvaro Javier Moyano Salcedo
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Geohazards and Civil Engineering Research Group, Department of Civil Engineering, Saint Thomas Villavicencio University, C/22 No 1a, 500003 Villavicencio, Colombia; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Narcís Prat
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Bertrans-Tubau
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Martí Piñero-Fernandez
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - David Cunillera-Montcusí
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria
| | - Julio C López-Doval
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
3
|
Noune F, Chaib N, Kaddeche H, Dzizi S, Metallaoui S, Blanco S. Effect of salinity on valves morphology in freshwater diatoms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:159. [PMID: 36441291 DOI: 10.1007/s10661-022-10770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Increased salt concentration is one of the most widespread problems affecting freshwater worldwide. Aquatic communities, and in particular periphytic diatoms, react to this alteration in water quality by modifying their structural parameters and physiology at the individual level, which is commonly manifested by the appearance of teratological forms. The present work presents the results of an experimental laboratory study in which a biofilm grown on artificial substrates was subjected to a gradient of water conductivities for 4 weeks. The results show an increase in the number of deformed valves over time proportionally to the increase in conductivity for each experimental treatment. These effects are also verified by analyzing the concentration of chlorophyll-a in the experimental biofilms, which demonstrate a metabolic response to the induced osmotic stress. No changes were recorded; however, in species richness or diversity of taxa present in the treatments. Our results, therefore, confirm at the experimental level numerous previous field observations about the harmful effect of salinity on periphytic diatoms, and also their ability to reintegrate with the new stress conditions.
Collapse
Affiliation(s)
- Faïza Noune
- Department of Natural and Life Sciences, Faculty of Sciences, University of 20 August 1955, Skikda, Algeria.
- Laboratoire de Recherche Sur La Physico-Chimie des Surfaces Et Interfaces (LRPCSI), University of 20 August 1955, Skikda, Algeria.
| | - Nadjla Chaib
- Department of Process Engineering, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
- Laboratory of Catalysis, Bioprocesses and Environment - LCBE, University of 20 August 1955, Skikda, Algeria
| | - Hadjer Kaddeche
- Department of Natural and Life Sciences, Faculty of Sciences, University of 20 August 1955, Skikda, Algeria
- Laboratoire de Recherche Sur La Physico-Chimie des Surfaces Et Interfaces (LRPCSI), University of 20 August 1955, Skikda, Algeria
| | - Sabrina Dzizi
- Laboratoire de Recherche Sur La Physico-Chimie des Surfaces Et Interfaces (LRPCSI), University of 20 August 1955, Skikda, Algeria
- Department of Process Engineering, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
| | - Sophia Metallaoui
- Department of Natural and Life Sciences, Faculty of Sciences, University of 20 August 1955, Skikda, Algeria
- Laboratoire de Recherche des Interactions, Biodiversité, Ecosystèmes et Biotechnologie (LRIBEB), University of 20 August 1955, Skikda, Algeria
| | - Saùl Blanco
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
- Laboratorio de Diatomología, La Serna 58, 24007, León, Spain
| |
Collapse
|
4
|
Ersoy Z, Abril M, Cañedo-Argüelles M, Espinosa C, Vendrell-Puigmitja L, Proia L. Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120127. [PMID: 36089138 DOI: 10.1016/j.envpol.2022.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Collapse
Affiliation(s)
- Zeynep Ersoy
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Meritxell Abril
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Carmen Espinosa
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lidia Vendrell-Puigmitja
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
5
|
Vendrell-Puigmitja L, Proia L, Espinosa C, Barral-Fraga L, Cañedo-Argüelles M, Osorio V, Casas C, Llenas L, Abril M. Hypersaline mining effluents affect the structure and function of stream biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156966. [PMID: 35760177 DOI: 10.1016/j.scitotenv.2022.156966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The salinisation of freshwater ecosystems is a global environmental problem that threatens biodiversity, ecosystem functioning and human welfare. The aim of this study was to investigate the potential impact of a realistic salinity gradient on the structure and functioning of freshwater biofilms. The salinity gradient was based on the real ion concentration of a mining effluent from an abandoned mine in Germany. We exposed biofilm from a pristine stream to 5 increasing salinities (3 to 100 g L-1) under controlled conditions in artificial streams for 21 days. We evaluated its functional (photosynthetic efficiency, nutrient uptake, and microbial respiration) and structural responses (community composition, algal biomass and diatom, cyanobacteria and green algae metrics) over time. Then we compared their responses with an unexposed biofilm used as control. The functionality and structure of the biofilm exposed to the different salinities significantly decreased after short-term and long-term exposure, respectively. The community composition shifted to a new stable state where the most tolerant species increased their abundances. At the same time, we observed an increase in the community tolerance (measured as Pollution-Induced Community Tolerance) along the salinity gradient. This study provides relevant information on the salt threshold concentrations that can substantially damage algal cells (i.e., between 15 and 30 g L-1). The results provide new insights regarding the response and adaptation of stream biofilm to salinity and its potential implications at the ecosystem level.
Collapse
Affiliation(s)
- Lidia Vendrell-Puigmitja
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Lorenzo Proia
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain.
| | - Carmen Espinosa
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain; Aigües de Vic S.A., Carrer de la Riera, 08500 Vic, Spain
| | - Laura Barral-Fraga
- LDAR24-Laboratoire Départemental d'Analyse et de Recherche de la Dordogne, 24660 Coulounieix-Chamiers, France; Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain
| | - Miguel Cañedo-Argüelles
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Grup de recerca FEHM (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain
| | - Victoria Osorio
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Carme Casas
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Laia Llenas
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| | - Meritxell Abril
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, Ctra de Roda 70, 08500 Vic, Spain
| |
Collapse
|
6
|
Utz R, Bidlack S, Fisher B, Kaushal S. Urbanization drives geographically heterogeneous freshwater salinization in the northeastern United States. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:952-965. [PMID: 35687714 DOI: 10.1002/jeq2.20379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Rising trends in freshwater salinity, collectively termed the Freshwater Salinization Syndrome (FSS), constitute a global environmental concern. Given that the FSS has been observed in diverse settings, key questions regarding the causes, trend magnitudes, and consequences remain. Prior work hypothesized that FSS is driven by state factors, such as human-centered land use change, geology, and climate. Here, we identify the fundamental overriding factors driving FSS within the northeastern United States and quantify the diversity of FSS severity within the region. Specifically, we analyzed decadal-scale trends in specific conductance (a salinity proxy) for 333 lotic sites over four decades. Next, we quantified potential variables driving the rising or falling trends, including impervious surface cover (ISC), winter temperature and precipitation, watershed size, and ambient conductance. Temperature and ISC were considered the most likely candidates for predicting FSS severity because road salts have previously emerged as the fundamental regional driver. Most (62.5%) sites exhibited patterns of significantly increasing conductance; thus, the overall regional state reflects advancing FSS. However, others exhibited an absence of change (28.8%) or decreasing values (8.7%), and slope magnitude did change with latitude. Linear modeling demonstrated that two variables-ISC and watershed size-constitute the best predictors of long-term conductance trends and that an intercept not significantly different than zero suggests that the FSS does not reign in the absence of urbanization. We also detected areas with consistently decreasing trends despite moderate ISC. Therefore, within the region, advancing urbanization causes the typical condition of advancing FSS, but heterogeneity also exists.
Collapse
Affiliation(s)
- Ryan Utz
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Samantha Bidlack
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Burch Fisher
- Earth Research Institute, Univ. of California, Santa Barbara, CA, 93106, USA
| | - Sujay Kaushal
- Dep. of Geology & Earth System Science Interdisciplinary Center, Univ, of Maryland, College Park, 20740, USA
| |
Collapse
|
7
|
Looking beyond leaves: variation in nutrient leaching potential of seasonal litterfall among different species within an urban forest. Urban Ecosyst 2022; 25:1097-1109. [PMID: 35233162 PMCID: PMC8872876 DOI: 10.1007/s11252-022-01217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/02/2022]
Abstract
Urban litterfall that is deposited on impervious surface leaches nutrients into stormwater, contributing to downstream eutrophication. Previous studies have focused on the leaching potential of deciduous leaf litter, while other smaller-volume litterfall types—such as blossoms and fruit—may leach significant amounts of nitrogen, phosphorus, and carbon. These additional litterfall types represent an unaccounted-for source of nutrients to urban stormwater. We explored variation in leaching potential of dissolved nutrients and organic carbon across litter types and species by collecting litterfall (blossoms, fruit, leaves) from ten common urban tree species. After 24 h of leaching, we measured total phosphorus (TP), total dissolved nitrogen (TDN), and dissolved organic carbon (DOC) contributions and compared differences across litter types and species. Litter basket estimates then allowed us to quantify annual litterfall inputs. We found that blossoms leached 3–20 times more TDN and 1.5–7 times more TP than leaves of the same species. Furthermore, considering litterfall mass, several species had greater springtime nutrient-leaching potential compared to fall due to high leaching potential in blossoms and lower potential in leaves. We found mixed effects of leaf crushing and leachate solution (stormwater, salinity) on leaching rates. This study highlights the need to consider all litterfall types as well as variation in urban forest communities and conditions when seeking to budget, control, and maintain for potential nutrient sources from the urban forest.
Collapse
|
8
|
Honarvar Nazari M, Mousavi SZ, Potapova A, McIntyre J, Shi X. Toxicological impacts of roadway deicers on aquatic resources and human health: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1855-1881. [PMID: 33978278 DOI: 10.1002/wer.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
During winter, snow and ice on roads in regions with cold weather can increase traffic crashes and casualties, resulting in travel delays and financial burdens to society. Anti-icing or deicing the roads can serve a cost-effective method to significantly reduce such risks. Although traditionally the main priorities of winter road maintenance (WRM) have been level of service, cost-effectiveness, and corrosion reduction, it is increasingly clear that understanding the environmental impacts of deicers is vital. One of the most important problems in this regard is environmental contamination caused by cumulative use of deicers, which has many detrimental effects on the aquatic systems. Among the deicers, the chloride-based ones raise the most toxicological concerns because they are highly soluble, can migrate quickly in the environment and have cumulative effects over time. In this review, we summarize and organize existing data, including the latest findings about the adverse effects of deicers on surface water and groundwater, aquatic species, and human health, and identify future research priorities. In addition, the data provided can be used to develop a framework for quantifying some of the variables that stakeholders and agencies use when preparing guidelines and standards for WRM programs. PRACTITIONER POINTS: Pollution from the increasing use of roadway deicers may have detrimental effects on the environment. Of particular concern are the acute and cumulative risks that chloride salts pose to aquatic species. Chloride salts are water-soluble, very difficult to remove, highly mobile, and non-degradable. Deicers cause water stratification, change the chemicophysical properties of water, and affect aquatic species and human health. Current guidelines may not be appropriate for environmental protection and need to be revised.
Collapse
Affiliation(s)
- Mehdi Honarvar Nazari
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - S Zeinab Mousavi
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - Anna Potapova
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| | - Jenifer McIntyre
- School of the Environment, Puyallup Research & Extension Center, Washington State University, Puyallup, WA, USA
| | - Xianming Shi
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
9
|
Oliveira R, Martínez A, Gonçalves AL, Almeida Júnior ES, Canhoto C. Salt pulses effects on in-stream litter processing and recovery capacity depend on substrata quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147013. [PMID: 33872895 DOI: 10.1016/j.scitotenv.2021.147013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Human activities have greatly extended and intensified freshwater salinization, which threatens the structure and functioning of streams and rivers. Research on salt effects on in-stream processes has been strongly biased towards chronic salinization at constant levels. The aim of this study was to assess microbial mediated decomposition of two leaf species contrasting in quality (alder and oak) and associated descriptors, during salt-pulsed contamination (salinization period) and after cessation of salt additions (recovery period). Leaves were incubated in a mountain stream (central Portugal) longitudinally divided over 22 m. Half of the stream (salinized half) was subjected to daily short-term sharp salinity increases (conductivity up to ~48 mS cm-1) during 7 days while the other half (control half) was used as control. During the salinization period, salt exposure negatively affected mass loss and microbial respiration rate of alder (high-quality resource) while effects on fungal sporulation rate were independent of leaf quality. Fungal biomass was not impacted. After the recovery period, mass loss and respiration rate in both leaf species were similar between experimental stream halves. Fungal biomass associated with oak was enhanced and sporulation rate of alder, maintained in the previously salinized half, remained depressed. These results point out that the effects of salt pulses may be more deleterious in streams exclusively lined by high (vs. low) quality riparian trees as a result of a less efficient microbial-mediated leaf processing, and a reduced contribution to the conidial pool, even beyond the salinization period.
Collapse
Affiliation(s)
- Ricardo Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Aingeru Martínez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Ana Lúcia Gonçalves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Edivan S Almeida Júnior
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Cristina Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
10
|
Çetin T, Solak CN, Yılmaz E. Testing the performance of European diatom indices for evaluating the ecological status in the Kızılırmak basin, Turkey: flowing waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43567-43578. [PMID: 33835341 DOI: 10.1007/s11356-021-13282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The Kızılırmak River is the longest river (1.355 km) in Turkey and flows into the Black Sea. Main pressures in the basin are waste water discharges, widespread agriculture, livestock activities, and excessive salinity due to the natural formation. In this study, the performance of the most widely used European diatom indices (IPS, IDG, IBD, EPI-D, TDI, and TI) was tested statistically by comparing them with the indicators of organic pollution (biological oxygen demand and ammonium-nitrogen), eutrophication (orthophosphate and nitrate-nitrogen) and salinization (electrical conductivity) in the Kızılırmak basin, Turkey. For this purpose, a total of 97 diatom samples from 33 rivers were collected seasonally in 2014 and 215 species were identified. Principal component analysis was performed to evaluate the "general degradation" in the basin, and linear regression was used to calculate the correlations with diatom indices. As a result, EPI-D, IPS, IBD, and TI were strongly correlated indices, respectively, while IDG and TDI had the lowest correlations with general degradation. Only the EPI-D index was significantly correlated with all environmental variables. Our results showed that the EPI-D index can be used for the ecological status assessment in terms of phytobenthos in the Kızılırmak basin in line with the Water Framework Directive.
Collapse
Affiliation(s)
- Tolga Çetin
- General Directorate of Water Management, T.R. Ministry of Agriculture and Forestry, Ankara, Turkey.
| | - Cüneyt Nadir Solak
- Faculty of Arts and Sciences, Department of Biology, Dumlupınar University, Kütahya, Turkey
| | - Elif Yılmaz
- Faculty of Arts and Sciences, Department of Biology, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
11
|
Vendrell-Puigmitja L, Llenas L, Proia L, Ponsa S, Espinosa C, Morin S, Abril M. Effects of an hypersaline effluent from an abandoned potash mine on freshwater biofilm and diatom communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105707. [PMID: 33302174 DOI: 10.1016/j.aquatox.2020.105707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Potash abandoned mines cause severe environmental damage to their bordering environment, with significant impacts on freshwater ecosystems mostly through uncontrolled discharge of hypersaline effluents. This study aimed to evaluate the ecological impact caused by a hypersaline effluent from an abandoned potash mine (Menteroda, Germany) on freshwater biofilms and, specifically, on diatom communities. Biofilm from a pristine stream was exposed under controlled conditions in microcosms to a mining effluent (ME), and its structural (algal biomass, community composition, diatom metrics) and functional (photosynthetic activity, nutrient uptake) responses were evaluated over time and compared with unexposed biofilms used as control. Biofilm exposed to ME showed drastic functional responses after one day of exposure, with a significant decrease in photosynthetic efficiency and nutrient uptake, that were recovered over time. Biofilm exposed to ME showed a progressive increase in diatom metrics (abundance, density and growth rate) over time, compared to the control. However, a significant decrease in diatom species diversity, richness and cell size was also observed in biofilm exposed to ME. This study revealed that the ME affected the biofilm causing short-term functional responses, which were recovered simultaneously with a drastic diatom community structure shift.
Collapse
Affiliation(s)
- Lidia Vendrell-Puigmitja
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, C. de la Laura 13, 08500, Vic, Spain.
| | - Laia Llenas
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, C. de la Laura 13, 08500, Vic, Spain
| | - Lorenzo Proia
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, C. de la Laura 13, 08500, Vic, Spain
| | - Sergio Ponsa
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, C. de la Laura 13, 08500, Vic, Spain
| | - Carmen Espinosa
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, C. de la Laura 13, 08500, Vic, Spain; CERM, Center for the Study of Mediterranean Rivers, University of Vic-Central University of Catalonia (UVic-UCC), Manlleu, Spain
| | - Soizic Morin
- UR EABX, INRAE, Centre Nouvelle-Aquitaine Bordeaux, Cestas, France
| | - Meritxell Abril
- BETA Tech Center, TECNIO Network, University of Vic-Central University of Catalonia, C. de la Laura 13, 08500, Vic, Spain
| |
Collapse
|
12
|
Dalu T, Cuthbert RN, Chavalala TL, Froneman PW, Wasserman RJ. Assessing sediment particle-size effects on benthic algal colonisation and total carbohydrate production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136348. [PMID: 31923691 DOI: 10.1016/j.scitotenv.2019.136348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Increased sedimentation and siltation associated with anthropogenic environmental change may alter microbial biofilms and the carbohydrates they produce, with potential bottom-up effects in these ecosystems. The present study aimed to examine to what extent carbohydrate (associated with biofilm exopolymer) concentration and benthic algal biomass vary among different sediment types (size-structure categories) using a microcosm experiment conducted over a period of 28 days. Substrate treatment and time had a significant effect on the total chlorophyll-a concentrations, whilst a significant interaction was present in the case of total sediment carbohydrates. Total sediment carbohydrates did not relate significantly to chlorophyll-a concentrations overall, nor for any substrate treatments owing to a non-significant 'chlorophyll-a × substrate' interaction term. The diatom community characteristics across sediment sizes were unique for each treatment in our study, with unique dominant diatom taxa compositions within each sediment size class. The finest sediment particle-size (<63 μm) may be the least stable, most likely due to lower binding. We anticipate that the current study findings will lead to a better understanding of how different sediment types due to sedimentation and siltation will impact on primary productivity and the composition of diatom communities in aquatic systems.
Collapse
Affiliation(s)
- Tatenda Dalu
- Aquatic Systems Research Group, Department of Ecology and Resource Management, University of Venda, Thohoyandou, 0950, South Africa; Stellenbosch Institute for Advanced Study, Stellenbosch 7600, South Africa.
| | - Ross N Cuthbert
- School of Biological Sciences, 19 Chlorine Gardens, Queen's University Belfast, Belfast BT9 5DL, Northern Ireland, United Kingdom
| | - Tiyisani L Chavalala
- Freshwater Biodiversity Unit, South Africa National Biodiversity Institute, Kirstenbosch Research Centre, Claremont 7735, South Africa; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - P William Froneman
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
13
|
Berger E, Frör O, Schäfer RB. Salinity impacts on river ecosystem processes: a critical mini-review. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0010. [PMID: 30509912 DOI: 10.1098/rstb.2018.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
In many dry parts of the world, salinization of water resources threatens freshwater biodiversity and the livelihood of people. However, ecological impact studies remain scarce. Here, we review field-observations of salinity impacts on ecosystem processes such as leaf decomposition, metabolism, biomass production and nutrient cycling, with a special emphasis on dryland ecosystems. In addition, we discuss the potential linkages of these processes to ecosystem service delivery-the benefits that humans derive from ecosystems-as additional nature conservation arguments and the challenges associated with this endeavour.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Elisabeth Berger
- Department of Quantitative Landscape Ecology, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany
| | - Oliver Frör
- Department of Environmental Economics, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany
| | - Ralf B Schäfer
- Department of Quantitative Landscape Ecology, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany
| |
Collapse
|