1
|
Du S, Lin H, Luo Q, Man CL, Lai SH, Ho KF, Leung KMY, Lee PKH. House dust microbiome differentiation and phage-mediated antibiotic resistance and virulence dissemination in the presence of endocrine-disrupting chemicals and pharmaceuticals. MICROBIOME 2025; 13:96. [PMID: 40205515 PMCID: PMC11980161 DOI: 10.1186/s40168-025-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND House dust serves as a reservoir of a diverse array of microbial life and anthropogenic chemicals, both of which can potentially influence the health of occupants, particularly those who spend significant amounts of time at home. However, the effects of anthropogenic chemicals on dust microbiomes remain poorly understood. This study investigated the presence of anthropogenic chemicals in the dust of homes occupied by elderly occupants and explored those chemicals' relationships with dust microbiomes. RESULTS We detected 69 out of 76 analyzed anthropogenic chemicals, including endocrine-disrupting chemicals, non-antibiotic pharmaceuticals, and antibiotics, in at least one house dust sample from 32 residential homes, with concentrations ranging from 2720 to 89,300 ng/g. Some of these detected compounds were pharmaceuticals regularly consumed by the occupants. The dust microbiomes were associated with varying levels of anthropogenic chemicals, forming two distinct clusters, each with unique diversity, taxonomy, metabolic functions, and resistome profiles. Higher concentrations and a greater variety of these chemicals were associated with an increased co-occurrence of antibiotic resistance and virulence genes, as well as an enhanced potential for their transfer through mobile genetic elements. Under these conditions, phages, especially phage-plasmids, facilitated the dissemination of antibiotic resistance and virulence among bacterial populations. CONCLUSIONS The findings indicate that everyday anthropogenic chemicals are important factors associated with the microbes in indoor environments. This underscores the importance of improving household chemical stewardship to reduce the health risks associated with exposure to these chemicals and their effects on indoor microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qiong Luo
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chung Ling Man
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Sze Han Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
2
|
Sun J, Wu Y, Fan X, Peng J, Wang X, Xiong Y, Huang X. Magnetic-plasmonic blackbody enhanced lateral flow immunoassay of staphylococcal enterotoxin B. Food Chem 2025; 465:142130. [PMID: 39581095 DOI: 10.1016/j.foodchem.2024.142130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Staphylococcal enterotoxin B (SEB) in food is a serious health risk, making rapid and accurate detection methods essential. Herein, we synthesized a magnetic plasmonic blackbody, Fe3O4@Au/PDA, by coating a gold/polydopamine (Au/PDA) layer onto an Fe3O4 core. This Fe3O4@Au/PDA exhibits broadband absorption, excellent stability, and rapid magnetic response, making it ideal for use as a magnetic separation tool and colorimetric signal amplifier. We integrated Fe3O4@Au/PDA into a lateral flow immunoassay (LFIA) for ultrasensitive SEB detection, combining magnetic enrichment with enhanced colorimetric signal output. The Fe3O4@Au/PDA-based LFIA achieved a detection limit of 0.19 ng/mL, approximately 41 times lower than traditional gold nanoparticle-based LFIA. Its real-world applicability was tested in various food samples (milk, milk powder, apple juice, and lettuce) with recoveries between 82.4 % and 111.2 % and a coefficient of variation below 12.6 %. Collectively, the designed Fe3O4@Au/PDA shows great promise as a novel multifunctional signal amplification label, advancing the design and development of ultrasensitive LFIA for various fields, such as food safety detection.
Collapse
Affiliation(s)
- Jiayi Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xinya Fan
- School of Humanities and Education, Suzhou Vocational University, Suzhou 215104, PR China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolong Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
3
|
Seok J, Lee BY, Yoon HY. Association between humidity and respiratory health: the 2016-2018 Korea National Health and Nutrition Examination Survey. Respir Res 2024; 25:424. [PMID: 39623385 PMCID: PMC11613709 DOI: 10.1186/s12931-024-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Ambient humidity has a significant impact on respiratory health and influences disease and symptoms. However, large-scale studies are required to clarify its specific effects on lung function and respiratory symptoms. We examined the relationship between relative humidity (RH), lung function, and respiratory symptoms using data from the Korea National Health and Nutrition Examination Survey (KNHANES). METHODS In this cross-sectional study, we analyzed data from KNHANES participants aged ≥ 40 years, collected between 2016 and 2018. Pulmonary function tests (PFTs) and health questionnaires were used to assess lung function and respiratory symptoms. Individual environmental data, including RH, were obtained from the Community Multiscale Air Quality model and linked to the participants' addresses. Short-term (0-14 days), mid-term (30-180 days), and long-term (1-5 years) RH exposures were examined. Linear regression models were used to evaluate the associations between RH and PFTs. Univariate and multivariable logistic regression models were applied to assess the risk of lung function abnormalities and respiratory symptoms. RESULTS In total, 10,396 participants were included (mean age: 58.3 years, male: 43.6%). In multiple regression analysis, higher RH was negatively associated with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio across various time lags, while FVC was positively correlated with long-term RH exposure. In multiple logistic analysis adjusted for clinical and environmental covariates, long-term higher RH exposure was associated with a lower risk of restrictive lung disease (odds ratio [OR] at 4-year moving average [MA]: 0.978, 95% confidence interval [CI]: 0.959-0.997), while mid-term RH exposure decreased the risk of chronic cough (OR at 90-day MA: 0.968, 95% CI: 0.948-0.987) and sputum production (OR at 90-day MA: 0.985, 95% CI: 0.969-1.001). CONCLUSIONS Higher RH was negatively associated with lung function and increased the risk of obstructive lung disease, whereas mid-term RH exposure reduced the risk of chronic cough and sputum production.
Collapse
Affiliation(s)
- Jinwoo Seok
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Seoul, 04401, Republic of Korea
| | - Bo Young Lee
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Seoul, 04401, Republic of Korea
| | - Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Seoul, 04401, Republic of Korea.
| |
Collapse
|
4
|
Shen XA, Zhou H, Chen X, Wu J, Su Y, Huang X, Xiong Y. Janus plasmonic-aggregation induced emission nanobeads as high-performance colorimetric-fluorescent probe of immunochromatographic assay for the ultrasensitive detection of staphylococcal enterotoxin B in milk. Biosens Bioelectron 2024; 261:116458. [PMID: 38852321 DOI: 10.1016/j.bios.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Herein, a colorimetric-fluorescent hybrid bifunctional nanobead with Janus structure (J-cf-HBN) was synthesized via one-pot microemulsification. Oleylamine-coated AuNPs and aggregation-induced emission luminogens (AIEgens) were suggested as building blocks to obtain high-performance colorimetric-fluorescent signals. The as-prepared J-cf-HBNs were used as a signal amplification probe to construct an immunochromatographic assay (J-cf-HBNs-ICA) platform for the ultrasensitive detection of staphylococcal enterotoxin B (SEB) in milk samples. Owing to the rational spatial distribution of AuNPs and AIEgens, the J-cf-HBNs present a highly retained photoluminescence and enhanced colorimetric signals. Combined with a pair of highly affinitive anti-SEB antibodies, the J-cf-HBN-ICA platform enabled the fast naked-eye visualization and fluorescent quantitative detection of SEB in various milk matrices. Given the advantages of the dual-mode high-performance J-cf-HBNs, the proposed strip achieved a high sensitivity for SEB qualitative determination with a visual limit of detection (LOD) of 1.56 ng mL-1 and exhibited ultrasensitivity for SEB quantitative detection with a LOD of 0.09 ng mL-1, which is 139-fold lower than that of ELISA using same antibodies. In conclusion, this work provides new insights into the construction of multimode immunochromatographic methods for food safety detection in the field.
Collapse
Affiliation(s)
- Xuan-Ang Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Haoxiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jingyu Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
5
|
Yuwen L, Ni J, Liang J, Liu X, Chen Z, Li X, Lv H, Zhang J, Song C. Portable SERS biosensor based on aptamer-assisted catalytic hairpin assembly signal amplification for ultrasensitive detection of Staphylococcus aureus. Talanta 2024; 278:126565. [PMID: 39018762 DOI: 10.1016/j.talanta.2024.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyu Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
6
|
Aggregation-Induced Red Emission Nanoparticle-Based Lateral Flow Immunoassay for Highly Sensitive Detection of Staphylococcal Enterotoxin A. Toxins (Basel) 2023; 15:toxins15020113. [PMID: 36828428 PMCID: PMC9964500 DOI: 10.3390/toxins15020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Staphylococcal enterotoxin A (SEA) has presented enormous difficulties in dairy food safety and the sensitive detection of SEA provides opportunities for effective food safety controls and staphylococcal food poisoning tracebacks. Herein, a novel aggregation-induced emission (AIE)-based sandwich lateral flow immunoassay (LFIA) was introduced to detect SEA by using red-emissive AIE nanoparticles (AIENPs) as the fluorescent nanoprobe. The nanoprobe was constructed by directly immobilising antibodies on boronate-tagged AIENPs (PBA-AIENPs) via a boronate affinity reaction, which exhibited a high SEA-specific affinity and remarkable fluorescent performance. Under optimal conditions, the ultrasensitive detection of SEA in pasteurised milk was achieved within 20 min with a limit of detection of 0.04 ng mL-1. The average recoveries of the PBA-AIENP-LFIA ranged from 91.3% to 117.6% and the coefficient of variation was below 15%. It was also demonstrated that the PBA-AIENP-LFIA had an excellent selectivity against other SE serotypes. Taking advantage of the excellent sensitivity of this approach, real chicken and salad samples were further analysed, with a high versatility and accuracy. The proposed PBA-AIENP-LFIA platform shows promise as a potent tool for the identification of additional compounds in food samples as well as an ideal test method for on-site detections.
Collapse
|
7
|
Dalton KR, Ruble K, Redding LE, Morris DO, Mueller NT, Thorpe RJ, Agnew J, Carroll KC, Planet PJ, Rubenstein RC, Chen AR, Grice EA, Davis MF. Microbial Sharing between Pediatric Patients and Therapy Dogs during Hospital Animal-Assisted Intervention Programs. Microorganisms 2021; 9:1054. [PMID: 34068292 PMCID: PMC8153335 DOI: 10.3390/microorganisms9051054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial sharing between humans and animals has been demonstrated in a variety of settings. However, the extent of microbial sharing that occurs within the healthcare setting during animal-assisted intervention programs is unknown. Understanding microbial transmission between patients and therapy dogs can provide important insights into potential health benefits for patients, in addition to addressing concerns regarding potential pathogen transmission that limits program utilization. This study evaluated for potential microbial sharing between pediatric patients and therapy dogs and tested whether patient-dog contact level and a dog decolonization protocol modified this sharing. Patients, therapy dogs, and the hospital environment were sampled before and after every group therapy session and samples underwent 16S rRNA sequencing to characterize microbial communities. Both patients and dogs experienced changes in the relative abundance and overall diversity of their nasal microbiome, suggesting that the exchange of microorganisms had occurred. Increased contact was associated with greater sharing between patients and therapy dogs, as well as between patients. A topical chlorhexidine-based dog decolonization was associated with decreased microbial sharing between therapy dogs and patients but did not significantly affect sharing between patients. These data suggest that the therapy dog is both a potential source of and a vehicle for the transfer of microorganisms to patients but not necessarily the only source. The relative contribution of other potential sources (e.g., other patients, the hospital environment) should be further explored to determine their relative importance.
Collapse
Affiliation(s)
- Kathryn R. Dalton
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.A.); (M.F.D.)
| | - Kathy Ruble
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.R.); (A.R.C.)
| | - Laurel E. Redding
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348, USA;
| | - Daniel O. Morris
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA;
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Roland J. Thorpe
- Department of Health, Behavior and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Jacqueline Agnew
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.A.); (M.F.D.)
| | - Karen C. Carroll
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Paul J. Planet
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Ronald C. Rubenstein
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| | - Allen R. Chen
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.R.); (A.R.C.)
| | - Elizabeth A. Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Meghan F. Davis
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.A.); (M.F.D.)
- Johns Hopkins Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
DeVore SB, Gonzalez T, Sherenian MG, Herr AB, Khurana Hershey GK. On the surface: Skin microbial exposure contributes to allergic disease. Ann Allergy Asthma Immunol 2020; 125:628-638. [PMID: 32853786 PMCID: PMC11656525 DOI: 10.1016/j.anai.2020.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To discuss the skin microbiome modulates immunity by interactions between skin immunology with keratinocytes to combat pathogens. Allergic disorders are classified by immunoglobulin E sensitivity and aberrant TH2 cell responses, and an increasing number of studies have described the associations with skin microbiome fluctuations. In this review, we discuss commensal-epidermal homeostasis and its influence on allergic disease. DATA SOURCES All included references were obtained from the PubMed database. STUDY SELECTIONS Studies addressing relevant aspects of commensal-epidermal homeostasis, skin microbiome dysbiosis, microbiome-targeted therapeutics, and prevention in allergy were included. RESULTS Homeostasis between the commensal microbiome and the epidermis is important in protecting against allergic disease. Commensals promote antiallergic TH1 and TH17 immunophenotypes within the skin and induce keratinocytes to secrete antimicrobial peptides and alarmins that enhance barrier function and antagonize proallergic organisms. Perturbations in this homeostasis, however, is associated with allergic disease development. Atopic dermatitis is associated with decreases in skin commensals and increases in the pathogen, Staphylococcus aureus. Fluctuations in the skin microbiome contributes to decreased barrier dysfunction, allergic sensitization, and TH2 cytokine secretion. Little is known about how the skin microbiome affects food allergy, allergic rhinitis, and asthma, and it is poorly understood how cutaneous inflammation influences systemic allergic responses. Therapies are targeted toward maintenance of the skin barrier, replacement of healthy commensals, and anti-TH2 biologic therapy. CONCLUSION Although the effects of commensal-epidermal homeostasis on allergy within the skin are becoming increasingly clear, future studies are necessary to assess its effects on extracutaneous allergic disorders and explore potential therapeutics targeting the skin microbiome.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tammy Gonzalez
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael G Sherenian
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
9
|
White JK, Nielsen JL, Larsen CM, Madsen AM. Impact of dust on airborne Staphylococcus aureus’ viability, culturability, inflammogenicity, and biofilm forming capacity. Int J Hyg Environ Health 2020; 230:113608. [DOI: 10.1016/j.ijheh.2020.113608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|
10
|
Bachert C, Humbert M, Hanania NA, Zhang N, Holgate S, Buhl R, Bröker BM. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J 2020; 55:13993003.01592-2019. [PMID: 31980492 DOI: 10.1183/13993003.01592-2019] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
Abstract
While immunoglobulin (Ig) E is a prominent biomarker for early-onset, its levels are often elevated in non-allergic late-onset asthma. However, the pattern of IgE expression in the latter is mostly polyclonal, with specific IgEs low or below detection level albeit with an increased total IgE. In late-onset severe asthma patients, specific IgE to Staphylococcal enterotoxins (se-IgE) can frequently be detected in serum, and has been associated with asthma, with severe asthma defined by hospitalisations, oral steroid use and decrease in lung function. Recently, se-IgE was demonstrated to even predict the development into severe asthma with exacerbations over the next decade. Staphylococcus aureus manipulates the airway mucosal immunology at various levels via its proteins, including superantigens, serine-protease-like proteins (Spls), or protein A (SpA) and possibly others. Release of IL-33 from respiratory epithelium and activation of innate lymphoid cells (ILCs) via its receptor ST2, type 2 cytokine release from those ILCs and T helper (Th) 2 cells, mast cell degranulation, massive local B-cell activation and IgE formation, and finally eosinophil attraction with consequent release of extracellular traps, adding to the epithelial damage and contributing to disease persistence via formation of Charcot-Leyden crystals are the most prominent hallmarks of the manipulation of the mucosal immunity by S. aureus In summary, S. aureus claims a prominent role in the orchestration of severe airway inflammation and in current and future disease severity. In this review, we discuss current knowledge in this field and outline the needs for future research to fully understand the impact of S. aureus and its proteins on asthma.
Collapse
Affiliation(s)
- Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium .,Division of ENT diseases, CLINTEC, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Marc Humbert
- Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Stephen Holgate
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, The Sir Henry Wellcome Research Laboratories, Southampton General Hospital, Southampton, UK
| | - Roland Buhl
- Pulmonary Dept, Mainz University Hospital, Mainz, Germany
| | - Barbara M Bröker
- Dept of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Allergy-A New Role for T Cell Superantigens of Staphylococcus aureus? Toxins (Basel) 2020; 12:toxins12030176. [PMID: 32178378 PMCID: PMC7150838 DOI: 10.3390/toxins12030176] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus superantigens (SAgs) are among the most potent T cell mitogens known. They stimulate large fractions of T cells by cross-linking their T cell receptor with major histocompatibility complex class-II molecules on antigen presenting cells, resulting in T cell proliferation and massive cytokine release. To date, 26 different SAgs have been described in the species S. aureus; they comprise the toxic shock syndrome toxin (TSST-1), as well as 25 staphylococcal enterotoxins (SEs) or enterotoxin-like proteins (SEls). SAgs can cause staphylococcal food poisoning and toxic shock syndrome and contribute to the clinical symptoms of staphylococcal infection. In addition, there is growing evidence that SAgs are involved in allergic diseases. This review provides an overview on recent epidemiological data on the involvement of S. aureus SAgs and anti-SAg-IgE in allergy, demonstrating that being sensitized to SEs—in contrast to inhalant allergens—is associated with a severe disease course in patients with chronic airway inflammation. The mechanisms by which SAgs trigger or amplify allergic immune responses, however, are not yet fully understood. Here, we discuss known and hypothetical pathways by which SAgs can drive an atopic disease.
Collapse
|
12
|
Chronocoulometric aptamer based assay for staphylococcal enterotoxin B by target-triggered assembly of nanostructured dendritic nucleic acids on a gold electrode. Mikrochim Acta 2019; 186:109. [PMID: 30637509 DOI: 10.1007/s00604-019-3236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
A rapid and ultrasensitive method is described for the detection of staphylococcal enterotoxin B (SEB). It is based on the formation of a dendritic DNA superstructure by integrating (a) target-induced triggering of DNA release with (b) signal amplification by a hybridization chain reaction. Partially complementary pairing of aptamer and trigger DNA forms a duplex structure. The capture DNA is then placed on the surface of a gold electrode through gold-thiol chemistry. In the presence of SEB, the aptamer-target conjugate is compelled to form. This causes the release of trigger DNA owing to a strong competition with SEB. The trigger DNA is subsequently hybridized with the partial complementary sequences of the capture DNA to trigger HCR with three auxiliary DNA sequances (referred to as H1, H2, H3). Finally, the dendritic DNA superstructure is bound to hexaammineruthenium(III) cation by electrostatic adsorption and assembled onto the modified gold electrode. This produces an amplified electrochemical signal that is measured by chronocoulometry. Under optimal conditions, the charge difference increases linearly with the logarithm of the SEB concentrations in the range from 5 pg·mL-1 to 100 ng·mL-1 with a detection limit as low as 3 pg·mL-1 (at S/N = 3). Graphical abstract An electrochemical switching strategy is presented for the sensitive detection of Staphylococcus enterotoxin B based on target-triggered assembly of dendritic nucleic acid nanostructures.
Collapse
|
13
|
Hanson BM, Kates AE, O'Malley SM, Mills E, Herwaldt LA, Torner JC, Dawson JD, Farina SA, Klostermann C, Wu JY, Quick MK, Forshey BM, Smith TC. Staphylococcus aureus in the nose and throat of Iowan families. Epidemiol Infect 2018; 146:1777-1784. [PMID: 29932041 PMCID: PMC6135667 DOI: 10.1017/s0950268818001644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/16/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
The study objective was to determine the prevalence of Staphylococcus aureus colonisation in the nares and oropharynx of healthy persons and identify any risk factors associated with such S. aureus colonisation. In total 263 participants (177 adults and 86 minors) comprising 95 families were enrolled in a year-long prospective cohort study from one urban and one rural county in eastern Iowa, USA, through local newspaper advertisements and email lists and through the Keokuk Rural Health Study. Potential risk factors including demographic factors, medical history, farming and healthcare exposure were assessed. Among the participants, 25.4% of adults and 36.1% minors carried S. aureus in their nares and 37.9% of adults carried it in their oropharynx. The overall prevalence was 44.1% among adults and 36.1% for minors. Having at least one positive environmental site for S. aureus in the family home was associated with colonisation (prevalence ratio: 1.34, 95% CI: 1.07-1.66). The sensitivity of the oropharyngeal cultures was greater than that of the nares cultures (86.1% compared with 58.2%, respectively). In conclusion, the nares and oropharynx are both important colonisation sites for healthy community members and the presence of S. aureus in the home environment is associated with an increased probability of colonisation.
Collapse
Affiliation(s)
| | | | | | - E. Mills
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | - J. Y. Wu
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
14
|
Chen X, Shi X, Liu Y, Lu L, Lu Y, Xiong X, Liu Y, Xiong X. Impedimetric determination of Staphylococcal enterotoxin B using electrochemical switching with DNA triangular pyramid frustum nanostructure. Mikrochim Acta 2018; 185:460. [DOI: 10.1007/s00604-018-2983-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/28/2018] [Indexed: 02/04/2023]
|
15
|
Gore C, Gore RB, Fontanella S, Haider S, Custovic A. Temperature-controlled laminar airflow (TLA) device in the treatment of children with severe atopic eczema: Open-label, proof-of-concept study. Clin Exp Allergy 2018; 48:594-603. [PMID: 29383776 DOI: 10.1111/cea.13105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Children with severe, persistent atopic eczema (AE) have limited treatment options, often requiring systemic immunosuppression. OBJECTIVE To evaluate the effect of the temperature-controlled laminar airflow (TLA) treatment in children/adolescents with severe AE. METHODS We recruited 15 children aged 2-16 years with long-standing, severe AE and sensitization to ≥1 perennial inhalant allergen. Run-in period of 6-10 weeks (3 visits) was followed by 12-month treatment with overnight TLA (Airsonett® , Sweden). The primary outcome was eczema severity (SCORAD-Index and Investigator Global Assessment-IGA). Secondary outcomes included child/family dermatology quality of life and family impact questionnaires (CDQLI, FDQLI, DFI), patient-oriented eczema measure (POEM), medication requirements and healthcare contacts. The study is registered as ISRCTN65865773. RESULTS There was a significant reduction in AE severity ascertained by SCORAD and IGA during the 12-month intervention period (P < .001). SCORAD was reduced from a median of 34.9 [interquartile range 28.75-45.15] at Baseline to 17.2 [12.95-32.3] at the final visit, and IGA improved significantly from 4 [3-4] to 2 [1-3]. We observed a significant improvement in FDQLI (16.0 [12.25-19.0] to 12 [8-18], P = .023) and DFI (P = .011), but not CDQLI or POEM. Compared to 6-month period prior to enrolment, there was a significant reduction at six months after the start of the intervention in potent topical corticosteroids (P = .033). The exploratory cluster analysis revealed two strongly divergent patterns of response, with 9 patients classified as responders, and 6 as non-responders. CONCLUSION AND CLINICAL RELEVANCE Addition of TLA device to standard pharmacological treatment may be an effective add-on to the management of difficult-to-control AE.
Collapse
Affiliation(s)
- C Gore
- Section of Paediatrics, Department of Medicine, Imperial College, London, UK.,Department of Paediatric Allergy, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - R B Gore
- Department of Respiratory Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - S Fontanella
- Section of Paediatrics, Department of Medicine, Imperial College, London, UK
| | - S Haider
- Section of Paediatrics, Department of Medicine, Imperial College, London, UK
| | - A Custovic
- Section of Paediatrics, Department of Medicine, Imperial College, London, UK.,Department of Paediatric Allergy, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
16
|
Li HN, Yuan F, Luo YJ, Wang JF, Zhang CB, Zhou WE, Ren ZQ, Wu WJ, Zhang F. Biosynthesis of staphylococcal enterotoxin A by genetic engineering technology and determination of staphylococcal enterotoxin A in water by HPLC-ESI-TOF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19375-19385. [PMID: 28674954 DOI: 10.1007/s11356-017-9564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcal enterotoxin A (SEA) was the major virulence factor of Staphylococcus aureus and a biomarker of S. aureus. To establish a fast, low cost, high accuracy, reliable, and simple method for detecting S. aureus, SEA was analyzed by HPLC-ESI-TOF. SEA was not yet commercially available in universal, so SEA was prepared before it was analyzed by HPLC-ESI-TOF. The result showed that high purified SEA was successfully prepared and SEA has normal distribution in mass spectra. A large amount of recombinant SEA (rSEA) was obtained by engineering technology and was purified by Ni affinity chromatography column, and the expression and purity of rSEA and SEA were analyzed by SDS-PAGE. The factors effected on ionization of SEA were studied, and the qualitative analysis of SEA by HPLC-ESI-TOF. The result showed that large amount of SEs expressed within a short time at 28 °C or thereabouts, and there was no impurity bands in electrophorogram after rSEA was purified by Ni affinity chromatography column. In addition, the SEA which had homologous AA sequence with wild SEA was made by rSEA. The retention of SEA in column and ionization of SEA in ESI-TOF were studied for qualitative analysis of S. aureus. The result showed that the content of formic acid in mobile phase was an important factor for ionization of SEs in ESI-TOF. And the result provided theoretical foundation for qualitative detection of S. aureus. [SEs + nH+ + mNH4+] n+m+ was shown on ESI-TOF spectra when SEA was detected by ESI-TOF in positive ion mode, and the numerical value of n+m was less than or equal to the number of basic amino acids in SEs. This method was applied to determine SEA in water samples preliminarily, and the detection limit of SEA in spiked water sample was 3 mg/kg. The limit of detection of 3 mg/kg was low sensitivity for low molecular weight matters, but it was high sensitivity for SEA which had a high molecular weight of 27 kDa. Of SEA, 3 mg/kg was equivalent to 10-4 mmol/kg of SEA. This study can provide evidence for establishing method to determine SEA in real samples.
Collapse
Affiliation(s)
- Hong-Na Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Fei Yuan
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yun-Jing Luo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian-Feng Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chuan-Bin Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Wei-E Zhou
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Zhi-Qin Ren
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Wen-Jie Wu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
17
|
Davis MF, Ludwig S, Brigham EP, McCormack MC, Matsui EC. Effect of home exposure to Staphylococcus aureus on asthma in adolescents. J Allergy Clin Immunol 2017; 141:402-405.e10. [PMID: 28739287 DOI: 10.1016/j.jaci.2017.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Meghan F Davis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Johns Hopkins School of Medicine, Baltimore, Md.
| | - Shanna Ludwig
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | | | - Meredith C McCormack
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Johns Hopkins School of Medicine, Baltimore, Md
| | - Elizabeth C Matsui
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; Johns Hopkins School of Medicine, Baltimore, Md
| |
Collapse
|