1
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
2
|
Zhao L, Zhou F, Wang S, Yang Y, Chen H, Ma X, Liu X. Bisphenol Chemicals in Surface Soil from E-Waste Dismantling Facilities and the Surrounding Areas: Spatial Distribution and Health Risk. TOXICS 2024; 12:379. [PMID: 38922059 PMCID: PMC11209086 DOI: 10.3390/toxics12060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Electronic waste (e-waste) dismantling facilities are well-known bisphenol chemical (BP) sources. In this study, non-targeted screening combined with targeted analysis of BPs in surface soil from e-waste dismantling facilities and their surroundings revealed their presence, distribution, and exposure risk. A total of 14 BPs were identified including bisphenol A (BPA) and its novel structural analogs and halogenated BPs. The total concentrations of BPs ranged from 963 to 47,160 ng/g (median: 6970 ng/g) in e-waste soil, higher than those measured in surface soil from surrounding areas, i.e., 10-7750 ng/g (median 197 ng/g). BPA, tetrabromobisphenol A (TBBPA), and bisphenol F (BPF) were the dominant ones from the two areas. Concentrations of TBBPA and its debromination product from the surrounding area significantly decreased with increasing distances from the e-waste dismantling facilities. Estimation of daily intake via oral ingestion of soil suggests that current contamination scenarios are unlikely to pose health risks for e-waste dismantling workers and adults and toddlers living in the surrounding areas, with their intakes generally well below the tolerable daily intakes proposed for several BPs. However, the BPA intakes of workers exceeded the more strict tolerable daily intake for BPA established recently, which merits continuous environmental surveillance.
Collapse
Affiliation(s)
- Lei Zhao
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; (L.Z.); (F.Z.); (S.W.); (X.M.)
| | - Fengli Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; (L.Z.); (F.Z.); (S.W.); (X.M.)
| | - Shuyue Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; (L.Z.); (F.Z.); (S.W.); (X.M.)
| | - Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (Y.Y.); (H.C.)
- Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (Y.Y.); (H.C.)
- Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| | - Xufang Ma
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; (L.Z.); (F.Z.); (S.W.); (X.M.)
| | - Xiaotu Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China; (L.Z.); (F.Z.); (S.W.); (X.M.)
| |
Collapse
|
3
|
Zeng X, Ma S, Luo Y, Zhang Y, Wang Q, Zhang Z, Ke W, Ma Y, Hu H, Hartung T, Wei Y, Zhong X. Environmentally Relevant Concentrations of Tetrabromobisphenol A Exposure Impends Neurovascular Formation through Perturbing Mitochondrial Metabolism in Zebrafish Embryos and Human Primary Endothelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5267-5278. [PMID: 38478874 DOI: 10.1021/acs.est.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 μg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengtao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21230, United States
- University of Konstanz, Konstanz 78464, Germany
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Hepatic glucuronidation of tetrabromobisphenol A and tetrachlorobisphenol A: interspecies differences in humans and laboratory animals and responsible UDP-glucuronosyltransferase isoforms in humans. Arch Toxicol 2024; 98:837-848. [PMID: 38182911 DOI: 10.1007/s00204-023-03659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, 790-8578, Japan
| | - Yoko Mori
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| |
Collapse
|
5
|
Lan Y, Liu Y, Cai Y, Du Q, Zhu H, Tu H, Xue J, Cheng Z. Eight novel brominated flame retardants in indoor and outdoor dust samples from the E-waste recycling industrial park: Implications for human exposure. ENVIRONMENTAL RESEARCH 2023; 238:117172. [PMID: 37729961 DOI: 10.1016/j.envres.2023.117172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
As alternatives for legacy brominated flame retardants, novel brominated flame retardants (NBFRs) have a wide array of applications in the electronic and electrical fields. The shift of recycling modes of electronic and electrical waste (e-waste) from informal recycling family workshop to formal recycling facilities might come with the change the chemical landscape emitted including NBFRs, however, little information is known about this topic. This study investigated the occurrence characteristics, distribution, and exposure profiles of eight common NBFRs and their derivatives in an e-waste recycling industrial park in central China and illustrated the differences in various functional zones in the recycling park. The highest level of ΣNBFRs in dust samples was found in e-waste storage area at median concentration of 27,400 ng/g, followed by e-waste dismantling workshops (23,300 ng/g), workshop outdoor area (7770 ng/g), and residential area outdoor (536 ng/g). In the e-waste dismantling associated dust samples, tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), tetrabromobisphenol A (TBBPA) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) were the predominant components. This paper presented the first evidence regarding the occurrence characteristic and distribution of tetrabromobisphenol S (TBBPS), tetrabromobisphenol A bismethyl ether (TBBPA-BME) and tetrabromobisphenol S bis(2,3-dibromopropyl ether) (TBBPS-BDBPE) in the e-waste associated dust samples. By comparing with previous studies performed in China, this paper also noticed the significant decrease of TBBPA concentrations in the dust probably due to the shift of e-wastes sources and recycling modes. We further assessed the risk of occupational workers exposure to NBFRs. The median EDI (estimated daily intake) value of ΣNBFRs among e-waste dismantling workers was 9.71 ng/kg BW/d with the maximum EDI value being 19.6 ng/kg BW/d, hundreds of times higher than those exposed by general population. The study raises great concern for the health risk of occupational exposure to NBFRs in the e-waste recycling industrial park.
Collapse
Affiliation(s)
- Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingping Du
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haitao Tu
- Division of Nephrology, The First affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Wang J, Lou Y, Mo K, Zheng X, Zheng Q. Occurrence of hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) in indoor dust from different microenvironments: levels, profiles, and human exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6043-6052. [PMID: 37222968 DOI: 10.1007/s10653-023-01620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
The levels and distributions of hexabromocyclododecane diastereoisomers (HBCDs) (including α, β, and γ-HBCD) and tetrabromobisphenol A (TBBPA) were investigated in indoor dust from bedrooms and offices. HBCDs diastereoisomers were the most abundant compounds in the dust samples, and the concentrations of ∑HBCDs in the bedrooms and offices ranged from 10.6 to 290.1 ng/g and 17.6 to 1521.9 ng/g, respectively. The concentrations of target compounds in the offices were generally higher than those in the bedrooms, probably due to the presence of more electrical equipment in the offices. In this study, highest levels of target compounds were all found in the electronics. In the bedrooms, the highest mean level of ∑HBCDs was found in air conditioning filter dust (118.57 ng/g), while the personal computer table surface dust showed the peak mean concentrations of ∑HBCDs (290.74 ng/g) and TBBPA (539.69 ng/g) in the offices. Interestingly, a significantly positive correlation was observed between the concentrations of ∑HBCDs in windowsills and beddings dust in the bedrooms, suggesting beddings was one of the crucial sources of ∑HBCDs in the bedrooms. The high dust ingestion values of ∑HBCDs and TBBPA were 0.046 and 0.086 ng/kg bw/day for adults, while 0.811 and 0.04 ng/kg bw/day for toddlers, respectively. The high dermal exposure values of ∑HBCDs were 0.026 and 0.226 ng/kg bw/day for adults and toddlers, respectively. Except for dust ingestion, other human exposure pathways (such as the dermal contact with beddings and furniture) should be paid attention.
Collapse
Affiliation(s)
- Jing Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yueshang Lou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kexin Mo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510000, China
| | - Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510000, China.
| |
Collapse
|
7
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
8
|
Tetrabromobisphenol A and hexabromocyclododecanes from interior and surface dust of personal computers: implications for sources and human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44316-44324. [PMID: 36692723 DOI: 10.1007/s11356-023-25497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane isomers (HBCDs) are widely detected in indoor environments, but the research on the accumulation, contamination, and human exposure of TBBPA and HBCDs in electronic products dust is still limited. It is unclear whether electronic products might pose human health risk via dust ingestion and dermal absorption. In this study, the levels and distributions of TBBPA and HBCDs were investigated in the personal computer (PC) interior dust and PC surface (upper and bottom) wipes. The median concentrations of TBBPA in PC interior dust, upper, and bottom surface wipes were 168.1 ng/g, 13.2 ng/m2, and 15.2 ng/m2, respectively. These levels were generally higher than those of HBCDs, which were 95.2 ng/g, 11.7 ng/m2, and 12.3 ng/m2, respectively. No significant correlations were found among the PC upper and bottom surface wipes, and interior dust, indicating different sources of TBBPA and HBCDs in PC interior and surface dust. The TBBPA and HBCDs in the PC interior dust were mainly released from inner PC materials, while the sources of target compounds on the surface wipes were likely from external environments. The exposure values of two occupational populations (including PC owners and PC repair workers) to TBBPA and HBCDs were measured by PC interior dust and upper surface wipes. The results imply dust ingestion (including hand-to-mouth uptake) is the main contributor of the exposure route to TBBPA and HBCDs for both PC owners and repair workers. Compared to PC owners, PC repair workers showed the greater risk in exposure assessment, which should be paid more attention.
Collapse
|
9
|
Tetrabromobisphenol A and Diclazuril Evoke Tissue-Specific Changes of Thyroid Hormone Signaling in Male Thyroid Hormone Action Indicator Mice. Int J Mol Sci 2022; 23:ijms232314782. [PMID: 36499108 PMCID: PMC9738630 DOI: 10.3390/ijms232314782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.
Collapse
|
10
|
Waiyarat S, Boontanon SK, Boontanon N, Fujii S, Harrad S, Drage DS, Abdallah MAE. Exposure, risk and predictors of hexabromocyclododecane and Tetrabromobisphenol-A in house dust from urban, rural and E-waste dismantling sites in Thailand. CHEMOSPHERE 2022; 302:134730. [PMID: 35500622 DOI: 10.1016/j.chemosphere.2022.134730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, for the first time, we determined concentrations of hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBPA) in house dust and estimated human exposure to these substances in houses located in an e-waste dismantling site and in urban and rural residential areas of Thailand. The median HBCDD concentration in urban residential houses (2.10 ng g-1) was similar to that in houses in an e-waste dismantling site (2.05 ng g-1, p > 0.05) and slightly higher than that in rural residential houses (1.11 ng g-1, p > 0.05). In contrast, significantly higher TBBPA concentrations were present in house dust from an e-waste dismantling site (median = 720 ng g-1; range = 44-2300 ng g-1) compared to those in urban (68.6 ng g-1; 3.5-300 ng g-1, p < 0.001) and rural residential areas (17 ng g-1; 2.0-201 ng g-1, p < 0.001). TBBPA concentrations increased with the increasing presence of electronic devices and a decreasing distance to the e-waste dismantling site. These results suggest that e-waste dismantling activities may contribute to TBBPA contamination of house dust. The median estimated daily intake (EDI) of HBCDD and TBBPA through dust ingestion for toddlers exceeded that for children and adults. However, EDI values for HBCDD and TBBPA from all age groups were below the oral reference dose guideline value suggested by the US National Research Council and National Toxicology Program (NTP).
Collapse
Affiliation(s)
- Sonthinee Waiyarat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Suwanna Kitpati Boontanon
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand; Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan.
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan
| | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Simon Drage
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4103, Australia
| | | |
Collapse
|
11
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
12
|
Al-Omran LS, Stubbings WA, Harrad S. Concentrations and isomer profiles of hexabromocyclododecanes (HBCDDs) in floor, elevated surface, and outdoor dust samples from Basrah, Iraq. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:910-920. [PMID: 35662304 DOI: 10.1039/d2em00133k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concentrations of the α, β, and γ- diastereomers of hexabromocyclododecane (α-, β-, and γ-HBCDD) were measured in 60 dust samples from 20 homes across Basrah, Iraq. From each home, two indoor dust (ID) samples (specifically one collected from elevated surfaces (ESD) and one from the floor (FD)) were collected from the living room, with one outdoor dust (OD) sample collected from the front yard of the house. Concentrations of HBCDDs decreased in the following sequence ESD > FD > OD. For ID, ΣHBCDD concentrations varied from 5.3 ng g-1 in FD to 150 ng g-1 in ESD, with median levels of 60 and 40 ng g-1 in ESD and FD respectively. Concentrations of γ-HBCDD, and consequently of ΣHBCDDs in ESD, significantly (p < 0.05) exceeded those in FD. For adults, this implies that exposure assessments based on FD only may underestimate exposure, as adults are more likely to ingest ESD. Concentrations of ΣHBCDDs in OD ranged between 7.4 and 120 ng g-1 with a median of 35 ng g-1 and were significantly exceeded (p < 0.05) by those in ID samples. Concentrations of ΣHBCDDs in OD from houses with car parking areas exceeded (p < 0.05) those in OD from other homes, implying vehicles as potential emission sources of HBCDDs. Simultaneously, there was moderate correlation (R = 0.510-0.609, p < 0.05) between concentrations in ID and OD, implying that the indoor environment is an important source of OD contamination. The isomer pattern of HBCDDs in dust samples displayed a predominance of α-HBCDD, which represented 56%, 52% and 59% ΣHBCDD in ESD, FD and OD samples respectively. Derived from the concentrations reported in this study, the median and 95th percentile estimated daily intakes (EDI) for Iraqi adults and toddlers through house dust ingestion did not exceed the reference dose (RfD) value for HBCDD.
Collapse
Affiliation(s)
- Layla Salih Al-Omran
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
Yang Y, Yang L, Chen H, Tan H, Yang J, Sun F, Sun J, Gong X, Tao L, Huang Y. Low-level alternative halogenated flame retardants (AHFRs) in indoor dust from Adelaide, South Australia decades since national legislative control on polybrominated diphenyl ethers (PBDEs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154123. [PMID: 35219667 DOI: 10.1016/j.scitotenv.2022.154123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Since commercial polybrominated diphenyl ethers (PBDEs) have been globally banned or restricted in 2000s, alternative halogenated flame retardants (AHFRs) appear increasingly dominant over PBDEs in many countries/regions. In this study, low levels of AHFRs were unexpectedly observed in the indoor dust from Adelaide, South Australia. Anti-dechlorane plus (anti-DP) was the most frequently detected AHFR with a median concentration of 1.28 ng/g, while other AFHRs were less detected (detection frequency < 50%). The levels of ΣPBDEs (496 ng/g, median) and ΣAHFRs (160 ng/g) and the ratio of ΣAHFRs/ΣPBDEs (0.32) were much lower than those investigated in Australian indoor dust previously. The findings were different to the trend for PBDEs and AHFRs from other countries over the past two decades. No significant correlation was determined between DP and PBDE congeners, indicating their different sources in dust. The human exposure assessment suggested that dust ingestion was the predominant pathway of PBDEs and AHFRs exposure for toddlers, while dermal absorption may be the dominant pathway for adults. The estimated daily intake (EDI) suggested low health risks via dust ingestion and dermal contact for general populations in Adelaide. This study contributes to the knowledge on region-specific FR contamination in indoor environments and related human exposure risk.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing 100012, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266000, China
| | - Xue Gong
- School of Agriculture, Food & Wine, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Lin Tao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Wei X, Hu Y, Zhu Q, Gao J, Liao C, Jiang G. Co-exposure and health risks of several typical endocrine disrupting chemicals in general population in eastern China. ENVIRONMENTAL RESEARCH 2022; 204:112366. [PMID: 34774506 DOI: 10.1016/j.envres.2021.112366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Human exposure to endocrine disrupting chemicals (EDCs) is a health concern due to their wide use and interference with the human endocrine system. Parabens, bisphenols, benzophenones, triclosan (TCC), triclocarban (TCS), and tetrabromobisphenol-A (TBBPA) and its derivatives tetrachlorobisphenol-A (TCBPA) and tetrabromobisphenol-S (TBBPS), are typical EDCs that are frequently detected in environmental and human samples. However, only a few studies have assessed the co-exposure of these chemicals in humans. In this study, urine samples were collected from the general population in the city of Wuxi (n = 121) and a county, Taishun (n = 120), eastern China, and analyzed for these EDCs. Parabens, bisphenols, TCS, and benzophenones were frequently detected in urine, whereas TBBPA and its derivatives were not detected. The geometric mean concentrations of parabens, bisphenols, and benzophenones in urine from the Wuxi population were 25.7, 2.45, and 2.34 ng/mL, respectively, which were substantially higher than those from the Taishun population (17.2, 1.70, and 2.65 ng/mL). These results suggest an urban-rural difference in urinary EDCs. The exposure risks to these EDCs were estimated based on the measured urinary concentrations and acceptable daily intakes (ADIs). Hazard quotient values for EDCs in humans from both locations were generally less than 1, indicating a low exposure risk of EDCs in these regions. Nonetheless, the health risks caused by co-exposure to such EDCs cannot be ignored.
Collapse
Affiliation(s)
- Xianping Wei
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei, 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyang Liao
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei, 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei, 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Lexén J, Bernander M, Cotgreave I, Andersson PL. Assessing exposure of semi-volatile organic compounds (SVOCs) in car cabins: Current understanding and future challenges in developing a standardized methodology. ENVIRONMENT INTERNATIONAL 2021; 157:106847. [PMID: 34479137 DOI: 10.1016/j.envint.2021.106847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-volatile organic compounds (SVOCs) can be found in air, dust and on surfaces in car cabins, leading to exposure to humans via dust ingestion, inhalation, and dermal contact. This review aims at describing current understanding concerning sampling, levels, and human exposure of SVOCs from car cabin environments. To date, several different methods are used to sample SVOCs in car cabin air and dust and there are no standard operating procedures for sampling SVOCs in cars detailed in the literature. The meta-analysis of SVOCs in car cabin air and dust shows that brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) have been most frequently studied, primarily focusing on concentrations in dust. In dust, detected concentrations span over three to seven orders of magnitude, with highest median concentrations for OPFRs, followed by BFRs and, thereafter, polychlorinated biphenyls (PCBs). In air, the variation is smaller, spanning over one to three orders of magnitude, with phthalates and siloxanes having the highest median concentrations, followed by OPFRs, fluorotelomer alcohols (FTOHs) and BFRs. Assessments of human exposures to SVOCs in cars have, so far, mainly focused on external exposure, most often only studying one exposure route, primarily via dust ingestion. In order to perform relevant and complete assessments of human exposure to SVOCs in cars, we suggest broadening the scope to which SVOCs should be studied, promoting more comprehensive external exposure assessments that consider exposure via all relevant exposure routes and making comparisons of external and internal exposure, in order to understand the importance of in-car exposure as a source of SVOC exposure. We also suggest a new sampling approach that includes sampling of SVOCs in both car cabin air and dust, aiming to reduce variability in data due to differences in sampling techniques and protocols.
Collapse
Affiliation(s)
- Jenny Lexén
- Department of Chemistry, Umeå University, Umeå, Sweden; Sustainability Centre, Volvo Cars, Gothenburg, Sweden.
| | | | - Ian Cotgreave
- Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Unit Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | | |
Collapse
|
16
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
17
|
Wu H, Wang J, Xiang Y, Li L, Qie H, Ren M, Lin A, Qi F. Effects of tetrabromobisphenol A (TBBPA) on the reproductive health of male rodents: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146745. [PMID: 33794456 DOI: 10.1016/j.scitotenv.2021.146745] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a type of brominated flame retardant widely detected in the environment and organisms. It has been reported to cause cytotoxicity and disrupt endocrine system of animals. However, the effect of TBBPA on the reproductive system of male rodents is still controversial. Hence, this meta-analysis aims to determine whether TBBPA exposure damage to the reproductive system of male rodents. In this study, a thorough search of literatures was undertaken to select papers published before December 1st, 2020. The standard mean difference (SMD) and 95% confidence interval (CI) were calculated by random model. The results showed a statistically significant association between TBBPA exposure and the reproductive system health of male rodents (SMD = -0.35, 95% CI -0.50 to -0.19). The SMD for the reproductive system index organ weight, sperm quality, hormone levels, and gene expression were 0.03 (95% CI -0.18 to 0.23), -0.47 (95% CI -0.78 to -0.16), -0.51 (95% CI -0.75 to -0.27), and -0.98 (95% CI -1.36 to -0.60), respectively. There was a significant dose-effect relationship between TBBPA exposure and the reproductive health of male rodents, with the SMD values of low, medium, and high doses -0.20 (95% CI -0.34 to -0.05), -0.24 (95% CI -0.56 to 0.07), and -0.48 (95% CI -0.83 to -0.13), respectively. For exposure duration of TBBPA, an exposure time of >10 weeks (SMD = -0.33, 95% CI -0.54 to -0.12) showed more significant effect than an exposure time of ≤10 weeks (SMD = -0.22, 95% CI -0.43 to -0.02). Moreover, TBBPA exposure exhibited significant negative effects on sperm count (SMD = -0.49, 95% CI -0.82 to -0.17) while also reduced the content of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) hormones. To summarize, our meta-analysis indicated that TBBPA had a toxicity effect to the reproductive system of male rodents.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, ATC Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
18
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
19
|
Zuiderveen EAR, Slootweg JC, de Boer J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. CHEMOSPHERE 2020; 255:126816. [PMID: 32417508 DOI: 10.1016/j.chemosphere.2020.126816] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This critical review summarizes the occurrence of 63 novel brominated flame retardants (NBFRs) in indoor air, dust, consumer goods and food. It includes their EU registration and (potential) risks. The increasing application of NBFRs calls for more research on their occurrence, environmental fate and toxicity. This review reports which NBFRs are actually being studied, which are detected and which are of most concern. It also connects data from the European Chemical Association on NBFRs with other scientific information. Large knowledge gaps emerged for 28 (out of 63) NBFRs, which were not included in any monitoring programs or other studies. This also indicates the need for optimized analytical methods including all NBFRs. Further research on indoor environments, emission sources and potential leaching is also necessary. High concentrations of 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were often reported. The detection of hexabromobenzene (HBB), pentabromotoluene (PBT), 1,4-dimethyltetrabromobenzene (TBX), 4-(1,2-dibromoethyl)-1,2-dibromocyclohexane (DBE-DBCH) and tetrabromobisphenol A bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) also raises concern.
Collapse
Affiliation(s)
- Emma A R Zuiderveen
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD, Amsterdam, the Netherlands
| | - Jacob de Boer
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Lee JG, Anh J, Kang GJ, Kim D, Kang Y. Development of an analytical method for simultaneously determining TBBPA and HBCDs in various foods. Food Chem 2020; 313:126027. [DOI: 10.1016/j.foodchem.2019.126027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 11/29/2022]
|
21
|
Liu F, Zhang Y, Zhang M, Luo Q, Cao X, Cui C, Lin K, Huang K. Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 242:125078. [PMID: 31704520 DOI: 10.1016/j.chemosphere.2019.125078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 05/19/2023]
Abstract
The widespread use of tetrabromobisphenol A (TBBPA) in industries has resulted in its frequent detection in environmental matrices, and the mechanisms of its associated hazards need further investigation. In this study, the nematode Caenorhabditis elegans (C. elegans) was exposed to environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, 200 μg/L) to determine its effects. At TBBPA concentrations above 1 μg/L, the number of head thrashes, as the most sensitive physiological indicator, decreased significantly. Using the Illumina HiSeq™ 2000 sequencer, differentially expressed genes (DEGs) were determined, and 52 were down regulated and 105 were up regulated in the 200 μg/L TBBPA treatment group versus the control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database analysis demonstrated that dorso-ventral axis formation is related to neurotoxicity; metabolism of xenobiotics by Cytochrome P450 (CYP450) and glutathione-S-transferase (GST) was found to be the vital metabolic mechanisms and were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). GST was ascribed to the augmentation because mutations in cyp-13A7 were constrained under TBBPA exposure. Additionally, oxidative stress indicators accumulated in a dose-dependent relationship. These results will help understand the molecular basis for TBBPA-induced toxicity in C. elegans and open novel avenues for facilitating the exploration of more efficient strategies against TBBPA toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai, 200051, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
22
|
Fu HJ, Wang Y, Xiao ZL, Wang H, Li ZF, Shen YD, Lei HT, Sun YM, Xu ZL, Hammock B. A rapid and simple fluorescence enzyme-linked immunosorbent assay for tetrabromobisphenol A in soil samples based on a bifunctional fusion protein. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109904. [PMID: 31704326 PMCID: PMC7198468 DOI: 10.1016/j.ecoenv.2019.109904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 05/20/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the largest brominated flame retardant which can be released to environment and cause long-term hazard. In this work, we developed a rapid and highly sensitive fluorescence enzyme-linked immunosorbent assay (FELISA) for monitoring of TBBPA in soil samples. TBBPA specific nanobody derived from camelid was fused with alkaline phosphatase to obtain the bi-functional fusion protein, which enable the specific binding of TBBPA and the generation of detection signal simultaneously. The assay showed an IC50 of 0.23 ng g-1, limit detection of 0.05 ng g-1 and linear range from 0.1 to 0.55 ng g-1 for TBBPA in soil samples. Due to the high resistance to organic solvents of the fusion protein, a simple pre-treatment by using 40% dimethyl sulfoxide (DMSO) as extract solvent can eliminate matrix effect and obtain good recoveries (ranging from 93.4% to 112.4%) for spiked soil samples. Good relationship between the results of the proposed FELISA and that of liquid chromatography tandem mass spectrometry (LC-MS/MS) was obtained, which indicated it could be a powerful analytical tool for determination of TBBPA to monitor human and environmental exposure.
Collapse
Affiliation(s)
- Hui-Jun Fu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Yu Wang
- Guangzhou Institute for Food Control, Guangzhou, 510410, China.
| | - Zhi-Li Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhen-Feng Li
- Guangzhou Institute for Food Control, Guangzhou, 510410, China.
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States.
| |
Collapse
|
23
|
Zhang XL, Li SM, Chen S, Feng F, Bai JQ, Li JR. Ammoniated MOF-74(Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109821. [PMID: 31677572 DOI: 10.1016/j.ecoenv.2019.109821] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
In this study, a porous framework MOF-74(Zn) (Zn2 (DHBDC)(DMF)(H2O)2, H4dondc = 1, 5-dioxido-2, 6-naphthalenedicarboxylic acid) with open metal sites was successful synthesized. MOF-74(Zn) as a template was grafted on the open metal sites with ethylenediamine (en) named MOF-74(Zn)-en to develop a highly selective and sensitive fluorescence detector for rapid determination of tetrabromobisphenol A (TBBPA). The obtained MOF-74(Zn)-en was well characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscopy (SEM) and showed ideal properties of photoluminescence. The fluorescence enhancement showed a good linear relationship with the concentrations of TBBPA in the range of 50-400 μg/L, and its limit of detection could reach to 0.75 μg/L. Furthermore, the possible sensing mechanism of the fluorescence enhancement could be attributed to Förster resonance energy transfer (FRET). The results will provide a convenient and quick method for detection of TBBPA. To the best of my knowledge, this is the first case to detect TBBPA by fluorescence enhancement with MOF derivatives.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China
| | - Su-Mei Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China
| | - Sha Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China.
| | - Fan Feng
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China
| | - Jin-Quan Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, PR China
| |
Collapse
|
24
|
Assessment of Tetrabromobisphenol and Hexabromocyclododecanes exposure and risk characterization using occurrence data in foods. Food Chem Toxicol 2020; 137:111121. [PMID: 31931070 DOI: 10.1016/j.fct.2020.111121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022]
Abstract
Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecanes (HBCDs) are two of the most used BFRs and they have cumulated in the environment. TBBPA and HBCDs in food were determined and their risks were assessed. The analytical method used was validated in different food categories, and the performance parameters were acceptable based on the criteria of AOAC. Fish and cephalopods were contaminated with TBBPA higher than other foods, and fish contained higher levels of HBCDs than other foods. α-HBCD was the predominant diastereomer in fish and meat and had strong correlations with HBCDs in fish and cephalopods. HBCDs accumulated easier than TBBPA in food. People were exposed to TBBPA from 0.125 ng kg-1 b.w. day-1 to 0.284 ng kg-1 b.w. day-1 and HBCDs from 0.353 ng kg-1 b.w. day-1 to 1.006 ng kg-1 b.w. day-1 via food and air. Food mainly contributed to exposure to TBBPA and HBCDs and vegetables were the main contributors for exposure to TBBPA and HBCDs in food. MOEs for the whole population were over 100, and the risks of exposure to TBBPA and HBCDs from food and the environment were of low concern to public health.
Collapse
|
25
|
Wang X, Wei L, Zhu J, He B, Kong B, Xue Z, Jin X, Fu Z. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages. CHEMOSPHERE 2019; 236:124413. [PMID: 31545206 DOI: 10.1016/j.chemosphere.2019.124413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
TBBPA is one of the main brominated flame retardants and is ubiquitous in the environment. TBBPA can directly encounter immune cells via the bloodstream, posing potential immunotoxicity. To understand the immunomodulating effect of TBBPA on macrophages, the murine macrophages, RAW 264.7, were exposed to TBBPA at environmentally relevant concentrations (1-100 nM). The results showed that TBBPA at the selected concentrations did not alter cell viability of RAW 264.7 cells with or without LPS stimulation. TBBPA upregulated the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, whereas it attenuated the LPS-stimulated expression of these pro-inflammatory cytokines, and the expression of anti-inflammatory cytokines, including IL-4, IL-10, and IL-13. In addition, TBBPA reduced the mRNA levels of antigen-presenting-related genes, including H2-K2, H2-Aa, Cd80, and Cd86. Moreover, TBBPA impaired the phagocytic activity of macrophages. Furthermore, exposure to TBBPA significantly elevated the protein levels of phosphorylated NF-κB p65 (p-p65), while it reduced LPS-stimulated p-p65 protein levels. DCFH-DA staining assays showed that TBBPA caused a slight but significant elevation in reactive oxygen species levels. The data obtained in the present study demonstrated that exposure to environmentally relevant concentrations of TBBPA posed immunotoxicity in macrophages and unveiled a potential health risk of TBBPA.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
26
|
Wang R, Lin CY, Chen SH, Lo KJ, Liu CT, Chou TH, Shih YH. Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:249-258. [PMID: 31349166 DOI: 10.1016/j.scitotenv.2019.07.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
We discovered one purple photosynthetic bacterium, Rhodopseudomonas palustris YSC3, which has a specific ability to degrade 1, 2, 5, 6, 9, 10-hexabromocyclododecane (HBCD). The whole transcriptome of R. palustris YSC3 was analyzed using the RNA-based sequencing technology in illumina and was compared as well as discussed through Multi-Omics onLine Analysis System (MOLAS, http://molas.iis.sinica.edu.tw/NTUIOBYSC3/) platform we built. By using genome based mapping approach, we can align the trimmed reads on the genome of R. palustris and estimate the expression profiling for each transcript. A total of 341 differentially expressed genes (DEGs) in HBCD-treated R. palustris (RPH) versus control R. palustris (RPC) was identified by 2-fold changes, among which 305 genes were up-regulated and 36 genes were down-regulated. The regulated genes were mapped to the database of Gene Ontology (GO) and Genes and Genomes Encyclopedia of Kyoto (KEGG), resulting in 78 pathways being identified. Among those DEGs which annotated to important functions in several metabolic pathways, including those involved in two-component system (13.6%), ribosome assembly (10.7%), glyoxylate and dicarboxylate metabolism (5.3%), fatty acid degradation (4.7%), drug metabolism-cytochrome P450 (2.3%), and chlorocyclohexane and chlorobenzene degradation (3.0%) were differentially expressed in RPH and RPC samples. We also identified one transcript annotated as dehalogenase and other genes involved in the HBCD biotransformation in R. palustris. Furthermore, the putative HBCD biotransformation mechanism in R. palustris was proposed.
Collapse
Affiliation(s)
- Reuben Wang
- Department of Food Science, Tunghai University, Taiwan, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Taipei 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Taipei 11529, Taiwan
| | - Kai-Jiun Lo
- Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
27
|
Shi X, Zha J, Wen B, Zhang S. Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:893-902. [PMID: 31200309 DOI: 10.1016/j.scitotenv.2019.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Hexabromocyclododecane (HBCD) is a widely applied brominated flame retardant (BFR) and is regarded as a persistent organic pollutant. It has been found in human tissues and has the potential to cause neurological disorders. However, our understanding of HBCD neurotoxicity at the diastereoisomer level remains lacking. Here, we investigated the neurotoxicity of three HBCD diastereoisomers, i.e., α-, β-, and γ-HBCD, in SH-SY5Y human neuroblastoma cells. Results showed that the HBCD diastereoisomers decreased cell viability, increased lactate dehydrogenase (LDH) release, and impaired cytoskeleton development. Typical morphological features and apoptosis rates showed that the HBCD diastereoisomers induced SH-SY5Y cell apoptosis. The expression levels of several cell apoptosis-related genes and proteins, including Bax, caspase-3, caspase-9, cytochrome c, Bcl-2, and X-linked inhibitor of apoptosis (XIAP), as well as the cell cycle arrest, DNA damage, adenosine triphosphate (ATP) consumption, reactive oxygen species (ROS) levels, and intracellular calcium ion (Ca2+) levels, were examined. Results showed that the HBCD diastereoisomer neurotoxicity was ranked β-HBCD > γ-HBCD > α-HBCD. The cell apoptosis and caspase expression levels of the three HBCD diastereoisomers followed the same order, suggesting that caspase-dependent apoptosis may be one mechanism responsible for the structure-selective HBCD diastereoisomer neurotoxicity. The levels of intracellular Ca2+ and ROS increased significantly. The ROS levels were ordered β-HBCD > γ-HBCD > α-HBCD, whereas those of intracellular Ca2+ were γ-HBCD > β-HBCD > α-HBCD. Thus, ROS may be a key factor regulating the neurotoxicity of HBCD diastereoisomers. To the best of our knowledge, this is the first study to report on the diastereoisomer-specific toxicity of HBCD in human neural cells and on the possible mechanisms responsible for the selective neurotoxicity of HBCD diastereoisomers.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmiao Zha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Yu Y, Yu Z, Chen H, Han Y, Xiang M, Chen X, Ma R, Wang Z. Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:909-917. [PMID: 31351299 DOI: 10.1016/j.envpol.2019.07.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/29/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a nonregulated brominated flame retardant with a high production volume, and it is applied in a wide variety of consumer products. TBBPA is ubiquitous in abiotic matrices, wildlife and humans around the world. This paper critically reviews the published scientific data concerning the disposition, metabolism or kinetics and toxicity of TBBPA in animals and humans. TBBPA is rapidly absorbed and widely distributed among tissues, and is excreted primarily in the feces. In rats, TBBPA and its metabolites have limited systemic bioavailability. TBBPA has been detected in human milk in the general population. It is available to both the developing fetus and the nursing pups following maternal exposure. It has been suggested that TBBPA causes acute toxicity, endocrine disruptor activity, immunotoxicity, neurotoxicity, nephrotoxicity, and hepatotoxicity in animals. Cell-based assays have shown that TBBPA can induce reactive oxygen species in a concentration-dependent manner, and it promotes the production of inflammatory factors such as TNF α, IL-6, and IL-8. Cells exposed to high levels of TBBPA exhibit seriously injured mitochondria and a dilated smooth endoplasmic reticulum. This review will enhance the understanding of the potential risks of TBBPA exposure to ecological and human health.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
29
|
Shen M, Ge J, Lam JCW, Zhu M, Li J, Zeng L. Occurrence of two novel triazine-based flame retardants in an E-waste recycling area in South China: Implication for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:249-257. [PMID: 31132704 DOI: 10.1016/j.scitotenv.2019.05.264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The recent increase in the use of alternative flame retardants (FRs) in consumer products has led to emerging contaminants in the environment. Identification of novel FRs is urgently needed because the potential threat posed by these chemicals has provoked considerable attention, but the details of the threat are not yet widely understood. In this study, two novel triazine-based FRs, tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), were identified in dust samples from an e-waste recycling area in China. Two legacy FRs, namely, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDD), were also analyzed for comparison. The mean level of TDBP-TAZTO in the e-waste dust samples was found to be much higher (2060 ng g-1) than that of HBCDD (526 ng g-1), while the mean level of TTBP-TAZ in residential dust samples was moderately higher (119 ng g-1) than that of HBCDD (35.7 ng g-1). A comparison of the TDBP-TAZTO and TTBP-TAZ concentrations with those of other alternative and legacy FRs indicated that TDBP-TAZTO is a major FR that is currently used in China. The estimated daily intake of TDBP-TAZTO via dust ingestion for occupational workers was much higher than that of HBCDD and was also much higher than for local adults and children. Exposure to TDBP-TAZTO poses a potentially high risk to the health of the local population, especially for the occupational workers, when the multicomponent chemical 'cocktail' effects are taken into account. More investigations on the environmental behaviors and risk factors of TDBP-TAZTO and TTBP-TAZ in various environmental matrices, as well as their toxicological effects, should be performed in the future.
Collapse
Affiliation(s)
- Mingjie Shen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiali Ge
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Mingshan Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Juan Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lixi Zeng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
30
|
Feng J, Tao Y, Shen X, Jin H, Zhou T, Zhou Y, Hu L, Luo D, Mei S, Lee YI. Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste samples using molecularly imprinted polymer coated quantum dots. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Baek SY, Kim B, Lee S, Lee J, Ahn S. Accurate determination of hexabromocyclododecane diastereomers in extruded high-impact polystyrene: Development of an analytical method as a candidate reference method. CHEMOSPHERE 2018; 210:296-303. [PMID: 30005351 DOI: 10.1016/j.chemosphere.2018.06.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Herein, an isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) method was developed as a candidate reference method for the accurate quantitation of hexabromocyclododecane (HBCDD) diastereomers in plastics. The repeatability, reproducibility, and uncertainty results showed that developed ID-LC/MS/MS method is reliable and reproducible. As homogeneous samples, HBCDD-containing extruded high-impact polystyrene (HIPS) pellets were fabricated via an extrusion process. Notably, we detected α-, β-, γ-, δ-, ε-, η-, and θ-HBCDDs in the extruded HIPS pellets, and then determined their exact mass fractions using the ID-LC-MS/MS method. The relative contents (average ± standard deviation) of HBCDD diastereomers in HIPS obtained using the phenyl-hexyl column were 67.08 ± 0.41% (α-HBCDD), 19.73 ± 0.37% (β-HBCDD), 11.59 ± 0.16% (γ-HBCDD), and 1.6 ± 0.07% (sum of δ-, ε-, η-, and θ-HBCDDs). These values differed significantly from the ones determined for the technical HBCDD mixtures (10.42% α-HBCDD, 5.30% β-HBCDD, 82.13% γ-HBCDD, 2.15% minor HBCDDs) used to fabricate the HIPS pellets and thus demonstrating the HBCDD isomerization during the extrusion. The proportion of minor HBCDDs was smaller than the uncertainty of the total HBCDD and that the sum of α-, β-, and γ-HBCDDs was comparable to the total HBCDD in the investigated samples. Notably, a real-life sample (expanded polystyrene board obtained from a local construction site) also showed a similar HBCDD profile, being rich in α-HBCDD.
Collapse
Affiliation(s)
- Song-Yee Baek
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Byungjoo Kim
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sunyoung Lee
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Joonhee Lee
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seonghee Ahn
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
32
|
Lu JF, He MJ, Yang ZH, Wei SQ. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:219-228. [PMID: 29980040 DOI: 10.1016/j.envpol.2018.06.087] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Currently, the HBCDs were listed in Annex A by the Stockholm Convention, and the knowledge on the contamination of TBBPA and HBCDs in soil and road dust in China is still limited, and it is unclear what role is played by dust particle size distribution. In this study, a total of 81 soil and 43 road dust samples were analyzed with TBBPA and ΣHBCDs concentrations ranging from < LOQ to 33.8 ng/g dw (dry weight) and 0.43-15.2 ng/g dw in soil, and from < LOQ to 74.1 ng/g dw and 7.25-14.0 ng/g dw in road dust, respectively. TBBPA and HBCDs exhibited different spatial distribution patterns in soil, where relatively high levels of HBCDs were found in industrial area and commercial area, while high levels of TBBPA were detceted in residential area. However, no distinct variation in spatial distribution of these two compounds was observed in road dust. Different diastereoisomer profiles of HBCDs were also found with γ-HBCD predominating in soil and α-HBCD occupying a large proportion in road dust. The α-/γ-HBCD values in road dust were significantly greater (T-test, P < 0.05) than those in soil, which suggested that γ-HBCD in road dust were likely to transform into α-HBCD compared with soil. The distribution of dust particle size showed that HBCDs levels were increasing with the decreasing in particle sizes, while the TBBPA showed some "accidental" peak values in specific diameter ranges. The estimated daily intakes (EDIs) of TBBPA and HBCDs were assessed through dust ingestion, dermal absorption and inhalation via road dust, and all the exposure estimates were well below the reference dose (RfD), but the toddlers were more vulnerable to TBBPA and HBCDs intakes, which should be paid more attention.
Collapse
Affiliation(s)
- Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China.
| | - Zhi-Hao Yang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shi-Qiang Wei
- College of Resources and Environment, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
| |
Collapse
|
33
|
Čulin J. Brominated flame retardants: Recommendation for different listing under the Hong Kong Convention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:919-926. [PMID: 29729509 DOI: 10.1016/j.scitotenv.2018.04.342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
When the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships, 2009 enters into effect, ships to be sent for recycling will be required to carry an Inventory of Hazardous Materials (IHM) on board, which identifies the hazardous materials contained in the ship's structure or equipment. In its current form, IHM covers two classes of brominated flame retardants (BFRs), namely polybrominated biphenyls and polybrominated diphenyl ethers. Emerging evidence from recent literature suggests that members of all classes of BFRs are present in all environmental compartments and that exposure to them is associated with a wide range of harmful effects in humans and animals, effects that include endocrine disruption. Despite a growing body of research, the necessary data to perform health and environmental risk assessment are still lacking. This paper reviews environmental and human health impacts and discusses some issues of BFR environmental management. It is suggested that based on a precautionary approach, the inclusion of all classes of BFRs in IHM is warranted.
Collapse
Affiliation(s)
- Jelena Čulin
- University of Zadar, Maritime Department, M. Pavlinovića 1, 23000 Zadar, Croatia.
| |
Collapse
|
34
|
Li Y, Zhu X, Wang L, Gao Y, Chen J, Wang W, Dong X, Li X. Levels and gas-particle partitioning of hexabromocyclododecanes in the urban air of Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27514-27523. [PMID: 30051288 DOI: 10.1007/s11356-018-2793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The concentrations of α-, β-, and γ-hexabromocyclododecane diastereomers (HBCDs) in gas phase and particulate phase of Dalian urban air, China, were monitored from September 2016 to August 2017 with high-volume active sampler. The total concentration of ∑HBCDs (gas phase + particulate phase) ranged from 15.47 to 43.57 pg m-3, with an average of 27.07 pg m-3, and 73.39-96.76% of the total HBCDs were found in the particulate phase. No matter in gas phase or in particulate phase, α-HBCD was the predominant component in all, and there was a good negative correlation between the relative contribution of α-HBCD to ∑HBCDs and that of γ-HBCD to ∑HBCDs. The average ratios of the air concentration of α-HBCD to γ-HBCD were comparable with those found in decorative polystyrene, which indicated that HBCDs in outdoor air of Dalian probably came from indoor air and ventilation air from inside of buildings coupled with the already present contamination in background air. There were clear seasonal differences in the HBCD concentrations. Spearman's rank correlation analysis between the concentrations of HBCDs with meteorological parameters was conducted. The exposure risk of HBCDs was evaluated, which illustrated that the estimated exposure of HBCDs via the outdoor air in Dalian was well below the reference doses (200 ng kg-1 bw day-1) derived by the US National Research Council.
Collapse
Affiliation(s)
- Yan Li
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Xiuhua Zhu
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China.
| | - Longxing Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Wei Wang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Xuewei Dong
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Xiaoxiao Li
- Dalian Meteorological Observatory, Dalian, 116001, China
| |
Collapse
|
35
|
Barghi M, Shin ES, Choi SD, Dahmardeh Behrooz R, Chang YS. HBCD and TBBPA in human scalp hair: Evidence of internal exposure. CHEMOSPHERE 2018; 207:70-77. [PMID: 29772426 DOI: 10.1016/j.chemosphere.2018.05.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Human biomonitoring is a reliable method for evaluating human exposure to specific contaminants. Although blood is an ideal matrix for monitoring purposes, it is regarded as an invasive matrix. Therefore, current developments in the field of human biomonitoring are based on introducing new methods that use non-invasive matrices, such as hair. In this study, we examined the efficiencies of several extraction methods for the analysis of hexabromocyclododecane (HBCD) and tetrabromobisphenol-A (TBBPA) in human hair. The selected pretreatment method was validated through a general QA/QC process that included spiking experiments, and then, the method was used for the determination of HBCD and TBBPA concentrations in scalp hair samples collected from individuals in Korea (n = 24) and Iran (n = 15). The HBCD and TBBPA concentrations in the collected hair samples ranged from ND to 3.24 ng g-1 and ND to 16.04 ng g-1, respectively. Significantly higher concentrations of TBBPA were found in hair samples from Korea than those in hair samples from Iran (p < 0.05), which is expected to be the result of the large market and higher exposure of TBBPA in Korea. HBCD was not detected in hair samples from Iran. According to our knowledge this is the first study demonstrating the presence of TBBPA in human hair with nonspecific exposure. Lastly, we investigated the important factors that influence the interpretation of the contributions of endogenous and exogenous contaminations in hair. Based on the information, the HBCD and TBBPA in the collected hair samples were most likely from endogenous exposure. Therefore, our study showed that hair is potentially a suitable indicator for the monitoring of internal exposure to HBCD and TBBPA in different populations.
Collapse
Affiliation(s)
- Mandana Barghi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Eun-Su Shin
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Reza Dahmardeh Behrooz
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea.
| |
Collapse
|
36
|
Gao W, Cao D, Wang Y, Wu J, Wang Y, Wang Y, Jiang G. External Exposure to Short- and Medium-Chain Chlorinated Paraffins for the General Population in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:32-39. [PMID: 29190090 DOI: 10.1021/acs.est.7b04657] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are a class of compounds that are currently produced and used in large amounts in commercial products worldwide. In this study, food, indoor air, indoor dust, and drinking water samples were collected to evaluate the external exposure levels of CPs and possible pathway for the general population in Beijing, China. Short chain CPs (SCCPs) and medium chain CPs (MCCPs) in 199 samples were analyzed using a gas chromatography tandem time-of-flight high-resolution mass spectrometry (GC-TOF-HR-MS) method. High levels of CPs were observed in the indoor environment from residential houses, offices, and student dormitories. The geometric mean concentrations (GM) of ∑SCCPs and ∑MCCPs in indoor dust were 92 μg g-1 and 82 μg g-1, respectively, while in indoor air, the concentrations were 80 ng m-3 and 3.4 ng m-3, respectively. The GM of ∑SCCPs and ∑MCCPs in the diet were 83 ng g-1 dry weight (dw) and 56 ng g-1 dw, respectively. The most important external exposure routes to CPs to the general populations in Beijing were food intake and indoor dust ingestion. Indoor dust and indoor air posed higher risks for toddlers and infants than for adults.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dandan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yingjun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Wuhan 430056, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
37
|
Besis A, Christia C, Poma G, Covaci A, Samara C. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:871-881. [PMID: 28735244 DOI: 10.1016/j.envpol.2017.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Brominated flame retardants (BFRs) are organobromine compounds with an inhibitory effect on combustion chemistry tending to reduce the flammability of products. Concerns about health effects and environmental threats have led to phase-out or restrictions in the use of Penta-, Octa- and Deca-BDE technical formulations, increasing the demand for Novel BFRs (NBFRs) as replacements for the banned formulations. This study examined the occurrence of legacy and NBFRs in the dust from the interior of private cars in Thessaloniki, Greece, aged from 1 to 19 years with variable origin and characteristics. The determinants included 20 Polybrominated Diphenyl Ethers (PBDEs) (Di-to Deca-BDEs), four NBFRs such as Decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), and bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), three isomers of hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA). The concentrations of ∑20PBDE ranged from 132 to 54,666 ng g-1 being dominated by BDE-209. The concentrations of ∑4NBFRs ranged from 48 to 7626 ng g-1 and were dominated by DBDPE, the major substitute of BDE-209. HBCDs ranged between <5 and 1745 ng g-1, with alpha-HBCD being the most prevalent isomer Finally, the concentrations of TBBPA varied from <10 to 1064 ng g-1. The concentration levels and composition profiles of BFRs were investigated in relation to the characteristics of cars, such as year of manufacture, country of origin, and interior equipment (type of car seats, electronic and electrical components, ventilation, etc.). The average daily intakes of selected BFRs (BDE-47, BDE-99, BDE-153, BDE-209, TBB, BTBPE, TBPH, DBDPE, HBCDs and TBBPA) via ingestion and dermal absorption were estimated for adults and toddlers. The potential health risk due to BFRs was found to be several orders of magnitude lower than their corresponding reference dose (RfD) values.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Christina Christia
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|