1
|
Zhang JL, Liao GY, Lin HY, Xie JA, Li WC, Chen HC, Wu DW, Juan HL, Kuo JY, Chen PS. Enhancing indoor air quality and cardiopulmonary health in patients with asthma by photocatalytic oxidation and filters air cleaner. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136573. [PMID: 39581037 DOI: 10.1016/j.jhazmat.2024.136573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Air purifiers can enhance indoor air quality and health outcomes, and studies have primarily focused on filters and particulate matter (PM) in households. Photocatalytic oxidation (PCO) is a promising technique for eliminating gaseous pollutants and bioaerosols. However, no field study was conducted in household. Therefore, this study evaluated the effects of the PCO and PCO + filters intervention on indoor air pollutants and cardiopulmonary endpoints in households. METHODS A randomized, double-blind crossover clinical trial was conducted. Indoor air pollutants, including PM, bioaerosols, and gaseous pollutants and cardiopulmonary endpoints including lung function, fractional exhaled nitric oxide (FeNO), respiratory symptoms, and blood pressure were assessed before and after intervention. FINDINGS This was the first study to evaluate the effects of PCO and PCO + filters interventions on indoor air pollutants and cardiopulmonary health in households. Indoor total volatile organic compounds (TVOC) and sulfur dioxides (SO2) significantly reduced after PCO intervention, however, we also observed the significant reduction in percentage of predicted values of forced vital capacity (FVC%) and forced expiratory volume in 3 s (FEV3%) and increased in FeNO after 13 days of PCO intervention. The PCO + filters intervention significantly reduced the levels of indoor PM1, PM2.5, PM4, PM10, total suspended particulate matter, ultrafine particles, airborne bacteria, fungi, endotoxin, mites, TVOC, nitrogen dioxide, and SO2, and marginal reduction in carbon monoxide. However, indoor carbon dioxide significantly increased after PCO/PCO + filters intervention. As for cardiopulmonary health, FVC%, and FEV1 % marginally increased 7 days after the PCO + filters intervention.
Collapse
Affiliation(s)
- Jia Lin Zhang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Guan-Yu Liao
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Hong-Yi Lin
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Jie-An Xie
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Wan-Chen Li
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Huang-Chi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Da Wei Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Huai-Lei Juan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jia-Yu Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC; Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan, ROC; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC; Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung City, Taiwan, ROC.
| |
Collapse
|
2
|
Short M, Dobson J, Day G, Lefferts B, Singleton R, Keck J. "You can feel the fresh air … " Rural Alaska Native household perceptions of home air purifiers and health. Int J Circumpolar Health 2024; 83:2335702. [PMID: 38546171 PMCID: PMC10984226 DOI: 10.1080/22423982.2024.2335702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Alaska Native and American Indian children experience frequent respiratory illness. Indoor air quality is associated with the severity and frequency of respiratory infections in children. High efficiency particulate air (HEPA) purifiers effectively improve indoor air quality and may protect respiratory health. In 2019, the Yukon-Kuskokwim Health Corporation implemented a pilot programme that provided education and HEPA purifiers to households of children with chronic lung conditions. The team evaluated HEPA purifier acceptability and use by interviewing representatives from 11 households that participated in the pilot programme. All interviewees reported improvement in their child's health, and some believed that the health of other household members was also improved because of the HEPA purifier. Interviewees reported that the HEPA purifiers were easy to use, quiet, and not expensive to run. Five of 11 households were still using the HEPA purifier at the time of the interview, which was about three years after receipt of the unit. The most common reasons for discontinuing use were equipment failure and lack of replacement filter, suggesting that programme support could increase sustainability. Our evaluation suggests that HEPA purifiers are acceptable and feasible for use in rural Alaska Native households.
Collapse
Affiliation(s)
- Madilyn Short
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Jennifer Dobson
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
- Office of Environmental Health and Engineering, Yukon-Kuskokwim Health Corporation, Bethel, AK, USA
| | - Gretchen Day
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Brian Lefferts
- Office of Environmental Health and Engineering, Yukon-Kuskokwim Health Corporation, Bethel, AK, USA
| | - Rosalyn Singleton
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - James Keck
- WWAMI School of Medical Education, University of Alaska Anchorage, Anchorage, AK, USA
- Department of Research Services, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| |
Collapse
|
3
|
Cowan K, Semmens EO, Lee JY, Walker ES, Smith PG, Fu L, Singleton R, Cox SM, Faiella J, Chassereau L, Lawrence L, Ying J, Baldner J, Garza M, Annett R, Chervinskiy SK, Snowden J. Bronchiolitis recovery and the use of High Efficiency Particulate Air (HEPA) Filters (The BREATHE Study): study protocol for a multi-center, parallel, double-blind, randomized controlled clinical trial. Trials 2024; 25:197. [PMID: 38504367 PMCID: PMC10953277 DOI: 10.1186/s13063-024-08012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION NCT05615870. Registered on November 14, 2022.
Collapse
Affiliation(s)
- Kelly Cowan
- Department of Pediatrics, Larner College of Medicine at the University of Vermont, 111 Colchester Ave, Smith 5, Burlington, VT, 05403, USA.
| | - Erin O Semmens
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Jeannette Y Lee
- University of Arkansas for Medical Sciences, 4301 West Markham, #781, Little Rock, AR, 72205, USA
| | - Ethan S Walker
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Paul G Smith
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Linda Fu
- National Institutes of Health Environmental Influences On Child, Health Outcomes (ECHO) Program, 11601, Landsdown Street, Rockville, MD, 20852, USA
| | - Rosalyn Singleton
- Alaska Native Tribal Health Consortium, AIP-CDC, 4055 Tudor Centre Drive, Anchorage, AK, 99508, USA
| | - Sara McClure Cox
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Jennifer Faiella
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Laurie Chassereau
- University of Vermont, Given C421, 89 Beaumont Ave, Burlington, VT, 05405, USA
| | - Lora Lawrence
- IDeA States Pediatric Network Data Coordination and Operations Center, 13 Children's Way, Slot 512-35, Little Rock, AR, 72202, USA
| | - Jun Ying
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop F496, Academic Office One L15-3407, 12631 E 17th Avenue, Aurora, CO, 80045, USA
| | - Jaime Baldner
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR, 72205, USA
| | - Maryam Garza
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR, 72205, USA
| | - Robert Annett
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Sheva K Chervinskiy
- Cook Children's Department of Immunology, 1500 Cooper St, Fort Worth, TX, 76104, USA
| | - Jessica Snowden
- IDeA States Pediatric Network Data Coordination and Operations Center, 13 Children's Way, Slot 512-35, Little Rock, AR, 72202, USA
| |
Collapse
|
4
|
Ebrahimifakhar A, Poursadegh M, Hu Y, Yuill DP, Luo Y. A systematic review and meta-analysis of field studies of portable air cleaners: Performance, user behavior, and by-product emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168786. [PMID: 38008326 DOI: 10.1016/j.scitotenv.2023.168786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Indoor air quality is important for the health of building occupants, and public interest in controlling indoor airborne pathogens increased dramatically with the COVID-19 pandemic. Pollutant concentrations can be controlled locally using portable air cleaners (sometimes called air purifiers), which allow occupants to apply air cleaning technology to meet their needs in the location and times that they find appropriate. This paper provides a systematic review of scientific literature that describes field studies of the effectiveness of portable air cleaners. Over 500 papers were considered, and 148 were reviewed in detail, to extract 35 specific research results (e.g., particulate removal performance) or characteristics (e.g., type of building). These were aggregated to provide an overview of results and approaches to this type of research, and to provide meta-analyses of the results. The review includes: descriptions of the geographical location of the research; rate of publications over time; types of buildings and occupants in the field study; types of air cleaner technology being tested; pollutants being measured; resulting pollutant removal effectiveness; patterns of usage and potential barriers to usage by occupants; and the potential for by-product emissions in some air cleaner technologies. An example result is that 83 of the 148 papers measured reductions in fine particulates (PM2.5) and found a mean reduction of 49 % with standard deviation of 20 %. The aggregated results were approximately normally distributed, ranging from finding no significant reduction up to a maximum above 90 % reduction. Sixteen of the 148 papers considered gaseous pollutants, such as volatile organic compounds, nitrogen dioxide, and ozone; 36 papers considered biological pollutants, such as bacteria, viruses, pollen, fungi, etc. An important challenge, common to several studies, is that occupants run the air cleaners for shorter periods and on low airflow rate settings, because of concerns about noise, drafts, and electricity cost, which significantly reduces air cleaning effectiveness.
Collapse
Affiliation(s)
- Amir Ebrahimifakhar
- Delos Labs, Delos, New York, NY 10014, USA; Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Mehrdad Poursadegh
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yifeng Hu
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA; Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - David P Yuill
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yu Luo
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, NY 10027, USA.
| |
Collapse
|
5
|
Walker ES, Noonan CW, Belcourt A, Boulafentis J, Garcia C, Graham J, Hoskie N, Quintana E, Semmens EO, Simpson J, Smith P, Teasley H, Ware D, Weiler E, Ward TJ. Efficacy of air filtration and education interventions on fine particulate matter among rural Native American homes heated with wood stoves: Results from the EldersAIR randomized trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157029. [PMID: 35777562 PMCID: PMC9829403 DOI: 10.1016/j.scitotenv.2022.157029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Native Americans living in rural areas often rely upon wood stoves for home heating that can lead to elevated indoor concentrations of fine particulate matter (PM2.5). Wood stove use is associated with adverse health outcomes, which can be a particular risk in vulnerable populations including older adults. OBJECTIVES We assessed the impact of portable air filtration units and educational approaches that incorporated elements of traditional knowledge on indoor and personal PM2.5 concentrations among rural, Native American elder households with wood stoves. METHODS EldersAIR was a three-arm, pre-post randomized trial among rural households from the Navajo Nation and Nez Perce Tribe in the United States. We measured personal and indoor PM2.5 concentrations over 2-day sampling periods on up to four occasions across two consecutive winter seasons in elder participant homes. We assessed education and air filtration intervention efficacy using linear mixed models. RESULTS Geometric mean indoor PM2.5 concentrations were 50.5 % lower (95 % confidence interval: -66.1, -27.8) in the air filtration arm versus placebo, with similar results for personal PM2.5. Indoor PM2.5 concentrations among education arm households were similar to placebo, although personal PM2.5 concentrations were 33.3 % lower for the education arm versus placebo (95 % confidence interval: -63.2, 21.1). SIGNIFICANCE The strong partnership between academic and community partners helped facilitate a culturally acceptable approach to a clinical trial intervention within the study communities. Portable air filtration units can reduce indoor PM2.5 that originates from indoor wood stoves, and this finding was supported in this study. The educational intervention component was meaningful to the communities, but did not substantially impact indoor PM2.5 relative to placebo. However, there is evidence that the educational interventions reduced indoor PM2.5 in some subsets of the study households. More study is required to determine ways to optimize educational interventions within Native American communities.
Collapse
Affiliation(s)
- Ethan S Walker
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA.
| | - Curtis W Noonan
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Annie Belcourt
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | | | | | - Jon Graham
- Center for Population Health Research, University of Montana, Missoula, MT, USA
| | - Nolan Hoskie
- Navajo Nation Environmental Protection Agency, Window Rock, AZ, USA
| | - Eugenia Quintana
- Navajo Nation Environmental Protection Agency, Window Rock, AZ, USA
| | - Erin O Semmens
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Julie Simpson
- Nez Perce Tribe Air Quality Program, Lapwai, ID, USA
| | - Paul Smith
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Howard Teasley
- Nez Perce Tribe Forestry and Fire Management Division, Lapwai, ID, USA
| | - Desirae Ware
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Emily Weiler
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Tony J Ward
- Center for Population Health Research, University of Montana, Missoula, MT, USA; School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
6
|
Chen CF, Hsu CH, Chang YJ, Lee CH, Lee DL. Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11517. [PMID: 36141811 PMCID: PMC9516965 DOI: 10.3390/ijerph191811517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
High-efficiency particulate air (HEPA) filters is a potential tool used to remove fine particles and improve indoor air quality. This study aims to analyze the real-world efficacy of portable HEPA air cleaners in a household environment. Laser light dispersion PM2.5 sensors are used to continuously monitor the indoor and outdoor PM2.5 level before and after HEPA air cleaner filtration. Overall, HEPA air cleaners significantly reduce the indoor PM2.5 level (33.5 ± 10.3 vs. 17.2 ± 10.7 µg/m3, mean difference (MD) = -16.3 µg/m3, p < 0.001) and indoor/outdoor PM2.5% (76.3 ± 16.8 vs. 38.6 ± 19.8%, MD = -37.7%, p < 0.001). The efficacy to reduce PM2.5 is strongest in three machines with medium-flow setting group (indoor PM2.5 MD: -26.5 µg/m3, indoor/outdoor PM2.5 percentage MD: -56.4%). Multiple linear regression demonstrates that outdoor PM2.5, machine number, airflow speed, and window ventilation are significant factors associated with indoor PM2.5 concentrations (R = 0.879) and percentage of the indoor/outdoor PM2.5 ratio (R = 0.808). HEPA air cleaners can effectively improve indoor PM2.5 air pollution. Adequate air cleaner machine numbers, appropriate airflow, and window ventilation limitations are important to achieve the best efficacy of the HEPA air cleaner.
Collapse
Affiliation(s)
- Chiu-Fan Chen
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chun-Hsiang Hsu
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Jung Chang
- Kaohsiung and Pingtung Branch, National Health Insurance Administration, Ministry of Health and Welfare, Kaohsiung 801, Taiwan
| | - Chao-Hsien Lee
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - David Lin Lee
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Walker ES, Semmens EO, Belcourt A, Boyer BB, Erdei E, Graham J, Hopkins SE, Lewis JL, Smith PG, Ware D, Weiler E, Ward TJ, Noonan CW. Efficacy of Air Filtration and Education Interventions on Indoor Fine Particulate Matter and Child Lower Respiratory Tract Infections among Rural U.S. Homes Heated with Wood Stoves: Results from the KidsAIR Randomized Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47002. [PMID: 35394807 PMCID: PMC8992966 DOI: 10.1289/ehp9932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Millions of rural U.S. households are heated with wood stoves. Wood stove use can lead to high indoor concentrations of fine particulate matter [airborne particles ≤2.5μm in aerodynamic diameter (PM2.5)] and is associated with lower respiratory tract infection (LRTI) in children. OBJECTIVES We assessed the impact of low-cost educational and air filtration interventions on childhood LRTI and indoor PM2.5 in rural U.S. homes with wood stoves. METHODS The Kids Air Quality Interventions for Reducing Respiratory Infections (KidsAIR) study was a parallel three-arm (education, portable air filtration unit, control), post-only randomized trial in households from Alaska, Montana, and Navajo Nation (Arizona and New Mexico) with a wood stove and one or more children <5 years of age. We tracked LRTI cases for two consecutive winter seasons and measured indoor PM2.5 over a 6-d period during the first winter. We assessed results using two analytical frameworks: a) intervention efficacy on LRTI and PM2.5 (intent-to-treat), and b) association between PM2.5 and LRTI (exposure-response). RESULTS There were 61 LRTI cases from 14,636 child-weeks of follow-up among 461 children. In the intent-to-treat analysis, children in the education arm [odds ratio (OR)=0.98; 95% confidence interval (CI): 0.35, 2.72] and the filtration arm (OR=1.23; 95% CI: 0.46, 3.32) had similar odds of LRTI vs. control. Geometric mean PM2.5 concentrations were similar to control in the education arm (11.77% higher; 95% CI: -16.57, 49.72) and air filtration arm (6.96% lower; 95% CI: -30.50, 24.55). In the exposure-response analysis, odds of LRTI were 1.45 times higher (95% CI: 1.02, 2.05) per interquartile range (25 μg/m3) increase in mean indoor PM2.5. DISCUSSION We did not observe meaningful differences in LRTI or indoor PM2.5 in the air filtration or education arms compared with the control arm. Results from the exposure-response analysis provide further evidence that biomass air pollution adversely impacts childhood LRTI. Our results highlight the need for novel, effective intervention strategies in households heated with wood stoves. https://doi.org/10.1289/EHP9932.
Collapse
Affiliation(s)
- Ethan S. Walker
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Erin O. Semmens
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Annie Belcourt
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Bert B. Boyer
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Alaska, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jon Graham
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
| | - Scarlett E. Hopkins
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Alaska, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Johnnye L. Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Paul G. Smith
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Desirae Ware
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Emily Weiler
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Tony J. Ward
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Curtis W. Noonan
- Center for Population Health Research, University of Montana, Missoula, Montana, USA
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
8
|
Children's Particulate Matter Exposure Characterization as Part of the New Hampshire Birth Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212109. [PMID: 34831864 PMCID: PMC8620988 DOI: 10.3390/ijerph182212109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
As part of the New Hampshire Birth Cohort Study, children 3 to 5 years of age participated in a personal PM2.5 exposure study. This paper characterizes the personal PM2.5 exposure and protocol compliance measured with a wearable sensor. The MicroPEM™ collected personal continuous and integrated measures of PM2.5 exposure and compliance data on 272 children. PM2.5, black carbon (BC), and brown carbon tobacco smoke (BrC-ETS) exposure was measured from the filters. We performed a multivariate analysis of woodstove presence and other factors that influenced PM2.5, BC, and BrC exposures. We collected valid exposure data from 258 of the 272 participants (95%). Children wore the MicroPEM for an average of 46% of the 72-h period, and over 80% for a 2-day, 1-night period (with sleep hours counted as non-compliance for this study). Elevated PM2.5 exposures occurred in the morning, evening, and overnight. Median PM2.5, BC, and BrC-ETS concentrations were 8.1 μg/m3, 3.6 μg/m3, and 2.4 μg/m3. The combined BC and BrC-ETS mass comprised 72% of the PM2.5. Woodstove presence, hours used per day, and the primary heating source were associated with the children’s PM2.5 exposure and air filters were associated with reduced PM2.5 concentrations. Our findings suggest that woodstove smoke contributed significantly to this cohort’s PM2.5 exposure. The high sample validity and compliance rate demonstrated that the MicroPEM can be worn by young children in epidemiologic studies to measure their PM2.5 exposure, inform interventions to reduce the exposures, and improve children’s health.
Collapse
|
9
|
Zhu Y, Song X, Wu R, Fang J, Liu L, Wang T, Liu S, Xu H, Huang W. A review on reducing indoor particulate matter concentrations from personal-level air filtration intervention under real-world exposure situations. INDOOR AIR 2021; 31:1707-1721. [PMID: 34374125 DOI: 10.1111/ina.12922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Improving air quality in indoor environments where people live is of importance to protect human health. In this systematic review, we assessed the effectiveness of personal-level use of air filtration units in reducing indoor particulate matters (PM) concentrations under real-world situations following systematic review guidelines. A total of 54 articles were included in the review, in which 20 randomized controlled/crossover trials that reported the changes in indoor fine PM (PM2.5 ) concentrations were quantitatively assessed in meta-analysis. Standardized mean differences (SMDs) were calculated for changes in indoor PM concentrations following air filtration interventions. Moderate-to-large reductions of 11%-82% in indoor PM2.5 concentrations were observed with SMD of -1.19 (95% CI: -1.50, -0.88). The reductions in indoor PM concentrations varied by geographical locations, filtration technology employed, indoor environmental characteristics, and air pollution sources. Most studies were graded with low-to-moderate risk of bias; however, the overall certainty of evidence for indoor PM concentration reductions was graded at very low level. Considering the effectiveness of indoor air filtration under practical uses, socio-economic disparities across study populations, and costs of air filter replacement over time, our results highlight the importance of reducing air pollution exposure at the sources.
Collapse
Affiliation(s)
- Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
10
|
Riederer AM, Krenz JE, Tchong-French MI, Torres E, Perez A, Younglove LR, Jansen KL, Hardie DC, Farquhar SA, Sampson PD, Metwali N, Thorne PS, Karr CJ. Effectiveness of portable HEPA air cleaners on reducing indoor endotoxin, PM 10, and coarse particulate matter in an agricultural cohort of children with asthma: A randomized intervention trial. INDOOR AIR 2021; 31:1926-1939. [PMID: 34288127 PMCID: PMC8577577 DOI: 10.1111/ina.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
We conducted a randomized trial of portable HEPA air cleaners in the homes of children age 6-12 years with asthma in the Yakima Valley, Washington. All families received asthma education while intervention families also received two HEPA cleaners (child's bedroom, living room). We collected 14-day integrated samples of endotoxin in settled dust and PM10 and PM10-2.5 in the air of the children's bedrooms at baseline and one-year follow-up, and used linear regression to compare follow-up levels, adjusting for baseline. Seventy-one families (36 HEPA, 35 control) completed the study. Baseline geometric mean (GSD) endotoxin loadings were 1565 (6.3) EU/m2 and 2110 (4.9) EU/m2 , respectively, in HEPA vs. control homes while PM10 and PM10-2.5 were 22.5 (1.9) μg/m3 and 9.5 (2.9) μg/m3 , respectively, in HEPA homes, and 19.8 (1.8) μg/m3 and 7.7 (2.0) μg/m3 , respectively, in control homes. At follow-up, HEPA families had 46% lower (95% CI, 31%-57%) PM10 on average than control families, consistent with prior studies. In the best-fit heterogeneous slopes model, HEPA families had 49% (95% CI, 6%-110%) and 89% lower (95% CI, 28%-177%) PM10-2.5 at follow-up, respectively, at 50th and 75th percentile baseline concentrations. Endotoxin loadings did not differ significantly at follow-up (4% lower, HEPA homes; 95% CI, -87% to 50%).
Collapse
Affiliation(s)
- Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer E. Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Maria I. Tchong-French
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Torres
- Northwest Communities Education Center, Radio KDNA, Granger, WA, USA
| | - Adriana Perez
- Yakima Valley Farm Workers Clinic, Toppenish, WA, USA
| | - Lisa R. Younglove
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Karen L. Jansen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - David C. Hardie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie A. Farquhar
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Paul D. Sampson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Zhang L, Ou C, Magana-Arachchi D, Vithanage M, Vanka KS, Palanisami T, Masakorala K, Wijesekara H, Yan Y, Bolan N, Kirkham MB. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11055. [PMID: 34769574 PMCID: PMC8582694 DOI: 10.3390/ijerph182111055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
- School of Health, Jiangsu Food & Pharmaceutical Science College, Huai’an 223003, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
| | - Dhammika Magana-Arachchi
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
| | - Meththika Vithanage
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kanth Swaroop Vanka
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara 80000, Sri Lanka;
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka;
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
12
|
Piracón JAB, Vallejo LAM, Cortés MAQ, Vasquez YA, Achury NJM, Cerón LCB, Hernández MA. Spirometry parameter alterations due to exposure to indoor air pollutants in rural homes in Bogotá, Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57275-57287. [PMID: 34086176 DOI: 10.1007/s11356-021-14717-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to determine the association between the concentrations of intradomiciliary PM2.5, CO, and BC and alterations in respiratory function parameters in a population living in rural dwellings in Bogotá, Colombia. For this cross-sectional study, people were recruited from the rural areas of the localities of Usme and Sumapaz in Bogotá. In total, 68 participants were recruited by means of nonrandom sampling. Indoor air monitoring of PM2.5, BC, and CO was carried out. Additionally, evaluations of pulmonary function were performed using spirometry. The variables of pulmonary function were included in a multiple linear regression by successive steps and adjusted by the main variables described as modifiers of spirometry parameters, which are age, height, sex, disability, and a history of tobacco use. Assumptions of multicollinearity and the randomization of variances in the residuals were evaluated. Negative associations were found between spirometry parameters and the concentrations of indoor air pollutants. For FEV1/FVC and theoretical FEV1, there was a statistically significant association with the concentration of carbon monoxide (p = 0.003 and 0.019, respectively). The environmental concentrations were higher in homes where biomass was used for cooking, but these differences were statistically significant only for BC and CO (p = 0.008 and 0.03, respectively). The concentrations of carbon monoxide in rural homes were associated with alterations in respiratory function parameters.
Collapse
|
13
|
Brugge D, Lerman Ginzburg S, Hudda N, Sprague Martinez L, Meunier L, Hersey SP, Hochman I, Walker DI, Echevarria B, Thanikachalam M, Durant JL, Zamore W, Eliasziw M. A randomized crossover trial of HEPA air filtration to reduce cardiovascular risk for near highway residents: Methods and approach. Contemp Clin Trials 2021; 108:106520. [PMID: 34332159 DOI: 10.1016/j.cct.2021.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Near highway residents are exposed to elevated levels of traffic-related air pollution (TRAP), including ultrafine particles, which are associated with adverse health effects. The efficacy of using in-home air filtration units that reduce exposure and potentially yield health benefits has not been tested in a randomized controlled trial. METHODS We will conduct a randomized double-blind crossover trial of portable air filtration units for 200 adults 30 years and older who live in near-highway homes in Somerville, MA, USA. We will recruit participants from 172 households. The intervention periods will be one month of true or sham filtration, followed by a one-month wash out period and then a month of the alternate intervention. The primary health outcome will be systolic blood pressure (BP); secondary outcome measures will include diastolic and central BP, C-Reactive Protein (CRP) and D-dimer. Reasons for success or failure of the intervention will be evaluated in a subset of homes using indoor/outdoor monitoring for particulate pollution, personal monitoring, size and composition of particulate pollution, tracking of time spent in the room with the filter, and interviews for qualitative feedback. RESULTS This trial has begun recruitment and is expected to take 2-3 years to be completed. Recruitment has been particularly challenging because of additional precautions required by the COVID-19 pandemic. DISCUSSION This study has the potential to shed light on the value of using portable air filtration in homes close to highways to reduce exposure to TRAP and whether doing so has benefits for cardiovascular health.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health Sciences, University of Connecticut, Farmington, CT 06032, United States of America
| | - Shir Lerman Ginzburg
- UConn Health Department of Public Health Sciences, Farmington, CT 06032., United States of America.
| | - Neelakshi Hudda
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02476, United States of America
| | - Linda Sprague Martinez
- Macro Department, Boston University School of Social Work, Boston, MA 02215, United States of America
| | - Leigh Meunier
- UConn Health Department of Public Health Sciences, Farmington, CT 06032., United States of America
| | - Scott P Hersey
- Franklin W. Olin College of Engineering, Needham, MA 02492, United States of America
| | - Ira Hochman
- inTouch Technology Corp., Cambridge, MA 02142, United States of America
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029l, United States of America
| | - Ben Echevarria
- Welcome Project, Somerville, MA 02145, United States of America
| | - Mohan Thanikachalam
- Tufts University School of Medicine, Public Health and Community Medicine, 136 Harrison Avenue, Boston, MA 02111, United States of America
| | - John L Durant
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02476, United States of America
| | - Wig Zamore
- Somerville Transportation Equity Partnership, Somerville, MA 02145, United States of America
| | - Misha Eliasziw
- Department of Public Health and Community Medicine, Tufts University, Boston, MA 02111, United States of America
| |
Collapse
|
14
|
Walker ES, Noonan CW, Semmens EO, Ware D, Smith P, Boyer BB, Erdei E, Hopkins SE, Lewis J, Belcourt A, Ward TJ. Indoor fine particulate matter and demographic, household, and wood stove characteristics among rural US homes heated with wood fuel. INDOOR AIR 2021; 31:1109-1124. [PMID: 33620109 PMCID: PMC8217112 DOI: 10.1111/ina.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/31/2023]
Abstract
Household heating using wood stoves is common practice in many rural areas of the United States (US) and can lead to elevated concentrations of indoor fine particulate matter (PM2.5 ). We collected 6-day measures of indoor PM2.5 during the winter and evaluated household and stove-use characteristics in homes at three rural and diverse study sites. The median indoor PM2.5 concentration across all homes was 19 µg/m3 , with higher concentrations in Alaska (median = 30, minimum = 4, maximum = 200, n = 10) and Navajo Nation homes (median = 29, minimum = 3, maximum = 105, n = 23) compared with Montana homes (median = 16, minimum = 2, maximum = 139, n = 59). Households that had not cleaned the chimney within the past year had 65% higher geometric mean PM2.5 compared to those with chimney cleaned within 6 months (95% confidence interval [CI]: -1, 170). Based on a novel wood stove grading method, homes with low-quality and medium-quality stoves had substantially higher PM2.5 compared to homes with higher-quality stoves (186% higher [95% CI: 32, 519] and 161% higher; [95% CI:27, 434], respectively). Our findings highlight the need for, and complex nature of, regionally appropriate interventions to reduce indoor air pollution in rural wood-burning regions. Higher-quality stoves and behavioral practices such as regular chimney cleaning may help improve indoor air quality in such homes.
Collapse
Affiliation(s)
- Ethan S. Walker
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Curtis W. Noonan
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Erin O. Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Desirae Ware
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Paul Smith
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Bert B. Boyer
- Center for Alaska Native Health Research, University of Alaska Fairbanks, AK, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Esther Erdei
- Community Environmental Health Program, University of New Mexico College of Pharmacy, Health Sciences Center, Albuquerque, NM, USA
| | - Scarlett E. Hopkins
- Center for Alaska Native Health Research, University of Alaska Fairbanks, AK, USA
- Oregon Health & Science University, Portland, OR, USA
| | - Johnnye Lewis
- Community Environmental Health Program, University of New Mexico College of Pharmacy, Health Sciences Center, Albuquerque, NM, USA
| | - Annie Belcourt
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Tony J. Ward
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
15
|
Cheek E, Guercio V, Shrubsole C, Dimitroulopoulou S. Portable air purification: Review of impacts on indoor air quality and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142585. [PMID: 33121763 DOI: 10.1016/j.scitotenv.2020.142585] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/22/2023]
Abstract
A systematic literature review was carried out to examine the impact of portable air purifiers (PAPs) on indoor air quality (PM2.5) and health, focussing on adults and children in indoor environments (homes, schools and offices). Analysed studies all showed reductions in PM2.5 of between 22.6 and 92.0% with the use of PAPs when compared to the control. Associations with health impacts found included those on blood pressure, respiratory parameters and pregnancy outcomes. Changes in clinical biochemical markers were also identified. However, evidence for such associations was limited and inconsistent. Health benefits from a reduction in PM2.5 would be expected as the cumulative body of scientific evidence from various cohort studies shows positive impacts of long-term reduction in PM2.5 concentrations. The current evidence demonstrates that using a PAP results in short-term reductions in PM2.5 in the indoor environment, which has the potential to offer health benefits.
Collapse
Affiliation(s)
- Emily Cheek
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Valentina Guercio
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Clive Shrubsole
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Sani Dimitroulopoulou
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
16
|
Can Public Spaces Effectively Be Used as Cleaner Indoor Air Shelters during Extreme Smoke Events? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084085. [PMID: 33924413 PMCID: PMC8070163 DOI: 10.3390/ijerph18084085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/05/2023]
Abstract
During extreme air pollution events, such as bushfires, public health agencies often recommend that vulnerable individuals visit a nearby public building with central air conditioning to reduce their exposure to smoke. However, there is limited evidence that these "cleaner indoor air shelters" reduce exposure or health risks. We quantified the impact of a "cleaner indoor air shelter" in a public library in Port Macquarie, NSW, Australia when concentrations of fine particulate matter (PM2.5) were elevated during a local peat fire and nearby bushfires. Specifically, we evaluated the air quality improvements with central air conditioning only and with the use of portable high efficiency particulate air (HEPA) filter air cleaners. We measured PM2.5 from August 2019 until February 2020 by deploying pairs of low-cost PM2.5 sensors (i) inside the main library, (ii) in a smaller media room inside the library, (iii) outside the library, and (iv) co-located with regulatory monitors located in the town. We operated two HEPA cleaners in the media room from August until October 2019. We quantified the infiltration efficiency of outdoor PM2.5 concentrations, defined as the fraction of the outdoor PM2.5 concentration that penetrates indoors and remains suspended, as well as the additional effect of HEPA cleaners on PM2.5 concentrations. The infiltration efficiency of outdoor PM2.5 into the air-conditioned main library was 30%, meaning that compared to the PM2.5 concentration outdoors, the concentrations of outdoor-generated PM2.5 indoors were reduced by 70%. In the media room, when the HEPA cleaners were operating, PM2.5 concentrations were reduced further with a PM2.5 infiltration efficiency of 17%. A carefully selected air-conditioned public building could be used as a cleaner indoor air shelter during episodes of elevated smoke emissions. Further improvements in indoor air quality within the building can be achieved by operating appropriately sized HEPA cleaners.
Collapse
|
17
|
Riederer AM, Krenz JE, Tchong-French MI, Torres E, Perez A, Younglove LR, Jansen KL, Hardie DC, Farquhar SA, Sampson PD, Karr CJ. Effectiveness of portable HEPA air cleaners on reducing indoor PM 2.5 and NH 3 in an agricultural cohort of children with asthma: A randomized intervention trial. INDOOR AIR 2021; 31:454-466. [PMID: 32996146 PMCID: PMC8641645 DOI: 10.1111/ina.12753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
We conducted a randomized trial of portable HEPA air cleaners with pre-filters designed to also reduce NH3 in non-smoking homes of children age 6-12 with asthma in Yakima Valley (Washington, USA). Participants were recruited through the Yakima Valley Farm Workers Clinic asthma education program. All participants received education on home triggers while intervention families additionally received two HEPA cleaners (child's sleeping area, main living area). Fourteen-day integrated samples of PM2.5 and NH3 were measured at baseline and one-year follow-up. We fit ANCOVA models to compare follow-up concentrations in HEPA vs control homes, adjusting for baseline concentrations. Seventy-one households (36 HEPA, 35 control) completed the study. Most were single-family homes, with electric heat and stove, A/C, dogs/cats, and mean (SD) 5.3 (1.8) occupants. In the sleeping area, baseline geometric mean (GSD) PM2.5 was 10.7 (2.3) μg/m3 (HEPA) vs 11.2 (1.9) μg/m3 (control); in the living area, it was 12.5 (2.3) μg/m3 (HEPA) vs 13.6 (1.9) μg/m3 (control). Baseline sleeping area NH3 was 62.4 (1.6) μg/m3 (HEPA) vs 65.2 (1.8) μg/m3 (control). At follow-up, HEPA families had 60% (95% CI, 41%-72%; p < .0001) and 42% (19%-58%; p = .002) lower sleeping and living area PM2.5 , respectively, consistent with prior studies. NH3 reductions were not observed.
Collapse
Affiliation(s)
- Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer E. Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Maria I. Tchong-French
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Torres
- Northwest Communities Education Center, Radio KDNA, Granger, WA, USA
| | - Adriana Perez
- Yakima Valley Farm Workers Clinic, Toppenish, WA, USA
| | - Lisa R. Younglove
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Karen L. Jansen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - David C. Hardie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie A. Farquhar
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Paul D. Sampson
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Martínez Vallejo LA, Hernández Pardo MA, Benavides Piracón JA, Belalcázar Cerón LC, Molina Achury NJ. Exposure levels to PM 2.5 and black carbon for people with disabilities in rural homes of Colombia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:37. [PMID: 33409544 DOI: 10.1007/s10661-020-08803-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Indoor exposure to air pollutants emitted by solid fuels used for cooking or heating homes remains as a problem to solve. The most affected people are newborns, mothers, children, and people with disabilities, due to the time they spend at home. This study is the first in a rural area of South America, which measures indoor air pollutants (PM2.5 and black carbon) in different environments, inhabited by people with disabilities. The research was supported through a sociodemographic characterization, a methodology useful for future studies, continuous monitoring for 72 h of pollutants, and emission sources, cooking habits, and pre-existing diseases were identified. The primary sources of emissions are improved wood-burning stoves and their chimney. In households where firewood is used, the average concentrations of PM2.5 were the highest (between 10.9 and 3302.5 μg/m3), as were the average concentrations of BC (average 72 h between 2.6 and 51.2 μg/m3) compared with the houses that use gas (average 72 h between 2.6 and 6 μg/m3). In 57% of the households visited, the World Health Organization (WHO) guidelines for PM2.5 (25 μg/m3 for 24 h) were exceeded. The results reveal that rural concentrations of BC can be up to 2.5 times higher than those of an urban area with high vehicular traffic and high population density and could be used to establish a baseline that allows the implementation of control mechanisms to reduce pollution of indoor air.
Collapse
|
19
|
Stauffer DA, Autenrieth DA, Hart JF, Capoccia S. Control of wildfire-sourced PM2.5 in an office setting using a commercially available portable air cleaner. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:109-120. [PMID: 32160140 DOI: 10.1080/15459624.2020.1722314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A steady increase in wildfire event severity and season length has led to greater potential for exposure to fine particulate matter associated with wildfire smoke. Research has found fine particulate matter to be correlated with a myriad of health ailments and thus effective strategies for controlling exposures are needed. In this study, a correction factor associated with wildfire-sourced fine particulate matter was established for a TSI SidePak AM520 by conducting sampling with a co-located MetOne BAM 1020. Portable air cleaner efficacy was assessed by simultaneously measuring PM2.5 mass concentrations in two identical offices with the inclusion of a portable air cleaner in one. The relationship between indoor and outdoor PM2.5 mass concentrations was assessed by comparing concentrations recorded in an office to those recorded at the nearest National Ambient Air Quality Standards monitoring station. Results revealed that a portable air cleaner reduced indoor fine particulate matter within an office by 73% and 92% during working and non-working hours, respectively, and that a strong significant correlation (ρ = .91, p = 0.00) existed between indoor and outdoor fine particulate matter mass concentration measurements. A direct relationship between indoor and outdoor PM2.5 mass concentrations was observed during this study, suggesting that elevated fine particulate matter concentrations due to wildfire smoke could be a concern in the indoor work environment; however the current study determined that the use of a portable air cleaner can substantially decrease fine particulate matter concentrations even in an active office setting.
Collapse
Affiliation(s)
- Dylan A Stauffer
- School of Mines and Engineering, Safety, Health and Industrial Hygiene Department, Montana Technological University, Butte, Montana
| | - Daniel A Autenrieth
- School of Mines and Engineering, Safety, Health and Industrial Hygiene Department, Montana Technological University, Butte, Montana
| | - Julie F Hart
- School of Mines and Engineering, Safety, Health and Industrial Hygiene Department, Montana Technological University, Butte, Montana
| | - Stella Capoccia
- College of Letters, Sciences, and Professional Studies, Department of Biological Sciences, Montana Technological University, Butte, Montana
| |
Collapse
|
20
|
Vicente ED, Vicente AM, Evtyugina M, Oduber FI, Amato F, Querol X, Alves C. Impact of wood combustion on indoor air quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135769. [PMID: 31818582 DOI: 10.1016/j.scitotenv.2019.135769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/04/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
The incomplete wood combustion in appliances operated in batch mode is a recognised source of both in- and outdoor airborne pollutants, especially particulate matter (PM). Data on pollutant levels and PM characteristics in households with wood burning devices in developed countries are scarce with most studies describing stove change out programmes or other intervention measures. The aim of the present study was to simultaneously evaluate indoor and outdoor concentrations of CO, CO2 and PM10 during the operation of wood burning appliances (open fireplace and woodstove) in unoccupied rural households. PM10 samples were analysed for water soluble inorganic ions, major and trace elements, organic carbon (OC), elemental carbon (EC), and detailed organic speciation. The CO 8-hour average concentrations did not exceed the protection limit despite the sharp increases observed in relation to background levels. During the open fireplace operation, PM10 levels rose up 12 times compared to background concentrations, while the airtight stove resulted in a 2-fold increase. The inhalation cancer risk of particulate bound PAHs in the room equipped with woodstove was estimated to be negligible while the long-term exposure to PAH levels measured in the fireplace room may contribute to the development of cancer. The excess lifetime cancer risk resulting from the particle-bound Cr(VI) exposure during the fireplace and woodstove operation was higher than 1.0 × 10-6 and 1.0 × 10-5, respectively. Levoglucosan was one of the most abundant individual species both indoors and outdoors. This study underlines air pollution hazards and risks arising from the operation of traditional wood burning appliances.
Collapse
Affiliation(s)
- E D Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - A M Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Evtyugina
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - F I Oduber
- Department of Physics, IMARENAB University of León, 24071 León, Spain
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), 08034 Barcelona, Spain
| | - C Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Impact of Biomass Home Heating, Cooking Styles, and Bread Toasting on the Indoor Air Quality at Portuguese Dwellings: A Case Study. ATMOSPHERE 2018. [DOI: 10.3390/atmos9060214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Barn P, Gombojav E, Ochir C, Laagan B, Beejin B, Naidan G, Boldbaatar B, Galsuren J, Byambaa T, Janes C, Janssen PA, Lanphear BP, Takaro TK, Venners SA, Webster GM, Yuchi W, Palmer CD, Parsons PJ, Roh YM, Allen RW. The effect of portable HEPA filter air cleaners on indoor PM 2.5 concentrations and second hand tobacco smoke exposure among pregnant women in Ulaanbaatar, Mongolia: The UGAAR randomized controlled trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1379-1389. [PMID: 29751442 DOI: 10.1016/j.scitotenv.2017.09.291] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Portable HEPA filter air cleaners can reduce indoor fine particulate matter (PM2.5), but their use has not been adequately evaluated in high pollution settings. We assessed air cleaner effectiveness in reducing indoor residential PM2.5 and second hand smoke (SHS) exposures among non-smoking pregnant women in Ulaanbaatar, Mongolia. METHODS We randomized 540 participants to an intervention group receiving 1 or 2 HEPA filter air cleaners or a control group receiving no air cleaners. We followed 259 intervention and 253 control participants to the end of pregnancy. We measured one-week indoor residential PM2.5 concentrations in early (~11weeks gestation) and late (~31weeks gestation) pregnancy and collected outdoor PM2.5 data from centrally-located government monitors. We assessed blood cadmium in late pregnancy. Hair nicotine was quantified in a subset (n=125) to evaluate blood cadmium as a biomarker of SHS exposure. We evaluated air cleaner effectiveness using mixed effects and multiple linear regression models and used stratified models and interaction terms to evaluate potential modifiers of effectiveness. RESULTS The overall geometric mean (GM) one-week outdoor PM2.5 concentration was 47.9μg/m3 (95% CI: 44.6, 51.6μg/m3), with highest concentrations in winter (118.0μg/m3; 110.4, 126.2μg/m3). One-week indoor and outdoor PM2.5 concentrations were correlated (r=0.69). Indoor PM2.5 concentrations were 29% (21, 37%) lower in intervention versus control apartments, with GMs of 17.3μg/m3 (15.8, 18.8μg/m3) and 24.5μg/m3 (22.2, 27.0μg/m3), respectively. Air cleaner effectiveness was greater when air cleaners were first deployed (40%; 31, 48%) than after approximately five months of use (15%; 0, 27%). Blood cadmium concentrations were 14% (4, 23%) lower among intervention participants, likely due to reduced SHS exposure. CONCLUSIONS Portable HEPA filter air cleaners can lower indoor PM2.5 concentrations and SHS exposures in highly polluted settings.
Collapse
Affiliation(s)
- Prabjit Barn
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar 14210, Mongolia.
| | - Chimedsuren Ochir
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar 14210, Mongolia.
| | - Bayarkhuu Laagan
- Sukhbaatar District Health Center, 11 Horoo, Tsagdaagiin Gudamj, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Bolor Beejin
- Mongolian National Center for Public Health, Olympic Street 2, Ulaanbaatar, Mongolia.
| | - Gerel Naidan
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar 14210, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar 14210, Mongolia
| | - Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar 14210, Mongolia
| | - Tsogtbaatar Byambaa
- Mongolian National Center for Public Health, Olympic Street 2, Ulaanbaatar, Mongolia.
| | - Craig Janes
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Canada.
| | - Patricia A Janssen
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver V6T 1Z3, Canada.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| | - Glenys M Webster
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| | - Weiran Yuchi
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| | - Christopher D Palmer
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA.
| | - Patrick J Parsons
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA.
| | - Young Man Roh
- College of Health Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, Canada.
| |
Collapse
|
23
|
Woranuch S, Pangon A, Puagsuntia K, Subjalearndee N, Intasanta V. Starch-based and multi-purpose nanofibrous membrane for high efficiency nanofiltration. RSC Adv 2017. [DOI: 10.1039/c7ra07484k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of the present work is to develop nanofibrous membranes from rice-flour based nanofibers containing PVA for high efficiency filtration.
Collapse
Affiliation(s)
- Sarekha Woranuch
- Nano Functional Textile Laboratory
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Autchara Pangon
- Nano Functional Textile Laboratory
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Kantapat Puagsuntia
- Nano Functional Textile Laboratory
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Nakarin Subjalearndee
- Nano Functional Textile Laboratory
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Thailand
| | - Varol Intasanta
- Nano Functional Textile Laboratory
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Thailand
| |
Collapse
|