1
|
Huang L, Ding R, Yan K, Duan J, Sun Z. The Role of Endoplasmic Reticulum Stress in Fine Particulate Matter-Induced Phenotype Switching of Vascular Smooth Muscle Cells. Chem Res Toxicol 2025. [PMID: 40369400 DOI: 10.1021/acs.chemrestox.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
As a major component of air pollution, fine particulate matter (PM2.5) was the second global leading cause of death in 2021. Evidence from humans suggested that PM2.5 was associated with an enhanced coronary calcium score (CAC), and animal studies indicated that PM2.5 induced vascular calcification, while mechanisms remained largely unknown. In this study, PM2.5 enhanced the proliferative potential and migration capacity of human aortic vascular smooth muscle cells (VSMCs), as well as disturbing intracellular Ca2+ homeostasis. Subsequent transcriptomic analysis implicated that PM2.5 could influence genes involved in the IRE1α-mediated unfolded protein responses and reduce the expression of DNAJB9, a co-chaperone that formed a complex with BiP/IRE1α to inhibit the activation of endoplasmic reticulum (ER) stress. Further mechanistic investigations indicated that PM2.5 activated the IRE1α/XBP1 signaling pathway and enhanced the expression of osteogenic phenotype-related hallmarks. In contrast, pretreatment with an ER stress antagonist (4-PBA) could suppress PM2.5-associated calcium dysregulation and osteogenic transformation via alleviation of ER stress. Taken together, this study revealed the role of ER stress in the phenotype switching of VSMCs induced by PM2.5, highlighted the regulation of DNAJB9, provided insights into the mechanisms of air pollution-related vascular calcification, and pointed out molecules for future investigations.
Collapse
Affiliation(s)
- Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Zheng Y, Lan T, Zhang Z, He X, Yang M, Li X, You J, Gu H, Nashun B, Guo J. Gestational Exposure to Phenanthrene Induces Superfluous Fibrosis and Calcification and Metabolic Imbalance of the Placenta in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40359265 DOI: 10.1021/acs.jafc.4c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The placenta is a vital organ that facilitates maternal-fetal circulation, ensuring proper fetal development. Phenanthrene (Phe), a typical low-molecular-weight polycyclic aromatic hydrocarbon, is widely present in the environment and food. In this study, pregnant mice were exposed to Phe (0, 0.6, 6, and 60 μg/kg of body weight) via gavage every 3 days from pregnancy day 0.5 (PGD 0.5) for a total of six exposures during pregnancy. Placentas were collected on PGD of 18.5 for analysis. The results showed that Phe exposure altered placental structure and function, inducing trophoblast thickening at low doses (0.6 μg/kg) but thinning at higher doses (6 and 60 μg/kg), reducing blood cell density in the placental labyrinth, disrupting metabolite composition, causing oxidative damage, and leading to excessive fibrosis and calcification. Molecular analysis revealed that PCNA was significantly upregulated in the 0.6 μg/kg group and downregulated in 6 and 60 μg/kg groups, indicating an initial compensatory proliferative response at low doses and impaired placental proliferation at higher doses, while Bad was abnormally accumulated in trophoblasts and dose-dependently upregulated, along with decline in antioxidant capacity. Meanwhile, increases in protein levels of TGF-β1, Smad2, p-Smad2, Smad1/5/9, p-Smad1/5/9, BMP2, TIMP1, Runx2, Collagen I, and SMA, and a decrease in MMP1 level was observed. These findings suggested that Phe exposure during pregnancy induced activation of the TGF-β/Smad2 pathway and BMP2/Smad1/5/9/Runx2 pathway, which might further lead to excessive fibrosis and calcification. The abnormally increased fibrosis and calcification, together with the oxidative damage, further elevated cellular apoptosis, destroyed the structure of the placenta, and reduced blood cell counts, impairing placental exchange efficiency and leading to systemic metabolic imbalances, which might further impair the health of their offspring.
Collapse
Affiliation(s)
- Yajie Zheng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Tian Lan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Zixuan Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Xige He
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Minhui Yang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Xianghui Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Jun You
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Haotian Gu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| | - Jiaojiao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences and Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, No. 49, Xilin South Road, Yuquan District, Hohhot 010000, China
| |
Collapse
|
3
|
Wang Y, Wen Y, Chen Q, Huang Y, Zhou D, Yang W, Yang L, Xiong J, Gao K, Sun L, Zhai R. Downregulation of tRNA methyltransferase FTSJ1 by PM2.5 promotes glycolysis and malignancy of NSCLC via facilitating PGK1 expression and translation. Cell Death Dis 2024; 15:911. [PMID: 39695074 DOI: 10.1038/s41419-024-07287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Fine particulate matter (PM2.5) exposure has been associated with increased incidence and mortality of lung cancer. However, the molecular mechanisms underlying PM2.5 carcinogenicity remain incompletely understood. Here, we identified that PM2.5 suppressed the expression of tRNA methyltransferase FTSJ1 and Am modification level of tRNA in vitro and in vivo. FTSJ1 downregulation enhanced glycolytic metabolism of non-small cell lung cancer (NSCLC) cells, as indicated by increased levels of lactate, pyruvate, and extracellular acidification rate (ECAR). Whereas treatment with glycolytic inhibitor 2-DG reversed this effect. In contrast, upregulation of FTSJ1 significantly suppressed glycolysis of NSCLC cells. Mechanistically, the silencing of FTSJ1 increased NSCLC cell proliferation and glycolysis through enhancing the expression and translation of PGK1. In human NSCLC tumor samples, FTSJ1 expression was negatively correlated with PGK1 expression level and the SUVmax value of PET/CT scan. In summary, our work reveals a previously unrecognized function of PM2.5-downregulated FTSJ1 on PGK1-mediated glycolysis in NSCLC, suggesting that targeted upregulation of FTSJ1 may represent a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yiling Wang
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Yuxin Wen
- Department of Thoracic Surgery, The People's Hospital of Shenzhen, 1017 North Dongmen Road, Shenzhen, 518020, China
| | - Qianqian Chen
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Yongyi Huang
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Duanyang Zhou
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Wenhan Yang
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Lin Yang
- Department of Thoracic Surgery, The People's Hospital of Shenzhen, 1017 North Dongmen Road, Shenzhen, 518020, China
| | - Juan Xiong
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Kaiping Gao
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
| | - Liyuan Sun
- School of Nursing, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
| | - Rihong Zhai
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Lin Y, Quan M, Wang X, Miao W, Xu H, He B, Liu B, Zhang Y, Chen Y, Zhou B, Xu M, Dong L, Jin X, Lou Z, Zhang JS, Chen C. Parkin deficiency exacerbates particulate matter-induced injury by enhancing airway epithelial necroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175922. [PMID: 39218088 DOI: 10.1016/j.scitotenv.2024.175922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Exposure to fine particulate matter (PM) disrupts the function of airway epithelial barriers causing cellular stress and damage. However, the precise mechanisms underlying PM-induced cellular injury and the associated molecular pathways remain incompletely understood. In this study, we used intratracheal instillation of PM in C57BL6 mice and PM treatment of the BEAS-2B cell line as in vivo and in vitro models, respectively, to simulate PM-induced cellular damage and inflammation. We collected lung tissues and bronchoalveolar lavage fluids to assess histopathological changes, necroptosis, and airway inflammation. Our findings reveal that PM exposure induces necroptosis in mouse airway epithelial cells. Importantly, concurrent administration of a receptor interacting protein kinases 3 (RIPK3) inhibitor or the deletion of the necroptosis effector mixed-lineage kinase domain-like protein (MLKL) effectively attenuated PM-induced airway inflammation. PM exposure dose-dependently induces the expression of Parkin, an E3 ligase we recently reported to play a pivotal role in necroptosis through regulating necrosome formation. Significantly, deletion of endogenous Parkin exacerbates inflammation by enhancing epithelial necroptosis. These results indicate that PM-induced Parkin expression plays a crucial role in suppressing epithelial necroptosis, thereby reducing airway inflammation. Overall, these findings offer valuable mechanistic insights into PM-induced airway injury and identify a potential target for clinical intervention.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meiyu Quan
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xibin Wang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wanqi Miao
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haibo Xu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Baiqi He
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bin Liu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanxia Zhang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yijing Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Binqian Zhou
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mengying Xu
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Dong
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
5
|
Xue Q, Zhang L, Wang R, Xu J, Wang C, Gao S, Fang X, Meng C, Lu R, Guo L. Hexavalent chromium reduces testosterone levels by impairing lipophagy and disrupting lipid metabolism homeostasis: Based on a metabolomic analysis. Toxicology 2024; 508:153908. [PMID: 39121936 DOI: 10.1016/j.tox.2024.153908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hexavalent chromium (Cr(VI)) causes testicular damage and reduces testosterone secretion. Testosterone synthesis relies on cholesterol as a raw material, and its availability can be affected by lipophagy. However, the role of lipophagy in Cr(VI)-induced testicular damage and reduced testosterone secretion remains unclear. In this study, we investigated the effect of Cr(VI) on lipid metabolism and lipophagy in the testes of ICR mice. Forty mice were randomly divided into four groups and exposed to different doses of Cr(VI) (0, 75, 100, 125 mg/kg) for thirty days. Cr(VI) increased the rate of sperm abnormalities, decreased testosterone level, and decreased the levels of testosterone synthesis-related proteins, namely steroidogenic acute regulatory (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) proteins. Through metabolomic analysis, Oil Red O staining, and biochemical indicator (triglyceride and total cholesterol) analysis, Cr(VI) was found to disrupt testicular lipid metabolism. Further investigation revealed that Cr(VI) inhibited the AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein 1 (SREBP1) pathway, elevated levels of the autophagy-related proteins microtubule-associated protein 1 light chain 3B (LC3B) and sequestosome 1 (SQSTM1)/P62 and lipophagy-related proteins Rab7 and Rab10, while increasing colocalization of LC3B and Perilipin2. These findings suggest that Cr(VI) exposure leads to abnormal lipid metabolism in the testes by suppressing the AMPK/SREBP1 pathway and disrupting lipophagy, ultimately reducing testosterone level and inducing testicular damage.
Collapse
Affiliation(s)
- Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Jiayunzhu Xu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Shidi Gao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Xin Fang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Liu Y, Zhang W, Wang H, Liu H, Yu Q, Luo X, Feng X, Yang P. Fine particulate matter potentiates Th17-cell pathogenicity in experimental autoimmune uveitis via ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116979. [PMID: 39232294 DOI: 10.1016/j.ecoenv.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The effect of fine particulate matter (PM2.5) on the development of uveitis remains unclear. Therefore, this study was designed to investigate the role of PM2.5 in experimental autoimmune uveitis (EAU) and its potential mechanism. Our results showed that PM2.5 could exacerbate the activity of EAU, as evidenced by severer clinical and pathological changes, correlated with elevated Th17 cells frequency and IL-17A expression. Proteomic analysis revealed ferroptosis was the most significant pathway. In vivo, the levels of Fe2+, ROS, lipid ROS, and malondialdehyde, as well as the expression of TFRC, HMOX1, FTH1, and FTL1 in CD4+ T cells were increased, while GSH/GSSG ratio and the expression of ACSL1 and GPX4 were decreased after PM2.5 exposure. In vitro, the expression of TFRC and HMOX1 were increased, while the expression FTH1, FTL1, ACSL1, and GPX4 were decreased after PM2.5 exposure. Ferrostatin-1 effectively alleviated PM2.5-induced intraocular inflammation and suppressed the frequency of Th17 cells. These results suggest that PM2.5 could aggravate intraocular inflammation and immune response in EAU mice through ferroptosis. Ferroptosis could be a potential marker for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Yaning Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanyun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmiao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyue Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Dong X, Han X, Yao S, Su Y, Luo Z, Deng L, Zhang F, Xu J, Zhang L, Li H, Wu W. Combined transcriptome and microbiome analysis reveals the thyrotoxic effects of PM 2.5 in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116879. [PMID: 39142117 DOI: 10.1016/j.ecoenv.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Pervasive environmental pollutants, specifically particulate matter (PM2.5), possess the potential to disrupt homeostasis of female thyroid hormone (TH). However, the precise mechanism underlying this effect remains unclear. In this study, we established a model of PM2.5-induced thyroid damage in female rats through intratracheal instillation and employed histopathological and molecular biological methods to observe the toxic effects of PM2.5 on the thyroid gland. Transcriptome gene analysis and 16S rRNA sequencing were utilized to investigate the impact of PM2.5 exposure on the female rat thyroid gland. Furthermore, based on the PM2.5-induced toxic model in female rats, we evaluated its effects on intestinal microbiota, TH levels, and indicators of thyroid function. The findings revealed that PM2.5 exposure induced histopathological damage to thyroid tissue by disrupting thyroid hormone levels (total T3 [TT3], (P < 0.05); total T4 [TT4], (P < 0.05); and thyrotropin hormone [TSH], (P < 0.05)) and functional indices (urine iodine [UI], P > 0.05), thus further inducing histopathological injuries. Transcriptome analysis identified differentially expressed genes (DEGs), primarily concentrated in interleukin 17 (IL-17), forkhead box O (FOXO), and other signaling pathways. Furthermore, exposure to PM2.5 altered the composition and abundance of intestinal microbes. Transcriptome and microbiome analyses demonstrated a correlation between the DEGs within these pathways and the flora present in the intestines. Moreover, 16 S rRNA gene sequencing analysis or DEGs combined with thyroid function analysis revealed that exposure to PM2.5 significantly induced thyroid hormone imbalance. We further identified key DEGs involved in thyroid function-relevant pathways, which were validated using molecular biology methods for clinical applications. In conclusion, the homeostasis of the "gut-thyroid" axis may serve as the underlying mechanism for PM2.5-induced thyrotoxicity in female rats.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Xiaofeng Han
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Yaguang Su
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Zheng Luo
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Fengquan Zhang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Jie Xu
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Li Zhang
- Center for Bioinformatics and Statistical Health Research, School of Public Health, Xinxiang Medical, Xinxiang, Henan Province 453003, China.
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
8
|
Li T, Sun M, Sun Q, Ren X, Xu Q, Sun Z, Duan J. PM 2.5-induced iron homeostasis imbalance triggers cardiac hypertrophy through ferroptosis in a selective autophagy crosstalk manner. Redox Biol 2024; 72:103158. [PMID: 38631121 PMCID: PMC11033202 DOI: 10.1016/j.redox.2024.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Exposure to PM2.5 is correlated with cardiac remodeling, of which cardiac hypertrophy is one of the main clinical manifestations. Ferroptosis plays an important role in cardiac hypertrophy. However, the potential mechanism of PM2.5-induced cardiac hypertrophy through ferroptosis remains unclear. This study aimed to explore the molecular mechanism of cardiac hypertrophy caused by PM2.5 and the intervention role of MitoQ involved in this process. The results showed that PM2.5 could induce cardiac hypertrophy and dysfunction in mice. Meanwhile, the characteristics of ferroptosis were observed, such as iron homeostasis imbalance, lipid peroxidation, mitochondrial damage and abnormal expression of key molecules. MitoQ treatment could effectively mitigate these alternations. After treating human cardiomyocyte AC16 with PM2.5, ferroptosis activator (Erastin) and inhibitor (Fer-1), it was found that PM2.5 could promote ferritinophagy and lead to lipid peroxidation, mitochondrial dysfunction as well as the accumulation of intracellular and mitochondrial labile iron. Subsequently, mitophagy was activated and provided an additional source of labile iron, enhancing the sensitivity of AC16 cells to ferroptosis. Furthermore, Fer-1 alleviated PM2.5-induced cytotoxicity and iron overload in the cytoplasm and mitochondria of AC16 cells. It was worth noting that during the process of PM2.5 caused ferroptosis, abnormal iron metabolism mediated the activation of ferritinophagy and mitophagy in a temporal order. In addition, NCOA4 knockdown reversed the iron homeostasis imbalance and lipid peroxidation caused by PM2.5, thereby alleviating ferroptosis. In summary, our study found that iron homeostasis imbalance-mediated the crosstalk of ferritinophagy and mitophagy played an important role in PM2.5-induced ferroptosis and cardiac hypertrophy.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
9
|
Dai S, Wang Z, Cai M, Guo T, Mao S, Yang Y. A multi-omics investigation of the lung injury induced by PM 2.5 at environmental levels via the lung-gut axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172027. [PMID: 38552982 DOI: 10.1016/j.scitotenv.2024.172027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Tingting Guo
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shengqiang Mao
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
10
|
Shen H, Gong M, Hu J, Yan Q, Zhang M, Zheng R, Wu J, Cao Y. Lycium barbarum polysaccharide's protective effects against PM 2.5-induced cellular senescence in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116232. [PMID: 38493701 DOI: 10.1016/j.ecoenv.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.
Collapse
Affiliation(s)
- Haochong Shen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Yan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Minghao Zhang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Yang M, Lu Y, Mao W, Hao L. New insight into PAH4 induced hepatotoxicity and the dose-response assessment in rats model. CHEMOSPHERE 2024; 350:141042. [PMID: 38154670 DOI: 10.1016/j.chemosphere.2023.141042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
PAH4 (sum of benzo[a]pyrene, chrysene, benz[a]anthracene and benzo[b]fluoranthene) has been proposed as better marker than benzo[a]pyrene to assess total PAHs exposure in foodstuffs. However, the toxicological behaviors of PAH4 combined exposure remain unclear. This study aimed to investigate PAH4 toxicity effects with non-targeted metabolomics approach and evaluate the external and internal dose-response relationships based on benchmark dose (BMD) analysis. Male Sprague-Dawley rats were treated by gavage with vehicle (corn oil) or four doses of PAH4 (10, 50, 250, 1000 μg/kg·bw) for consecutive 30 days. After the final dose, the liver, blood and urine samples of rats were subsequently collected for testing. The concentrations of urinary mono-hydroxylated PAHs metabolites (OH-PAHs) including 3-hydroxybenzo[a]pyrene (3-OHB[a]P), 3-hydroxychrysene (3-OHCHR) and 3-hydroxybenz[a]anthracene (3-OHB[a]A) were determined to reflect internal PAH4 exposure. Our results showed PAH4 exposure increased relative liver weight and serum aspartate aminotransferase (AST) activity and caused hepatocyte swelling and degeneration, implying hepatotoxicity induced by PAH4. Serum metabolomics suggested PAH4 exposure perturbed lipid metabolism through upregulating the expression of glycerolipids metabolites, which was evidenced by markedly increased serum triglyceride (TG) level and hepatic TG content. Additionally, urinary OH-PAHs concentrations presented strong positive correlations with the external dose, indicating they were able to reflect PAH4 exposure. Furthermore, PAH4 exposure led to a dose-response increase of hepatic TG content, based on which the 95% lower confidence value of BMDs for external and internal doses were estimated as 5.45 μg/kg·bw and 0.11 μmol/mol·Cr, respectively. In conclusion, this study suggested PAH4 exposure could induce hepatotoxicity and lipid metabolism disorder, evaluating the involved dose-response relationships and providing a basis for the risk assessment of PAHs.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuxuan Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Lee CW, Chen KL, Yuan CS, Lai CS, Tsai XY, Wu PH, Hsu PC. Epigenetic transgenerational effects of PM2.5 collected from southern Taiwan on sperm functions and DNA methylation in mouse offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115802. [PMID: 38091677 DOI: 10.1016/j.ecoenv.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
During respiration, particulate matter with a diameter of 2.5 µm or less (PM2.5) suspended in the atmosphere enters the terminal alveoli and blood. PM2.5 particles can attach to toxic substances, resulting in health problems. Limited information is available regarding the effects of prenatal exposure to water-soluble PM2.5 (WS-PM2.5) and water-insoluble PM2.5 (WI-PM2.5) on male reproduction. In addition, whether exposure to these particles has transgenerational effects remains unknown. We investigated whether prenatal exposure to WS-PM2.5 and WI-PM2.5 disrupts sperm function in generations F1, F2, and F3 of male mice. Pregnant BALB/c mice were treated using intratracheal instillation on gestation days 7, 11, and 15 with 10 mg of a water extract or insoluble PM2.5. On postnatal day 105, epididymal sperm count, motility, morphology, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, the sperm chromatin DNA fragmentation index (DFI), and testicular DNA methyltransferase (Dnmt) levels were evaluated in all generations. Whole-genome bisulfite sequencing was used to analyze the DNA methylation status of generation F3. According to the results, exposure to WS-PM2.5 affected sperm morphology, ROS production, and mean DFI in generation F1; ROS production and mean DFI in generation F2; and sperm morphology and MMP in generation F3. Similarly, exposure to WI-PM2.5 affected sperm morphology, ROS production, mean DFI, %DFI, and Dnmt1 expression in generation F1; sperm morphology, MMP, and ROS production in generation F2; and sperm morphology, ROS, and %DFI in generation F3. Two hypermethylated genes, PRR16 and TJP2, were observed in the WS-PM2.5 and WI-PM2.5 groups, two hypomethylated genes, NFATC1 and APOA5, were observed in the WS-PM2.5 group, and two hypomethylated genes, ZFP945 and GSE1, were observed in the WI-PM2.5 group. Hence, prenatal exposure to PM2.5 resulted in transgenerational epigenetic effects, which may explain certain phenotypic changes in male reproduction.
Collapse
Affiliation(s)
- Chia-Wei Lee
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Kuan-Ling Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Xiang-Yi Tsai
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ping-Hsun Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
13
|
Zhou S, Wang Z, Gao L, Chen M, Duan Y, Zhou P, Liu Z, Wu C, Zhang J, Zhu Q. C5a/C5aR1 axis as a key driver promotes epithelial-to-mesenchymal transition in airway epithelial cells in silica nanoparticles-induced pulmonary fibrosis. Int Immunopharmacol 2023; 125:111112. [PMID: 37948857 PMCID: PMC12076580 DOI: 10.1016/j.intimp.2023.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhoujian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
14
|
Nan B, Sun X, Yang S, Huang Q, Shen H. Integrative proteomics and metabolomics analysis of non-observable acute effect level PM 2.5 induced accumulative effects in AC16 cells. J Appl Toxicol 2023; 43:1613-1629. [PMID: 37278136 DOI: 10.1002/jat.4500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Chronic exposure to very low ambient PM2.5 has been linked to cardiovascular risks in epidemiological observation, which also brought doubts on its safety threshold. In this study, we approached this question by chronic exposure of AC16 to the non-observable acute effect level (NOAEL) PM2.5 5 μg/mL and its positive reference 50 μg/mL, respectively. The doses were respectively defined on the cell viabilities >95% (p = 0.354) and >90% (p = 0.004) when treated acutely (24 h). To mimic the long-term exposure, AC16 was cultured from the 1st to 30th generations and treated with PM2.5 24 h in every three generations. The integration of proteomic and metabolomic analysis was applied, and 212 proteins and 172 metabolites were significantly altered during the experiments. The NOAEL PM2.5 induced both dose- and time-dependent disruption, which showed the dynamic cellular proteomic response and oxidation accumulation, the main metabolomics changes were ribonucleotide, amino acid, and lipid metabolism that have involved in stressed gene expression, and starving for energy metabolism and lipid oxidation. In summary, these pathways interacted with the monotonically increasing oxidative stress and led to the accumulated damage in AC16 and implied that the safe threshold of PM2.5 may be non-existent when a long-term exposure occurred.
Collapse
Affiliation(s)
- Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
| | - Shijing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Li S, Li L, Zhang C, Fu H, Yu S, Zhou M, Guo J, Fang Z, Li A, Zhao M, Zhang M, Wang X. PM2.5 leads to adverse pregnancy outcomes by inducing trophoblast oxidative stress and mitochondrial apoptosis via KLF9/CYP1A1 transcriptional axis. eLife 2023; 12:e85944. [PMID: 37737576 PMCID: PMC10584374 DOI: 10.7554/elife.85944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Epidemiological studies have demonstrated that fine particulate matter (PM2.5) is associated with adverse obstetric and postnatal metabolic health outcomes, but the mechanism remains unclear. This study aimed to investigate the toxicological pathways by which PM2.5 damaged placental trophoblasts in vivo and in vitro. We confirmed that PM2.5 induced adverse gestational outcomes such as increased fetal mortality rates, decreased fetal numbers and weight, damaged placental structure, and increased apoptosis of trophoblasts. Additionally, PM2.5 induced dysfunction of the trophoblast cell line HTR8/SVneo, including in its proliferation, apoptosis, invasion, migration and angiogenesis. Moreover, we comprehensively analyzed the transcriptional landscape of HTR8/SVneo cells exposed to PM2.5 through RNA-Seq and observed that PM2.5 triggered overexpression of pathways involved in oxidative stress and mitochondrial apoptosis to damage HTR8/SVneo cell biological functions through CYP1A1. Mechanistically, PM2.5 stimulated KLF9, a transcription factor identified as binding to CYP1A1 promoter region, which further modulated the CYP1A1-driven downstream phenotypes. Together, this study demonstrated that the KLF9/CYP1A1 axis played a crucial role in the toxic progression of PM2.5 induced adverse pregnancy outcomes, suggesting adverse effects of environmental pollution on pregnant females and putative targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Lingbing Li
- The Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Huaxuan Fu
- Jinan Environmental Monitoring Center of Shandong ProvinceJinanChina
| | - Shuping Yu
- School of Public Health, Weifang Medical UniversityWeifangChina
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
16
|
Jiang Y, Peng Y, Yang X, Yu J, Yu F, Yuan J, Zha Y. PM 2.5 exposure aggravates kidney damage by facilitating the lipid metabolism disorder in diabetic mice. PeerJ 2023; 11:e15856. [PMID: 37671359 PMCID: PMC10476618 DOI: 10.7717/peerj.15856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/16/2023] [Indexed: 09/07/2023] Open
Abstract
Background Ambient fine particulate matter ≤ 2.5 µm (PM2.5) air pollution exposure has been identified as a global health threat, the epidemiological evidence suggests that PM2.5 increased the risk of chronic kidney disease (CKD) among the diabetes mellitus (DM) patients. Despite the growing body of research on PM2.5 exposure, there has been limited investigation into its impact on the kidneys and the underlying mechanisms. Past studies have demonstrated that PM2.5 exposure can lead to lipid metabolism disorder, which has been linked to the development and progression of diabetic kidney disease (DKD). Methods In this study, db/db mice were exposed to different dosage PM2.5 for 8 weeks. The effect of PM2.5 exposure was analysis by assessment of renal function, pathological staining, immunohistochemical (IHC), quantitative real-time PCR (qPCR) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) based metabolomic analyses. Results The increasing of Oil Red staining area and adipose differentiation related protein (ADRP) expression detected by IHC staining indicated more ectopic lipid accumulation in kidney after PM2.5 exposure, and the increasing of SREBP-1 and the declining of ATGL detected by IHC staining and qPCR indicated the disorder of lipid synthesisandlipolysis in DKD mice kidney after PM2.5 exposure. The expressions of high mobility group nucleosome binding protein 1 (HMGN1) and kidney injury molecule 1 (KIM-1) that are associated with kidney damage increased in kidney after PM2.5 exposure. Correlation analysis indicated that there was a relationship between HMGN1-KIM-1 and lipid metabolic markers. In addition, kidneys of mice were analyzed using LC-MS/MS based metabolomic analyses. PM2.5 exposure altered metabolic profiles in the mice kidney, including 50 metabolites. In conclusion the results of this study show that PM2.5 exposure lead to abnormal renal function and further promotes renal injury by disturbance of renal lipid metabolism and alter metabolic profiles.
Collapse
Affiliation(s)
- Yuecheng Jiang
- Zunyi Medical University, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yanzhe Peng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xia Yang
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Medicine, Guizhou University, Guiyang, China
| | - Jiali Yu
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Medicine, Guizhou University, Guiyang, China
| | - Fuxun Yu
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yan Zha
- Zunyi Medical University, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Chen F, Sun J, Wang Y, Grunberger JW, Zheng Z, Khurana N, Xu X, Zhou X, Ghandehari H, Zhang J. Silica nanoparticles induce ovarian granulosa cell apoptosis via activation of the PERK-ATF4-CHOP-ERO1α pathway-mediated IP3R1-dependent calcium mobilization. Cell Biol Toxicol 2023; 39:1715-1734. [PMID: 36346508 PMCID: PMC10604358 DOI: 10.1007/s10565-022-09776-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Ambient particulate matters (PMs) have adverse effects in human and animal female reproductive health. Silica nanoparticles (SNPs), as a major component of PMs, can induce follicular atresia via the promotion of ovarian granulosa cell apoptosis. However, the molecular mechanisms of apoptosis induced by SNPs are not very clear. This work focuses on revealing the mechanisms of ER stress on SNP-induced apoptosis. Our results showed that spherical Stöber SNPs (110 nm, 25.0 mg/kg b.w.) induced follicular atresia via the promotion of granulosa cell apoptosis by intratracheal instillation in vivo; meanwhile, SNPs decreased the viability and increase apoptosis in granulosa cells in vitro. SNPs were taken up and accumulated in the vesicles of granulosa cells. Additionally, our results found that SNPs increased calcium ion (Ca2+) concentration in granulosa cell cytoplasm. Furthermore, SNPs activated ER stress via an increase in the PERK and ATF6 pathway-related protein levels and IP3R1-dependent calcium mobilization via an increase in IP3R1 level. In addition, 4-PBA restored IP3R1-dependent calcium mobilization and decreased apoptosis via the inhibition of ER stress. The ATF4-C/EBP homologous protein (CHOP)-ER oxidoreductase 1 alpha (ERO1α) pathway regulated SNP-induced IP3R1-dependent calcium mobilization and cell apoptosis via ATF4, CHOP, and ERO1α depletion in ovarian granulosa cells. Herein, we demonstrate that ER stress cooperated in SNP-induced ovarian toxicity via activation of IP3R1-mediated calcium mobilization, leading to apoptosis, in which the PERK-ATF4-CHOP-ERO1α pathway plays an essential role in ovarian granulosa cells.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jiarong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yujing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jason William Grunberger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Zhen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xin Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Zhang Y, Li M, Pu Z, Chi X, Yang J. Multi-omics data reveals the disturbance of glycerophospholipid metabolism and linoleic acid metabolism caused by disordered gut microbiota in PM2.5 gastrointestinal exposed rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115182. [PMID: 37379664 DOI: 10.1016/j.ecoenv.2023.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
The relationships between fine particulate matter (PM2.5) exposure and health effects are complex and incompletely understood. Evidence suggests that PM2.5 exposure alters gut microbiota composition and metabolites, but the connections between these changes remain unclear. The aim of our study was to investigate how gut microbiota are involved in the systemic metabolic changes following PM2.5 gastrointestinal exposure. We used multi-omics approaches, including 16S rRNA sequencing and serum metabolomics, to identify alterations in gut microbes and metabolites of PM2.5-exposed rats. We then explored correlations between perturbed gut microbiota and metabolic changes, and conducted pathway analyses to determine critical metabolic pathways impacted by PM2.5 exposure. To verify links between gut microbiome and metabolome disruptions, we performed fecal microbiota transplantation (FMT) experiment. A total of 30 differential gut microbe taxa were identified between PM2.5 and control groups, primarily in Firmicutes, Acidobacteria, and Proteobacteria phyla. We also identified 30 differential metabolites, including glycerophospholipids, fatty acyls, amino acids and others. Pathway analysis revealed disruptions in glycerophospholipid metabolism, steroid hormone biosynthesis, and linoleic acid metabolism. Through FMT, we confirmed PM2.5 altered phosphatidylcholine and linoleic acid metabolism by changing specific gut bacteria. Our results suggest that PM2.5 gastrointestinal exposure triggers systemic metabolic changes by disrupting the gut microbiome, especially glycerophospholipid and linoleic acid metabolism pathways.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| | - Mengyao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Zhiyu Pu
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Xi Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| |
Collapse
|
19
|
Li Y, Du Z, Li T, Ren X, Yu Y, Duan J, Sun Z. MitoQ ameliorates PM 2.5-induced pulmonary fibrosis through regulating the mitochondria DNA homeostasis. CHEMOSPHERE 2023; 330:138745. [PMID: 37088202 DOI: 10.1016/j.chemosphere.2023.138745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Pulmonary fibrosis is a severe pulmonary disease, and may related to PM2.5 exposure. Our study aims to explore the pathogenesis of PM2.5-induced pulmonary fibrosis, and MitoQ protective effect in this process. Our results find that inflammatory cells aggregation and pulmonary fibrosis in mice lung after PM2.5 exposure. Moreover, Collagen I/III overproduction, EMT and TGF-β1/Smad2 pathway activation in mice lung and BEAS-2B after PM2.5 exposure. Fortunately, these changes were partially ameliorated after MitoQ treatment. Meanwhile, severe oxidative stress, mitochondrial homeostasis imbalance, overproduction of 8-oxoG (7,8-dihydro-8-oxoguanine), as well as the inhibition of SIRT3/OGG1 pathway have founded in mice lung or BEAS-2B after PM2.5 exposure, which were alleviated by MitoQ treatment. Collectively, our study found that oxidative stress, especially mitochondrial oxidative stress participates in the PM2.5-induced pulmonary fibrosis, and MitoQ intervention had a protective effect on this progress. Moreover, mitochondrial DNA homeostasis might participate in the pulmonary fibrosis caused by PM2.5 exposure. Our study provides a novel pathogenesis of PM2.5-caused pulmonary fibrosis and a possible targeted therapy for the pulmonary diseases triggered by PM2.5.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
20
|
Chen S, Li M, Zhang R, Ye L, Jiang Y, Jiang X, Peng H, Wang Z, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM 2.5-induced lung injury: a comparative study. Part Fibre Toxicol 2023; 20:10. [PMID: 37069663 PMCID: PMC10108512 DOI: 10.1186/s12989-023-00526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanyu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Zhou X, Ming R, Guo M, Jiao H, Cui H, Hu D, Lu P. Characterization of imidacloprid-induced hepatotoxicity and its mechanisms based on a metabolomic approach in Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161794. [PMID: 36707007 DOI: 10.1016/j.scitotenv.2023.161794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of imidacloprid are attracting increased concern because of its widespread use in agriculture and its persistence in the aquatic environment. Imidacloprid bioaccumulates and triggers various morphological and behavioral responses in amphibians, but the toxic effects and mechanism of imidacloprid in amphibians remain uncertain. In this study, the acute toxicity and chronic effects of imidacloprid on Xenopus laevis were studied. Acute toxicity for 96 h revealed that imidacloprid had an LC50 value of 74.18 mg/L. After exposure for 28 d under 1/10 and 1/100 LC50, liver samples from X. laevis were employed for biochemical analyses, pathological studies, and nontargeted metabolomics to systematically assess the toxic effects and mechanisms of imidacloprid. The results showed that oxidative stress and hepatic tissue morphology changes were observed in treated X. laevis liver. Twelve metabolites involved in metabolic pathway were altered between the control and high exposure groups and twenty-one metabolites were altered between the control and low exposure group. Eight metabolic pathways exposed to high levels and nine metabolic pathways exposed to low level of imidacloprid were disturbed. These pathways were primarily related to amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our research provides essential information to evaluate the potential toxicity of imidacloprid to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Renyue Ming
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Meiting Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Honghao Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
22
|
Zheng Z, Zuo W, Ye R, Grunberger JW, Khurana N, Xu X, Ghandehari H, Chen F. Silica Nanoparticles Promote Apoptosis in Ovarian Granulosa Cells via Autophagy Dysfunction. Int J Mol Sci 2023; 24:5189. [PMID: 36982262 PMCID: PMC10049489 DOI: 10.3390/ijms24065189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Although silica nanoparticles (SNPs) are generally thought to be biocompatible and safe, the adverse effects of SNPs were also reported in previous studies. SNPs cause follicular atresia via the induction of ovarian granulosa cell apoptosis. However, the mechanisms for this phenomenon are not well understood. This study focuses on exploring the relationship between autophagy and apoptosis induced by SNPs in ovarian granulosa cells. Our results showed that 25.0 mg/kg body weight (b.w.)/intratracheal instillation of 110 nm in diameter spherical Stöber SNPs caused ovarian granulosa cell apoptosis in follicles in vivo. We also found that SNPs mainly internalized into the lumens of the lysosomes in primary cultured ovarian granulosa cells in vitro. SNPs induced cytotoxicity via a decrease in viability and an increase in apoptosis in a dose-dependent manner. SNPs increased BECLIN-1 and LC3-II levels, leading to the activation of autophagy and increased P62 level, resulting in the blockage of autophagic flux. SNPs increased the BAX/BCL-2 ratio and cleaved the caspase-3 level, resulting in the activation of the mitochondrial-mediated caspase-dependent apoptotic signaling pathway. SNPs enlarged the LysoTracker Red-positive compartments, decreased the CTSD level, and increased the acidity of lysosomes, leading to lysosomal impairment. Our results reveal that SNPs cause autophagy dysfunction via lysosomal impairment, resulting in follicular atresia via the enhancement of apoptosis in ovarian granulosa cells.
Collapse
Affiliation(s)
- Zhen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenlong Zuo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Rongrong Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jason William Grunberger
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Ming Y, Zhou X, Liu G, Abudupataer M, Zhu S, Xiang B, Yin X, Lai H, Sun Y, Wang C, Li J, Zhu K. PM2.5 exposure exacerbates mice thoracic aortic aneurysm and dissection by inducing smooth muscle cell apoptosis via the MAPK pathway. CHEMOSPHERE 2023; 313:137500. [PMID: 36495979 DOI: 10.1016/j.chemosphere.2022.137500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Air pollution is a major public health concern worldwide. Exposure to fine particulate matter (PM2.5) is closely associated with cardiovascular diseases. However, the effect of PM2.5 exposure on thoracic aortic aneurysm and dissection (TAAD) has not been fully elucidated. Diesel exhaust particulate (DEP) is an important component of PM2.5, which causes health effects and is closely related to the incidence of cardiovascular disease. In the current study, we found that DEP exposure increased the incidence of aortic dissection (AD) in β-aminopropionitrile (BAPN)-induced thoracic aortic aneurysm (TAA). In addition, exposure to PM2.5 increased the diameter of the thoracic aorta in mice models. The number of apoptotic cells increased in the aortic wall of PM2.5-treated mice, as did the protein expression level of BAX/Bcl2 and cleaved caspase3/caspase3. Using a rhythmically stretching aortic mechanical simulation model, fluorescent staining indicated that PM2.5 administration could induce mitochondrial dysfunction and increase reactive oxygen species (ROS) levels in human aortic smooth muscle cells (HASMCs). Furthermore, ERK1/2 mitogen-activated protein kinase (MAPK) signaling pathways participated in the apoptosis of HASMCs after PM2.5 exposure. Therefore, we concluded that PM2.5 exposure could exacerbate the progression of TAAD, which could be induced by the increased apoptosis in HASMCs through the ERK1/2 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiujie Yin
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Chen Q, Wang Y, Yang L, Sun L, Wen Y, Huang Y, Gao K, Yang W, Bai F, Ling L, Zhou Z, Zhang X, Xiong J, Zhai R. PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming. J Exp Clin Cancer Res 2022; 41:229. [PMID: 35869499 PMCID: PMC9308224 DOI: 10.1186/s13046-022-02437-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background Airborne fine particulate matter (PM2.5) has been associated with lung cancer development and progression in never smokers. However, the molecular mechanisms underlying PM2.5-induced lung cancer remain largely unknown. The aim of this study was to explore the mechanisms by which PM2.5 regulated the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Paralleled ribosome sequencing (Ribo-seq) and RNA sequencing (RNA-seq) were performed to identify PM2.5-associated genes for further study. Quantitative real time-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC) were used to determine mRNA and protein expression levels in tissues and cells. The biological roles of PM2.5 and PM2.5-dysregulated gene were assessed by gain- and loss-of-function experiments, biochemical analyses, and Seahorse XF glycolysis stress assays. Human tissue microarray analysis and 18F-FDG PET/CT scans in patients with NSCLC were used to verify the experimental findings. Polysome fractionation experiments, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assay were implemented to explore the molecular mechanisms. Results We found that PM2.5 induced a translation shift towards glycolysis pathway genes and increased glycolysis metabolism, as evidenced by increased L-lactate and pyruvate concentrations or higher extracellular acidification rate (ECAR) in vitro and in vivo. Particularly, PM2.5 enhanced the expression of glycolytic gene DLAT, which promoted glycolysis but suppressed acetyl-CoA production and enhanced the malignancy of NSCLC cells. Clinically, high expression of DLAT was positively associated with tumor size, poorer prognosis, and SUVmax values of 18F-FDG-PET/CT scans in patients with NSCLC. Mechanistically, PM2.5 activated eIF4E, consequently up-regulating the expression level of DLAT in polysomes. PM2.5 also stimulated transcription factor Sp1, which further augmented transcription activity of DLAT promoter. Conclusions This study demonstrated that PM2.5-activated overexpression of DLAT and enhancement in glycolysis metabolism contributed to the tumorigenesis of NSCLC, suggesting that DLAT-associated pathway may be a therapeutic target for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02437-8.
Collapse
|
25
|
Yuan CS, Lai CS, Chang-Chien GP, Tseng YL, Cheng FJ. Kidney damage induced by repeated fine particulate matter exposure: Effects of different components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157528. [PMID: 35882344 DOI: 10.1016/j.scitotenv.2022.157528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with adverse health effects. This study aimed to evaluate the toxic effects of the constituents of PM2.5 on mouse kidneys. METHODS We collected PM2.5 near an industrial complex located in southern Kaohsiung, Taiwan, that was divided into water extract and insoluble particles. Male C57BL/6 mice were divided into five groups: control, low- and high-dose insoluble particle exposure, and low- and high-dose water extract exposure. Biochemical analysis, Western blot analysis, histological examination, and immunohistochemistry were performed to evaluate the impact of PM2.5 constituents on mice kidneys. RESULTS PM2.5 was collected from January 1, 2021, to February 8, 2021, from an industrial complex in Kaohsiung, Taiwan. Metallic element analysis showed that Pb, Ni, V, and Ti were non-essential metals with enrichment factors >10. Polycyclic aromatic hydrocarbon and nitrate polycyclic aromatic hydrocarbon analyses revealed that the toxic equivalents are, in the order, benzo(a)pyrene (BaP), indeno(1,2,3-cd) pyrene (IP), dibenzo(a,h)anthracene (DBA), and benzo(b)fluoranthene (BbF), which are potential carcinogens. Both water extract and insoluble particle exposure induced inflammatory cytokine upregulation, inflammatory cell infiltration, antioxidant activity downregulation, and elevation of kidney injury molecule 1 (KIM-1) level in mouse kidneys. A dose-dependent effect of PM2.5 water extract and insoluble particle exposure on angiotensin converter enzyme 2 downregulation in mouse kidneys was observed. CONCLUSION We found that water-soluble extract and insoluble particles of PM2.5 could induce oxidative stress and inflammatory reactions, influence the regulation of renin-angiotensin system (RAS), and lead to kidney injury marker level elevation in mouse kidneys. The lowest-observed-adverse-effect level for renal toxicity in mice was 40 μg water-soluble extract/insoluble particle inhalation per week, which was approximately equal to the ambient PM2.5 concentration of 44 μg/m3 for mice.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Guo-Ping Chang-Chien
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1(st) Road, Guishan District, Taoyuan City 333, Taiwan, ROC.
| |
Collapse
|
26
|
Du Z, Hu J, Lin L, Liang Q, Sun M, Sun Z, Duan J. Melatonin alleviates PM 2.5 -induced glucose metabolism disorder and lipidome alteration by regulating endoplasmic reticulum stress. J Pineal Res 2022; 73:e12823. [PMID: 35986482 DOI: 10.1111/jpi.12823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Exposure to fine particulate matter (PM2.5 ) was associated with an increased incidence of liver metabolic disease. Melatonin has been shown to prevent liver glucolipid metabolism disorders. However, whether melatonin could rescue PM2.5 -induced liver metabolic abnormalities remains uncertain. This study was to evaluate the mitigating effect of melatonin on PM2.5 -accelerated hepatic glucose metabolism imbalance in vivo and in vitro. Schiff periodic acid shiff staining and other results showed that PM2.5 led to a decrease in hepatic glycogen reserve and an increase in glucose content, which was effectively alleviated by melatonin. Targeted lipidomics is used to identify lipid biomarkers associated with this process, including glycerolipids, glycerophospholipids, and sphingolipids. In addition, gene microarray and quantitative polymerase chain reaction analysis of ApoE-/- mice liver suggested that PM2.5 activated the miR-200a-3p and inhibited DNAJB9, and the targeting relationship was verified by luciferase reports for the first time. Further investigation demonstrated that DNAJB9 might motivate endoplasmic reticulum (ER) stress by regulating Ca2+ homeostasis, thus altering the protein expression of GSK3B, FOXO1, and PCK2. Meanwhile, melatonin effectively inhibited miR-200a-3p and glucose metabolism disorder. Knockout of miR-200a-3p in L02 cells revealed that miR-200a-3p is indispensable in the damage of PM2.5 and the therapeutic effect of melatonin. In summary, melatonin alleviated PM2.5 -induced liver metabolic dysregulation by regulating ER stress via miR-200a-3p/DNAJB9 signaling pathway. Our data provide a prospective targeted therapy for air pollution-related liver metabolism disorders.
Collapse
Affiliation(s)
- Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Stroud JE, Gale MS, Zwart SR, Heer M, Smith SM, Montina T, Metz GAS. Longitudinal metabolomic profiles reveal sex-specific adjustments to long-duration spaceflight and return to Earth. Cell Mol Life Sci 2022; 79:578. [PMID: 36319708 PMCID: PMC11802984 DOI: 10.1007/s00018-022-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Spaceflight entails a variety of environmental and psychological stressors that may have long-term physiological and genomic consequences. Metabolomics, an approach that investigates the terminal metabolic outputs of complex physiological alterations, considers the dynamic state of the human body and allows the identification and quantification of down-stream metabolites linked to up-stream physiological and genomic regulation by stress. Employing a metabolomics-based approach, this study investigated longitudinal metabolic perturbations of male (n = 40) and female (n = 11) astronauts on 4-6-month missions to the International Space Station (ISS). Proton nuclear magnetic resonance (1H-NMR) spectroscopy followed by univariate, multivariate and machine learning analyses were used on blood serum to examine sex-specific metabolic changes at various time points throughout the astronauts' missions, and the metabolic effects of long-duration space travel. Space travel resulted in sex-specific changes in energy metabolism, bone mineral and muscle regulation, immunity, as well as macromolecule maintenance and synthesis. Additionally, metabolic signatures suggest differential metabolic responses-especially during the recovery period-with females requiring more time to adjust to return to Earth. These findings provide insight into the perturbations in glucose and amino acid metabolism and macromolecule biosynthesis that result from the stressors of long-duration spaceflight. Metabolomic biomarkers may provide a viable approach to predicting and diagnosing health risks associated with prolonged space travel and other physiological challenges on Earth.
Collapse
Affiliation(s)
- Julia E Stroud
- Department of Chemistry and Biochemistry, EP1274 Exploration Place, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada
| | - Michael S Gale
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Martina Heer
- IU International University of Applied Sciences, University of Bonn, Bonn, Germany
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA.
| | - Tony Montina
- Department of Chemistry and Biochemistry, EP1274 Exploration Place, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada.
| | - Gerlinde A S Metz
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada.
- Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada.
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
28
|
Dong X, Yao S, Deng L, Li H, Zhang F, Xu J, Li Z, Zhang L, Jiang J, Wu W. Alterations in the gut microbiota and its metabolic profile of PM 2.5 exposure-induced thyroid dysfunction rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156402. [PMID: 35660575 DOI: 10.1016/j.scitotenv.2022.156402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/23/2022] [Accepted: 05/28/2022] [Indexed: 05/25/2023]
Abstract
Fine particulate matter (PM2.5) has drawn more and more interest due to its adverse effects on health. Thyroid has been demonstrated to be the key organ impacted by PM2.5. However, the mechanisms for PM2.5 exposure-induced thyrotoxicity remain unclear. To explore the mechanisms, a rat thyroid injury model was established by exposing rats to PM2.5 via passive pulmonary inhalation. Thyroid hormones and thyroid function proteins were detected. The thyroid function affected by PM2.5 exposure was investigated via metabolomics analysis using liquid chromatography-mass spectrometry and 16S rRNA gene sequencing. Results showed that PM2.5 exposure induced remarkable alterations in gut microbiome evenness, richness, and composition. Metabolomics profiling revealed that the urine metabolites levels were changed by PM2.5 exposure. The altered gut microbiota and urine metabolites showed significant correlations with thyroid function indicators (total T3, total T4 and thyrotropin hormone, etc.). These metabolites were involved in metabolic pathways including thyroid hormone synthesis, metabolisms of tryptophan, d-Glutamine and D-glutamate, histidine, glutathione, etc. The altered gut microbiota showed significant correlations with urine metabolites (glutathione, citric acid, D-Glutamic acid, kynurenic acid and 5-Aminopentanoic acid, etc.). For example, the taurocholic acid levels positively correlated with the relative abundance of several genera including Elusimicrobium (r = 0.9741, p = 0.000000), Muribaculum (r = 0.9886, p = 0.000000), Candidatus_Obscuribacter (r = 0.8423, p = 0.000585), Eubacterium (r = 0.9237, p = 0.000017), and Parabacteroides (r = 0.8813, p = 0.000150), while it negatively correlated with the relative abundance of Prevotella (r = -0.8070, p = 0.001509). PM2.5 exposure-induced thyrotoxicity led to remarkable alterations both in gut microbiome composition and some metabolites involved in metabolic pathways. The altered intestinal flora and metabolites can in turn influence thyroid function in rats. These findings may provide novel insights regarding perturbations of the gut-thyroid axis as a new mechanism for PM2.5 exposure-induced thyrotoxicity.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Fengquan Zhang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Xu
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhichun Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Li Zhang
- Center for Bioinformatics and Statistical Health Research, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
29
|
Du Z, Lin L, Li Y, Sun M, Liang Q, Sun Z, Duan J. Combined exposure to PM 2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway. Free Radic Biol Med 2022; 190:16-27. [PMID: 35940515 DOI: 10.1016/j.freeradbiomed.2022.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022]
Abstract
Environmental fine particulate matter (PM2.5), which has attracted worldwide attention, is associated with the progression of metabolic-associated fatty liver disease (MAFLD). However, it is unclear whether dietary habit exacerbate liver damage caused by PM2.5. The current study aimed to investigate the combined negative effects of PM2.5 and high-fat diet (HFD) on liver lipid metabolism in C57BL/6J mice. Histopathological and Oil-Red O staining analysis illustrated that PM2.5 exposure resulted in increased liver fat content in HFD-fed C57BL/6J mice, but not in standard chow diet (STD)-fed mice. And there was a synergistic effect between PM2.5 and HFD on hepatic lipotoxicity. The increased ROS levels and augmented oxidative damage were evaluated in liver tissue of mice treated with PM2.5 and HFD together. In addition, excessive ROS production could activate the miR-155/peroxisome proliferator-activated receptor gamma (PPARγ) pathway, including up-regulation of lipid accumulation-related protein expressions of recombinant liver X receptor alpha (LXRα), sterol regulatory element binding protein-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1).The use of miR-155 inhibitors demonstrated the indispensable role of miR-155 in the activation of lipid-regulated proteins by PM2.5 and palmitic acid (PA). Collectively, altering high-fat dietary habits could protect against MAFLD motivated by air pollution, and miR-155 might be an effective preventive and therapeutic target for this process.
Collapse
Affiliation(s)
- Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Nan B, Sun X, Zhang J, Huang Q, Zhang X, Li Y, Duan J, Chen R, Sun Z, Shen H. Accumulated oxidative stress risk in HUVECs by chronic exposure to non-observable acute effect levels of PM 2.5. Toxicol In Vitro 2022; 82:105376. [PMID: 35550414 DOI: 10.1016/j.tiv.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
Few studies have reported the accumulation of non-observable acute effect (NOAE) of PM2.5, especially exposure to the NOAE doses (NOAEDs) of PM2.5 in chronic way. To address this issue, HUVECs were cultured from the 1st to 30th generations (G1 to G30) and treated by the NOAED PM2.5 once every three passages. The generational changes of oxidative damage markers, inflammatory factors, and cell adhesion molecules (CAMs) were monitored in HUVECs at G6, G12, G18, G24, and G30, and proteomes at G18 and G30, respectively. The oxidative damages monotonically accumulated with exposure time elongation and PM2.5 dose increases. Similar to the oxidative trends, VCAM1 and ICAM1 significantly and dose-dependently increased at G30. However, many inflammatory factors altered with complex patterns to respond the NOAEDs' PM2.5. Proteomic results demonstrated most proteins expressed stably, and the generational proteome alterations were more apparent than the NOAEDs' PM2.5 induced ones. The PM2.5-related proteins varied much, but only few can cross the doses and generations. These observations suggested that the proteins changed holistically rather than individually. In summary, SOD1, SUMO2, and H3F3A may initiate HUVECs responses to PM2.5, and then broadcast and accumulate the NOAE via DNA repair, immune response, and glycolysis.
Collapse
Affiliation(s)
- Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xi Zhang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, PR China.
| |
Collapse
|
31
|
Melatonin Alleviates PM 2.5-Induced Hepatic Steatosis and Metabolic-Associated Fatty Liver Disease in ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8688643. [PMID: 35720187 PMCID: PMC9200552 DOI: 10.1155/2022/8688643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Background Exposure to fine particulate matter (PM2.5) is associated with the risk of developing metabolic-associated fatty liver disease (MAFLD). Melatonin is the main secreted product of the pineal gland and has been reported to prevent hepatic lipid metabolism disorders. However, it remains uncertain whether melatonin could protect against PM2.5-induced MAFLD. Methods and Results The purpose of our study was to investigate the mitigating effects of melatonin on hepatic fatty degeneration accelerated by PM2.5 in vivo and in vitro. Histopathological analysis and ultrastructural images showed that PM2.5 induced hepatic steatosis and lipid vacuolation in ApoE−/− mice, which could be effectively alleviated by melatonin administration. Increased ROS production and decreased expression of antioxidant enzymes were detected in the PM2.5-treated group, whereas melatonin showed recovery effects after PM2.5-induced oxidative damage in both the liver and L02 cells. Further investigation revealed that PM2.5 induced oxidative stress to activate PTP1B, which in turn had a positive feedback regulation effect on ROS release. When a PTP1B inhibitor or melatonin was administered, SP1/SREBP-1 signalling was effectively suppressed, while Nrf2/Keap1 signalling was activated in the PM2.5-treated groups. Conclusion Our study is the first to show that melatonin alleviates the disturbance of PM2.5-triggered hepatic steatosis and liver damage by regulating the ROS-mediated PTP1B and Nrf2 signalling pathways in ApoE−/− mice. These results suggest that melatonin administration might be a prospective therapy for the prevention and treatment of MAFLD associated with air pollution.
Collapse
|
32
|
Liang S, Sun Q, Du Z, Ren X, Xu Q, Sun Z, Duan J. PM 2.5 induce the defective efferocytosis and promote atherosclerosis via HIF-1α activation in macrophage. Nanotoxicology 2022; 16:290-309. [PMID: 35653618 DOI: 10.1080/17435390.2022.2083995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidemiological studies demonstrate that fine particulate matter (PM2.5) promotes the development of atherosclerosis. However, the mechanism insight of PM2.5-induced atherosclerosis is still lacking. The aim of this study was to explore the biological effects of hypoxia-inducible factor 1α (HIF-1α) on PM2.5-triggered atherosclerosis. The vascular stiffness, carotid intima-media thickness (CIMT), lipid and atherosclerotic lesion were increased when von Hippel-Lindau (VHL)-null mice were exposed to PM2.5. Yet, knockout of HIF-1α markedly decreased the PM2.5-triggered atherosclerotic lesion. We firstly performed microarray analysis in PM2.5-treated bone morrow-derived macrophages (BMDMs), which showed that PM2.5 significantly changed the genes expression patterns and affected biological processes such as phagocytosis, apoptotic cell clearance, cellular response to hypoxia, apoptotic process and inflammatory response. Moreover, the data showed knockout of HIF-1α remarkably relieved PM2.5-induced defective efferocytosis. Mechanistically, PM2.5 inhibited the level of genes and proteins of efferocytosis receptor c-Mer tyrosine kinase (MerTK), especially in VHL-null BMDMs. In addition, PM2.5 increased the genes and proteins of a disintegrin and metallopeptidase domain 17 (ADAM17), which caused the MerTK cleavage to form soluble MerTK (sMer) in plasma and cellular supernatant. The sMer was significantly up-regulated in plasma of VHL-null PM2.5-exposed mice. Moreover, PM2.5 could induce defective efferocytosis and activate inflammatory response through MerTK/IFNAR1/STAT1 signaling pathway in macrophages. Our results demonstrate that PM2.5 could induce defective efferocytosis and inflammation by activating HIF-1α in macrophages, ultimately resulting in accelerating atherosclerotic lesion formation and development. Our data suggest HIF-1α in macrophages might be a potential target for PM2.5-related atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Qing Xu
- Core Facility Centre, Capital Medical University, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
33
|
Study on Lung Injury Caused by Fine Particulate Matter and Intervention Effect of Rhodiola wallichiana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3693231. [PMID: 35432571 PMCID: PMC9007651 DOI: 10.1155/2022/3693231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Objective The objective of this study was to observe the protective effect of Rhodiola wallichiana drops in a rat model of fine particulate matter (PM2.5) lung injury. Methods Forty male Wistar rats were randomly divided into blank control (NC), normal saline (NS), PM2.5-infected (PM), and Rhodiola wallichiana (RW) groups. Rats in the NC group were not provided any interventions, whereas those in the NS and PM groups were administered normal saline and PM2.5 suspension by trachea drip once a week for four weeks. Rats in the RW group were intraperitoneally administered Rhodiola wallichiana for 14 days and then administered PM2.5 suspension by trachea drip 7 days after drug delivery. The levels of inflammatory factors such as interleukin-6, interleukin-1β, and tumor necrosis factor-alpha and oxidative stress biomarkers such as 8-hydroxy-2′-deoxyguanosine, 4-hydroxynonenal, and protein carbonyl content were determined in the serum and bronchoalveolar lavage fluid by ELISA. The level of 4-hydroxynonenal in the lung was also determined using Western blotting and immunohistochemical staining. Results Levels of inflammatory factors and oxidative stress biomarkers were all increased in the PM group but decreased in the RW group. Western blotting revealed increased 4-hydroxynonenal levels in the PM group but decreased levels in the RW group. Immunohistochemical staining also provided similar results. Conclusion Rhodiola wallichiana could protect rats from inflammation and oxidative stress injury caused by PM2.5.
Collapse
|
34
|
Zhao L, Fang J, Tang S, Deng F, Liu X, Shen Y, Liu Y, Kong F, Du Y, Cui L, Shi W, Wang Y, Wang J, Zhang Y, Dong X, Gao Y, Dong L, Zhou H, Sun Q, Dong H, Peng X, Zhang Y, Cao M, Wang Y, Zhi H, Du H, Zhou J, Li T, Shi X. PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27007. [PMID: 35157499 PMCID: PMC8843086 DOI: 10.1289/ehp9688] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Insulin resistance (IR) affects the development of type 2 diabetes mellitus (T2DM), which is also influenced by accumulated fine particle air pollution [particulate matter (PM) with aerodynamic diameter of <2.5μm (PM2.5)] exposure. Previous experimental and epidemiological studies have proposed several potential mechanisms by which PM2.5 contributes to IR/T2DM, including inflammation imbalance, oxidative stress, and endothelial dysfunction. Recent evidence suggests that the imbalance of the gut microbiota affects the metabolic process and may precede IR. However, the underlying mechanisms of PM2.5, gut microbiota, and metabolic diseases are unclear. OBJECTIVES We investigated the associations between personal exposure to PM2.5 and fasting blood glucose and insulin levels, the IR index, and other related biomarkers. We also explored the potential underlying mechanisms (systemic inflammation and sphingolipid metabolism) between PM2.5 and insulin resistance and the mediating effects between PM2.5 and sphingolipid metabolism. METHODS We recruited 76 healthy seniors to participate in a repeated-measures panel study and conducted clinical examinations every month from September 2018 to January 2019. Linear mixed-effects (LME) models were used to analyze the associations between PM2.5 and health data (e.g., functional factors, the IR index, inflammation and other IR-related biomarkers, metabolites, and gut microbiota). We also performed mediation analyses to evaluate the effects of mediators (gut microbiota) on the associations between exposures (PM2.5) and featured metabolism outcomes. RESULTS Our prospective panel study illustrated that exposure to PM2.5 was associated with an increased risk of higher IR index and functional biomarkers, and our study provided mechanistic evidence suggesting that PM2.5 exposure may contribute to systemic inflammation and altered sphingolipid metabolism. DISCUSSION Our findings demonstrated that PM2.5 was associated with the genera of the gut microbiota, which partially mediated the association between PM2.5 and sphingolipid metabolism. These findings may extend our current understanding of the pathways of PM2.5 and IR. https://doi.org/10.1289/EHP9688.
Collapse
Affiliation(s)
- Liang Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Shen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fanling Kong
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingjian Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huichan Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiumiao Peng
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingyang Zhou
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
35
|
Hu X, Yan M, He L, Qiu X, Zhang J, Zhang Y, Mo J, Day DB, Xiang J, Gong J. Associations between time-weighted personal air pollution exposure and amino acid metabolism in healthy adults. ENVIRONMENT INTERNATIONAL 2021; 156:106623. [PMID: 33993003 DOI: 10.1016/j.envint.2021.106623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms underlying the associations between air pollution exposure and adverse cardiopulmonary effects remain to be better understood. Altered amino acid metabolism may plays an important role in the development of cardiopulmonary diseases and may be perturbed by air pollution exposure. To test this hypothesized molecular mechanism, we conducted an association analysis from an existing intervention study to examine the relations of air pollution exposures with amino acids in 43 Chinese healthy adults. Plasma levels of amino acids were measured using a UPLC-QqQ-MS system. Time-weighted personal exposure to O3, PM2.5, NO2, and SO2 over four time windows, i.e., 12 h, 24 h, 1 week, and 2 weeks, were calculated using the measured indoor and outdoor concentrations coupled with the time-activity data for each participant. Linear mixed-effects models were used to estimate the associations between air pollutants at each exposure window and amino acids by controlling for potential confounders. We observed significant associations between exposures and plasma concentrations of amino acids, with the direction of associations varying by amino acid and air pollutant. While there is little evidence of associations for NO2 and SO2, the associations with amino acids were fairly pronounced for exposure to PM2.5 and O3. In particular, independent O3 (12- and 24-hour) associations were observed with changes in the amino acids that were related to the urea cycle, including aspartate, asparagine, glutamate, arginine, citrulline, and ornithine. Our findings indicated that air pollution may cause acute perturbation of amino acid metabolism, and that O3 and PM2.5 may affect the metabolism of amino acids in different pathways. Main finding: Acute air pollution exposure might affect the perturbation of amino acid metabolism, and in particular, was associated with amino acids in relation to the urea cycle.
Collapse
Affiliation(s)
- Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Meilin Yan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Linchen He
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, United States
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Junfeng Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, United States; Global Health Research Center, Duke Kunshan University, Jiangsu 215316, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Ning R, Li Y, Du Z, Li T, Sun Q, Lin L, Xu Q, Duan J, Sun Z. The mitochondria-targeted antioxidant MitoQ attenuated PM 2.5-induced vascular fibrosis via regulating mitophagy. Redox Biol 2021; 46:102113. [PMID: 34425389 PMCID: PMC8379696 DOI: 10.1016/j.redox.2021.102113] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Short-term PM2.5 exposure is related to vascular remodeling and stiffness. Mitochondria-targeted antioxidant MitoQ is reported to improve the occurrence and development of mitochondrial redox-related diseases. At present, there is limited data on whether MitoQ can alleviate the vascular damage caused by PM2.5. Therefore, the current study was aimed to evaluate the protective role of MitoQ on aortic fibrosis induced by PM2.5 exposure. Vascular Doppler ultrasound manifested PM2.5 damaged both vascular function and structure in C57BL/6J mice. Histopathological analysis found that PM2.5 induced aortic fibrosis and disordered elastic fibers, accompanied by collagen I/III deposition and synthetic phenotype remodeling of vascular smooth muscle cells; while these alterations were partially alleviated following MitoQ treatment. We further demonstrated that mitochondrial dysfunction, including mitochondrial reactive oxygen species (ROS) overproduction and activated superoxide dismutase 2 (SOD2) expression, decreased mitochondrial membrane potential (MMP), oxygen consumption rate (OCR), ATP and increased intracellular Ca2+, as well as mitochondrial fragmentation caused by increased Drp1 expression and decreased Mfn2 expression, occurred in PM2.5-exposed aorta or human aortic vascular smooth muscle cells (HAVSMCs), which were reversed by MitoQ. Moreover, the enhanced expressions of LC3II/I, p62, PINK1 and Parkin regulated mitophagy in PM2.5-exposed aorta and HAVSMCs were weakened by MitoQ. Transfection with PINK1 siRNA in PM2.5-exposed HAVSMCs further improved the effects of MitoQ on HAVSMCs synthetic phenotype remodeling, mitochondrial fragmentation and mitophagy. In summary, our data demonstrated that MitoQ treatment had a protective role in aortic fibrosis after PM2.5 exposure through mitochondrial quality control, which regulated by mitochondrial ROS/PINK1/Parkin-mediated mitophagy. Our study provides a possible targeted therapy for PM2.5-induced arterial stiffness.
Collapse
Affiliation(s)
- Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities Center, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
37
|
Sun M, Cao Y, Sun Q, Ren X, Hu J, Sun Z, Duan J. Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NANOIMPACT 2021; 24:100353. [PMID: 35559812 DOI: 10.1016/j.impact.2021.100353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
Currently, the potential applications of polydopamine (PDA) nanoparticles in the biomedical field are being extensively studied, such as cell internalization, biocompatible surface modification, biological imaging, nano-drug delivery, cancer diagnosis, and treatment. However, the subsequent toxicological response to PDA nanoparticles, especially on nervous system damage was still largely unknown. In this regard, the evaluation of the neurotoxicity of PDA nanoparticles was performed in the developing zebrafish larvae. Results of the transmission electron microscope (TEM), diameter analysis, 1H NMR, and thermogravimetric analysis (TGA) indicated that PDA nanoparticles had high stability without any depolymerization; the maximum non-lethal dose (MNLD) and LD10 of PDA nanoparticles for zebrafish were determined to be 0.5 mg/mL and 4 mg/mL. Pericardial edema and uninflated swim bladders were observed in zebrafish larvae after exposure to PDA nanoparticles. At a concentration higher than MNLD, the fluorescence images manifested that the PDA nanoparticles could inhibit the axonal growth of peripheral motor neurons in zebrafish, which might affect the movement distances and speed, disturb the movement trace, finally resulting in impaired motor function. However, in further investigating the mechanism of PDA nanoparticles-induced neurotoxicity in zebrafish larvae, we did not find apoptosis of central neurocytes. Our data suggested that PDA nanoparticles might trigger neurotoxicity in zebrafish, which could provide an essential clue for the safety assessment of PDA nanoparticles.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
38
|
Li Y, Batibawa JW, Du Z, Liang S, Duan J, Sun Z. Acute exposure to PM 2.5 triggers lung inflammatory response and apoptosis in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112526. [PMID: 34303042 DOI: 10.1016/j.ecoenv.2021.112526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Severe haze events, especially with high concentration of fine particulate matter (PM2.5), are frequent in China, which have gained increasing attention among public. The purpose of our study was explored the toxic effects and potential damage mechanisms about PM2.5 acute exposure. Here, the diverse dosages of PM2.5 were used to treat SD rats and human bronchial epithelial cell (BEAS-2B) for 24 h, and then the bioassays were performed at the end of exposure. The results show that acute exposure to diverse dosages of PM2.5 could trigger the inflammatory response and apoptosis. The severely oxidative stress may contribute to the apoptosis. Also, the activation of Nrf2-ARE pathway was an important compensatory process of antioxidant damage during the early stage of acute exposure to PM2.5. Furthermore, the HO-1 was suppression by siRNA that promoted cell apoptosis triggered by PM2.5. In other words, enhancing the expression of HO-1 may mitigate the cell apoptosis caused by acute exposure to PM2.5. In summary, our findings present the first time that prevent or mitigate the damage triggered by PM2.5 through antioxidant approaches was a promising strategy.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Josevata Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
39
|
Liu J, Li X, Zhou G, Zhang Y, Sang Y, Wang J, Li Y, Ge W, Sun Z, Zhou X. Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117446. [PMID: 34058501 DOI: 10.1016/j.envpol.2021.117446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Researches have shown that silica nanoparticles (SiNPs) could reduce both the quantity and quality of sperm. However, the mechanism of toxicity induced by SiNPs in the male reproductive system is still unclear. In this study, male mice were randomly divided into a control group, and SiNPs treated group (20 mg/kg dose; n = 30 per group). Half of the mice per group were sacrificed on 35 days and the remaining on 50 days of the SiNPs exposure. SiNPs were found to decrease sperm count and mobility, increase the sperm abnormality rate, and damage the testes' structure. Furthermore, SiNPs decreased the protein levels of Protamine 1(PRM1) and elevated the histones' levels and suppressed the chromatin condensation of sperm. There was a significant reduction of the ubiquitinated H2A (ubH2A)/H2B (ubH2B) and RING finger protein 8 (RNF8) levels in the spermatid nucleus, while the RNF8 level in the spermatid cytoplasm increased evidently. The protein expression levels of PIWI-like protein 1(MIWI) in the late spermatids significantly increased on day 35 of SiNPs exposure. After 15 days of the withdrawal, the sperm parameters and protamine levels, and histones in the epididymal sperm were unrecovered; however, the changes in testis induced by SiNPs were recovered. Our results suggested that SiNPs could decrease the RNF8 level in the nucleus of spermatid either by upregulating of the expression of MIWI or by inhibiting its degradation. This resulted in the detention of RNF8 in the cytoplasm that maybe inhibited the RNF8-mediated ubiquitination of ubH2A and ubH2B. These events culminated in creating obstacles during the H2A and H2B removal and chromatin condensation, thereby suppressing the differentiation of round spermatids and chromatin remodeling, which compromised the sperm quality and quantity.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
40
|
Zhang N, Li P, Lin H, Shuo T, Ping F, Su L, Chen G. IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103659. [PMID: 33862202 DOI: 10.1016/j.etap.2021.103659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can cause a number of respiratory diseases. However, there is currently no safe treatment for PM2.5-induced lung damage. This study investigated the protective effect of IL-10 against lung injury and the possible involvement of AMPK/SIRT1/PGC-1α signaling. The mean diameter, particle size distribution, and zeta potential of PM2.5 samples were assessed using a Zetasizer Nano ZS90 analyzer. Thereafter, Wistar rats were exposed to PM2.5 (1.8, 5.4, or 16.2 mg/kg) alone or high-dose PM2.5 with recombinant rat IL-10 (rrIL-10; 5 μg/rat). Treatment with rrIL-10 ameliorated PM2.5-induced acute lung injury, reduced mitochondrial damage, and inhibited inflammation, oxidative stress, and apoptosis in the PM2.5-treated rats. Moreover, the mRNA and protein expression of AMPK, SIRT1, and PGC-1α were upregulated by rrIL-10 treatment. In conclusion, rrIL-10 protected lung tissues against PM2.5-induced inflammation by reducing oxidative stress and apoptosis via activating AMPK/SIRT1/PGC-1α signaling.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China; Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Ping Li
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Hua Lin
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Tian Shuo
- Department of Urinary Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei, China
| | - Fen Ping
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Li Su
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Gang Chen
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
41
|
Zhang X, Zhang J, Wu Y, Nan B, Huang Q, Du X, Tian M, Liu L, Xin Y, Li Y, Duan J, Chen R, Sun Z, Shen H. Dynamic recovery after acute single fine particulate matter exposure in male mice: Effect on lipid deregulation and cardiovascular alterations. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125504. [PMID: 33652219 DOI: 10.1016/j.jhazmat.2021.125504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Many studies have linked airborne fine particulate matter (PM2.5) exposure to cardiovascular diseases. We performed a time-series analysis to investigate whether the disruption of lipid metabolism recovered or lasted after acute PM2.5 exposure in mice. Targeted lipidomic analysis showed that four major plasma membrane phospholipids along with cholesterol esters (CE) were significantly altered on 7th post-exposure day (PED7), and the alteration reached a peak on PED14. On PED21, the phosphatidylcholine (PC) decrease was more marked than on PED14, and its resurgence was indirectly linked to triglyceride (TG) increase. Homocysteine (HCY), lactate dehydrogenase (LDH), and α-hydroxybutyrate dehydrogenase (α-HBDH) levels increased but glucose levels decreased markedly in a dose- and time-dependent manner throughout the experimental period. Network analysis showed that the lasting lipid deregulation on PED21 correlated to myocardial markers and glucose interruption, during which high-density lipoprotein cholesterol (HDL-C) decreased. The present data implied that the constructional membrane lipids were initially interrupted by PM2.5, and the subsequent rehabilitation resulted in the deregulation of storage lipids; the parallel myocardial and glucose effects may be enhanced by the lasting HDL-C lipid deregulation on PED21. These myocardial and lipidomic events were early indicators of cardiovascular risk, resulting from subsequent exposure to and accumulation of PM2.5.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Yan Wu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xiaoyan Du
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yuntian Xin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
42
|
Song Y, Zhao L, Qi Z, Zhang Y, Cao G, Li R, Zhu L, Yang Z, Dong C, Cai Z. Application of a real-ambient fine particulate matter exposure system on different animal models. J Environ Sci (China) 2021; 105:64-70. [PMID: 34130840 DOI: 10.1016/j.jes.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Simulation of fine particulate matter (PM2.5) exposure is essential for evaluating adverse health effects. In this work, an ambient exposure system that mimicked real atmospheric conditions was installed in Taiyuan, China to study impacts of chronic PM2.5 exposure on adult and aged mice as well as Sirtuin3 knockout (Sirt3 KO) mice and wild-type (WT) mice. The real-ambient exposure system eliminated the possible artificial effects caused from exposure experiments and maintained the physiochemical characteristics of PM2.5. The case studies indicated that aged mice exhibited apparent heart dysfunction involving increased heart rate and decreased blood pressure after 17-week of real-ambient PM2.5 exposure. Meanwhile, 15-week of real-ambient PM2.5 exposure decreased the heart rate and amounts of associated catecholamines to induce heart failure in Sirt3 KO mice. Additionally, the increased pro-inflammatory cytokines and decreased platelet related indices suggested that inflammation occurred. The changes of biomarkers detected by targeted metabolomics confirmed metabolic disorder in WT and Sirt3 KO mice after exposed to real-ambient PM2.5. These results indicated that the real-ambient PM2.5 exposure system could evaluate the risks of certain diseases associated with air pollution and have great potential for supporting the investigations of PM2.5 effects on other types of rodent models.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
43
|
Nassan FL, Wang C, Kelly RS, Lasky-Su JA, Vokonas PS, Koutrakis P, Schwartz JD. Ambient PM 2.5 species and ultrafine particle exposure and their differential metabolomic signatures. ENVIRONMENT INTERNATIONAL 2021; 151:106447. [PMID: 33639346 PMCID: PMC7994935 DOI: 10.1016/j.envint.2021.106447] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/03/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The metabolomic signatures of short- and long-term exposure to PM2.5 have been reported and linked to inflammation and oxidative stress. However, little is known about the relative contribution of the specific PM2.5 species (hence sources) that drive these metabolomic signatures. OBJECTIVES We aimed to determine the relative contribution of the different species of PM2.5 exposure to the perturbed metabolic pathways related to changes in the plasma metabolome. METHODS We performed mass-spectrometry based metabolomic profiling of plasma samples among men from the Normative Aging Study to identify metabolic pathways associated with PM2.5 species. The exposure windows included short-term (one, seven-, and thirty-day moving average) and long-term (one year moving average). We used linear mixed-effect regression with subject-specific intercepts while simultaneously adjusting for PM2.5, NO2, O3, temperature, relative humidity, and covariates and correcting for multiple testing. We also used independent component analysis (ICA) to examine the relative contribution of patterns of PM2.5 species. RESULTS Between 2000 and 2016, 456 men provided 648 blood samples, in which 1158 metabolites were quantified. We chose 305 metabolites for the short-term and 288 metabolites for the long-term exposure in this analysis that were significantly associated (p-value < 0.01) with PM2.5 to include in our PM2.5 species analysis. On average, men were 75.0 years old and their body mass index was 27.7 kg/m2. Only 3% were current smokers. In the adjusted models, ultrafine particles (UFPs) were the most significant species of short-term PM2.5 exposure followed by nickel, vanadium, potassium, silicon, and aluminum. Black carbon, vanadium, zinc, nickel, iron, copper, and selenium were the significant species of long-term PM2.5 exposure. We identified several metabolic pathways perturbed with PM2.5 species including glycerophospholipid, sphingolipid, and glutathione. These pathways are involved in inflammation, oxidative stress, immunity, and nucleic acid damage and repair. Results were overlapped with the ICA. CONCLUSIONS We identified several significant perturbed plasma metabolites and metabolic pathways associated with exposure to PM2.5 species. These species are associated with traffic, fuel oil, and wood smoke. This is the largest study to report a metabolomic signature of PM2.5 species' exposure and the first to use ICA.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Cuicui Wang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston, MA 02215, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
44
|
Zhou G, Liu J, Li X, Sang Y, Zhang Y, Gao L, Wang J, Yu Y, Ge W, Sun Z, Zhou X. Silica nanoparticles inducing the apoptosis via microRNA-450b-3p targeting MTCH2 in mice and spermatocyte cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116771. [PMID: 33652185 DOI: 10.1016/j.envpol.2021.116771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs) could cause reproductive toxicity. The role of miRNAs in reproductive toxicity induced by SiNPs is still ambiguous. The present study was designed to investigate the role of miRNA-450 b-3p. In vivo, 40 male mice were randomly divided into control, and 20 mg/kg SiNPs groups. The mice were administrated by tracheal perfusion for 35 days. In vitro, spermatocyte cells (GC-2spd cells) were divided into 6 groups: 0 μg/mL SiNPs groups, 5 μg/mL SiNPs groups, 5 μg/mL SiNPs + miRNA-450 b-3p mimic transfection group, 5 μg/mL SiNPs + miRNA-450 b-3p mimic negative control group, 5 μg/mL SiNPs + miRNA-450 b-3p inhibitor transfection group, and 5 μg/mL SiNPs + miRNA-450 b-3p inhibitor negative control group. The results showed that SiNPs induced the apoptosis of spermatogenic cells, decreased the quantity and quality of the sperm, reduced the expressions of miR-450 b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, the mimic of miRNA-450 b-3p reversed the decrease of viability and the increase of apoptosis rate and significantly antagonized the expression enhancements of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3 induced by SiNPs, while inhibitor of miRNA-450 b-3p further promoted the effects induced by SiNPs. The result suggested that SiNPs could inhibit the miR-450 b-3p expression resulting in activation of the mitochondrial apoptosis signaling pathways by regulating the MTCH2 in the spermatocyte cells and, thus, induce the reproductive toxicity.
Collapse
Affiliation(s)
- Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
45
|
Wang R, Han X, Pang H, Hu Z, Shi C. Illuminating a time-response mechanism in mice liver after PM 2.5 exposure using metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144485. [PMID: 33429275 DOI: 10.1016/j.scitotenv.2020.144485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
PM2.5 is recognized as an atmospheric pollutant that seriously jeopardizes human health. Emerging evidence indicates that PM2.5 exposure is associated with metabolic disorders. Existing epidemiology and toxicology studies on the health effects of PM2.5 usually focused on its different components and doses, the effects on susceptible populations, or the effects of indoor and outdoor pollution. The underlying mechanisms of exposure time are poorly understood. Liver, as the central organ involved in various metabolisms, has special signaling pathways non-existed in lung and cardiovascular systems. Exacerbation in liver by the prolonged exposure of PM2.5 leads to hepatic function disorder. It is therefore essential to elucidate the mechanism underlying hepatotoxicity after PM2.5 exposure from the perspective of time-response relationship. In this study, targeted metabolomics was utilized to explore the hepatic injury in mice after PM2.5 exposure. Our results showed that prolonged exposure of PM2.5 would aggravate liver metabolic disorders. The metabolic process was divided into three phases. In phase I, it was found that PM2.5 exposure disturbed the hepatic urea synthesis. In phase II, oxidative damages and inflammations obviously occurred in liver, which would further cause neurobehavioral disorders and fat deposits. In phase III, the changes of metabolites and metabolic pathways indicated that the liver has been severely damaged, with the accelerated biosynthesis and fat metabolism. Finally, using ROC analysis coupled with their biological functions, 4 potential biomarkers were screened out, with which we established a method to classify and diagnose the progress of liver damage in mice after PM2.5 exposure. In this paper, we not only established the time-response relationship of PM2.5, but also provided new insights for the classification and prediction of the toxic injury stages in mice liver, which provides a ground work for the future drug intervention to prevent oxidative damage of PM2.5.
Collapse
Affiliation(s)
- Rongrong Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Han
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China; College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
46
|
Gong CM, Xu YF, Liang XS, Mo JL, Zhuang ZX. PARP-1 overexpression does not protect HaCaT cells from DNA damage induced by SiO 2 nanoparticles. Toxicol Res (Camb) 2021; 10:399-408. [PMID: 34141153 DOI: 10.1093/toxres/tfaa110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
Nano-SiO2 is increasingly used in diagnostic and biomedical research because of its ease of production and relatively low cost and which is generally regarded as safe and has been approved for use as a food or animal feed ingredient. Although recent literature reveals that nano-SiO2 may present toxicity and DNA damage, however, the underlying mechanism remains poorly understood. Since in previous studies, we found that nano-SiO2 treatment down-regulated the expression of the poly(ADP-ribose) polymerases-1 (PARP-1), a pivotal DNA repair gene, in human HaCaT cells and PAPR-1 knockdown can aggravate DNA damage induced by nano-SiO2. Therefore, we speculate whether PARP-1 overexpression can protect DNA from damage induced by nano-SiO2. However, our data demonstrated that overexpression of PARP-1 in HaCaT cells slightly enhanced the cellular proliferation of undamaged cells, when compared with both empty vector control cells and parental cells, but had drastic consequences for cells treated with nano-SiO2. The PARP-1 overtransfected cells were sensitized to the cytotoxic effects and DNA damage of nano-SiO2 compared with control parental cells. Meanwhile, flow cytometric analysis of nano-SiO2 stimulated poly(ADP-ribose) synthesis revealed consistently larger fractions of cells positive for this polymer in the PARP-1 overexpression cells than in control clones. Combining our previous research on PARP-1 knockdown HaCaT cells, we hypothesize that an optimal level of cellular poly(ADP-ribose) accumulation exists for the cellular recovery from DNA damage.
Collapse
Affiliation(s)
- Chun-Mei Gong
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Yuan-Fei Xu
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Xiong-Shun Liang
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Jun-Luan Mo
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Zhi-Xiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Longyuan Road 8, Shenzhen 518055, Nanshan, PR China
| |
Collapse
|
47
|
Tian J, Li J, Yin H, Ma L, Zhang J, Zhai Q, Duan S, Zhang L. In vitro and in vivo uterine metabolic disorders induced by silica nanoparticle through the AMPK signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143152. [PMID: 33139001 DOI: 10.1016/j.scitotenv.2020.143152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Exposure to silica nanoparticles (SiNPs) has been suggested to cause physical disorders, yet the effects of SiNPs on female reproduction have not been illustrated. This study was implemented to explore the reproductive toxicity of SiNPs on female and reveal its underlying mechanisms. Methodologically, the fluorescein isothiocyanate (FITC)-SiNPs were synthesized by coupling with FITC and then used to track the biodistribution of SiNPs in vitro and in vivo. In total, 30 mice were intratracheally injected 0.25 g of FITC-SiNPs, and 6 mice injected with the same volume of saline were used as controls. The results showed that SiNPs penetrated the cellular membrane, triggering apoptosis and inhibiting proliferation, tube formation, and invasion of trophoblast. Mechanistically, SiNPs was demonstrated to dysregulate Fbp2, Cpt1a, Scd1, and Pfkl, and further induced accumulation of pyruvate and fatty acid in mitochondria through the AMPK signaling pathway, which finally activated the Caspase-3-dependent apoptosis. Consistently, the similar alterations of these genes were detected in vivo, and the uterine inflammatory infiltration aggravated with the extension of the observation duration. These results suggested that SiNPs induced trophoblast apoptosis and uterine inflammation, and ultimately caused acute reproductive toxicity on female. The underlying mechanism might be explained by the dysregulation of Fbp2/Cpt1a/Pfkl/Scd1 axis, which promoted the overload of glucose and lipid through the AMPK signaling pathway. These findings were of great significance to guide a comprehensive understanding of the reproductive toxicity of SiNPs as well as the development of environmental standards.
Collapse
Affiliation(s)
- Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Lan Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
48
|
Predictive and Preventive Mucosal Communications in Particulate Matter Exposure-Linked Renal Distress. J Pers Med 2021; 11:jpm11020118. [PMID: 33670188 PMCID: PMC7916923 DOI: 10.3390/jpm11020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite research into the epidemiological link between exposure to particulate matter (PM) and renal disorder, there is limited information available on the etiological complexity and molecular mechanisms. Among the early responsive tissues to PM exposure, the mucosal barrier of the airway and alimentary tract may be a crucial source of pathologic mediators leading to inflammatory renal diseases, including chronic kidney disease (CKD). Given that harmful responses and products in mucosa exposed to PM may enter the circulation and cause adverse outcomes in the kidney, the aim of the present review was to address the impact of PM exposure on the mucosal barrier and the vicious feedback cycle in the mucosal environment. In addition to the PM-induced alteration of mucosal barrier integrity, the microbial community has a pivotal role in the xenobiotic metabolism and individual susceptibility to PM toxicity. The dysbiosis-induced deleterious metabolites of PM and nutrients are introduced systemically via a disrupted mucosal barrier, contributing to renal injuries and pathologic severity. In contrast, the progress of mucosa-associated renal disease is counteracted by endogenous protective responses in the mucosa. Along with direct elimination of the toxic mediators, modulators of the mucosal microbial community should provide a promising platform for mucosa-based personalized interventions against renal disorders caused by air pollution.
Collapse
|
49
|
Sun M, Zhang J, Liang S, Du Z, Liu J, Sun Z, Duan J. Metabolomic characteristics of hepatotoxicity in rats induced by silica nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111496. [PMID: 33099137 DOI: 10.1016/j.ecoenv.2020.111496] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Silica nanoparticles (SiNPs) have become one of the most widely studied nanoparticles in nanotechnology for environmental health and safety. Although many studies have devoted to evaluating the hepatotoxicity of SiNPs, it is currently impossible to predict the extent of liver lipid metabolism disorder by identifying changes in metabolites. In the present study, 40 male Sprague-Dawley (SD) rats were randomly divided into control group and 3 groups with different doses (1.8 mg/kg body weight (bw), 5.4 mg/kg bw, 16.2 mg/kg bw), receiving intratracheal instillation of SiNPs. Liver tissue was taken for lipid level analysis, and serum was used for blood biochemical analysis. Then, the metabolites changes of liver tissue in rats were systematically analyzed using 1H nuclear magnetic resonance (1H NMR) techniques in combination with multivariate statistical analysis. SiNPs induced serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and triglyceride (TG) elevation in treated groups; TG and low-density lipoprotein cholesterol (LDL-C) were significantly higher in SiNPs-treated groups of high-dose, however high-density lipoprotein cholesterol (HDL-C) showed a declining trend in liver tissue. The orthogonal partial least squares discriminant analysis (OPLS-DA) scores plots revealed different metabolic profiles between control and high-dose group (Q2 =0.495, R2Y=0.802, p = 0.037), and a total of 11 differential metabolites. Pathway analysis indicated that SiNPs treatment mainly affected 10 metabolic pathways including purine metabolism, glucose-alanine cycle and metabolism of various amino acids such as glutamate, cysteine and aspartate (impact value>0.1, false discovery rate (FDR)< 0.05). The result indicated that exposure to SiNPs caused liver lipid metabolism disorder in rats, the biochemical criterions related to lipid metabolism changed significantly. The obviously changed metabolomics in SiNPs-treated rats mostly occurred in amino acids, organic acids and nucleosides.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
50
|
Liu J, Li X, Zhou G, Sang Y, Zhang Y, Zhao Y, Ge W, Sun Z, Zhou X. Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114974. [PMID: 32554096 DOI: 10.1016/j.envpol.2020.114974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 05/25/2023]
Abstract
Silica nanoparticles (SiNPs) can reduce both quality and quantity of sperm via inhibiting the progress of meiosis and mitosis and inducing apoptosis of spermatogenic cells, however, their specific mechanism and effects on the later stage of spermatogenesis are still unclear. To investigate the effects of SiNPs on the reproductive system, male mice were treated with SiNPs (0, 1.25, 5 and 20 mg/kg.bw) via intratracheal instillation once every 3 days and for a total of 15 days. Results revealed that exposure to SiNPs induced reduction in the rate of sperm activity, histological abnormalities in seminiferous epithelium as well as apoptosis of spermatogenic cells, which are associated with decreased level of Lethal (3) malignant brain tumor like 2 (L3MBTL2) and activation of DNA damage-p53-mitochondrial apoptosis pathways. Moreover, reduction in L3MBTL2 level caused by SiNPs also led to the lower expression of RNF8-ubH2A/ubH2B pathway, thus resulting in incomplete histone-to-protamine exchange. These results suggest that the inhibition of L3MBTL2 expression caused by SiNPs not only activates DNA damage-p53-mitochondrial apoptosis pathway leading to the apoptosis of spermatogenic cells, but also inhibits RNF8-ubH2A/ubH2B pathway resulting in incomplete histone-to-protamine exchange, thereby affected spermatogenesis. This indicates that L3MBTL2 plays an important role in reproductive toxicity of males caused by SiNPs.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanzhi Zhao
- Yanjing Medical College Capital Medical University, Beijing, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|