1
|
Kozlov MV, Zverev V. Losses of Foliage to Defoliating Insects Increase with Leaf Damage Diversity Due to the Complementarity Effect. INSECTS 2025; 16:139. [PMID: 40003769 PMCID: PMC11855602 DOI: 10.3390/insects16020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The functioning of ecosystems critically depends on biodiversity. However, the effects of herbivore diversity on plant damage caused by herbivore feeding remain underexplored. In this study, we tested the prediction that relative losses of foliage to defoliating insects increase with leaf damage diversity (LDD), and we also explored the mechanisms underlying the observed LDD patterns. We measured insect herbivory in 501 individuals of three deciduous woody species (Betula pubescens, Salix phylicifolia, and Vaccinium uliginosum) across 38 localities in north-western Russia, collected 8844 leaves damaged by defoliating insects, classifying the 21,073 feeding events observed in these leaves into 29 damage types. Overall, LDD significantly decreased with increasing latitude but showed no variation along elevation or pollution gradients. Herbivory weakly but significantly increased with increasing LDD, and a strong positive correlation between the rarefied number of leaf damage types and their evenness provided evidence for the complementarity effect underlying this herbivory increase, indicating that insects producing different leaf damage types differ in their resource use.
Collapse
|
2
|
Kozlov MV. Population dynamics of herbivorous insects in polluted landscapes. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100987. [PMID: 36307065 DOI: 10.1016/j.cois.2022.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollution is one cause of insect decline in the Anthropocene, but the underlying mechanisms remain obscure due to a paucity of pollution-impact studies on insects that address density-dependent processes. Long data series (19-26 years) are available only for a few species monitored around two industrial polluters in north-western Russia. A particularly exciting current finding is that industrial pollution determines the relative strength of rapid (stabilising) and delayed (destabilising) density dependence operating on a herbivore population. Most studies address acute effects of traditional pollutants (e.g. sulphur dioxide and trace elements) and nitrogen deposition on agricultural pests, whereas the effects of realistic concentrations of ozone, particulate matter and emerging pollutants on insects feeding on noncultivated plants are unknown. The accumulated evidence remains insufficient to predict the effects of pollutants of global concern on the population dynamics of herbivorous insects.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Department of Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
3
|
Kozlov MV, Castagneyrol B, Zverev V, Zvereva EL. Recovery of moth and butterfly (Lepidoptera) communities in a polluted region following emission decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155800. [PMID: 35550902 DOI: 10.1016/j.scitotenv.2022.155800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution is one of the major drivers of the present-day decline in global biodiversity. However, the links between the effects of industrial pollution on insect communities and the underlying species-specific responses remain poorly understood. We explored the spatial pattern in insect communities by analysing 581 samples of moths and butterflies (containing 25,628 individuals of 345 species) collected along a strong pollution gradient in subarctic Russia, and we recorded temporal changes in these communities during the pollution decline that occurred from 1992 to 2006. In the 1990s, the diversity of the Lepidoptera community was positively correlated with the distance from the copper-nickel smelter at Monchegorsk. The overall abundance of Lepidoptera did not change along the pollution gradient, although the abundance of many species decreased with increasing pollution. The responses of each individual species to pollution were associated with its life history traits. The abundances of monophagous species that fed inside live plant tissues and hibernated as imagoes or pupae were not affected by pollution, whereas the abundances of oligophagous and polyphagous species that fed externally on plants and hibernated as larvae generally declined near the smelter. Substantial decreases in aerial emissions from the smelter between 1992 and 2006 resulted in an increase in the diversity of moths and butterflies in severely polluted habitats, whereas their overall abundance did not change. This recovery of the Lepidoptera community occurred due to the reappearance of rare species that had been previously extirpated by pollution and was observed despite the lack of any signs of recovery of the vegetation in the heavily polluted sites. We conclude that the recovery trajectories of insect communities following emission control can be predicted from studies of their changes along spatial pollution gradients by using space-for-time substitution.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | | | - Vitali Zverev
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Elena L Zvereva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
5
|
Kozlov MV, Zverev V. Suitability of European Aspen (Populus tremula) for Rehabilitation of Severely Polluted Areas. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Vorobeichik EL. Natural Recovery of Terrestrial Ecosystems after the Cessation of Industrial Pollution: 1. A State-of-the-Art Review. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Zverev V, Kozlov MV. Decline of Eulia ministrana (Lepidoptera: Tortricidae) in polluted habitats is not accompanied by phenotypic stress responses. INSECT SCIENCE 2021; 28:1482-1490. [PMID: 32783368 DOI: 10.1111/1744-7917.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution is currently identified as one of the major drivers of rapid decline of insect populations, and this finding has revitalized interest in insect responses to pollution. We tested the hypothesis that the pollution-induced decline of insect populations can be predicted from phenotypic stress responses expressed as morphological differences between populations inhabiting polluted and unpolluted sites. We explored populations of the brassy tortrix Eulia ministrana in subarctic forests along an environmental disturbance gradient created by long-lasting severe impacts of aerial emissions of the copper-nickel smelter in Monchegorsk, northwestern Russia. We used pheromone traps to measure the population densities of this leafrolling moth and to collect specimens for assessment of three morphological stress indices: size, forewing melanization, and fluctuating asymmetry in wing venation. Wing length of E. ministrana increased by 10%, and neither forewing melanization nor fluctuating asymmetry changed from the unpolluted forest to the heavily polluted industrial barren. However, the population density of E. ministrana decreased 5 to 10 fold in the same pollution gradient. Thus, none of the studied potential morphological stress indicators signaled vulnerability of E. ministrana to environmental pollution and/or to pollution-induced environmental disturbance. We conclude that insect populations can decline without any visible signs of stress. The use of morphological proxies of insect fitness to predict the consequences of human impact on insect populations is therefore risky until causal relationships between these proxies and insect abundance are deciphered.
Collapse
Affiliation(s)
- Vitali Zverev
- Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
8
|
Metal bioaccumulation alleviates the negative effects of herbivory on plant growth. Sci Rep 2021; 11:19062. [PMID: 34561510 PMCID: PMC8463685 DOI: 10.1038/s41598-021-98483-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Metalliferous soils can selectively shape plant species' physiology towards tolerance of high metal concentrations that are usually toxic to organisms. Some adapted plant species tolerate and accumulate metal in their tissues. These metals can serve as an elemental defence but can also decrease growth. Our investigation explored the capacity of natural metal accumulation in a tropical tree species, Eremanthus erythropappus (Asteraceae) and the effects of such bioaccumulation on plant responses to herbivory. Seedlings of E. erythropappus were grown in a glasshouse on soils that represented a metal concentration gradient (Al, Cu, Fe, Mn and Zn), and then the exposed plants were fed to the herbivores in a natural habitat. The effect of herbivory on plant growth was significantly mediated by foliar metal ion concentrations. The results suggest that herbivory effects on these plants change from negative to positive depending on soil metal concentration. Hence, these results provide quantitative evidence for a previously unsuspected interaction between herbivory and metal bioaccumulation on plant growth.
Collapse
|
9
|
Kozlov MV, Kullberg J, Zverev V. Additions and Corrections to the Fauna of Moths and Butterflies (Lepidoptera) of the Kola Peninsula (Murmansk Oblast), NW Russia. ANN ZOOL FENN 2020. [DOI: 10.5735/086.057.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Vitali Zverev
- Department of Biology, FI-20014 University of Turku, Finland
| |
Collapse
|
10
|
Kristensen JA, Michelsen A, Metcalfe DB. Background insect herbivory increases with local elevation but makes minor contribution to element cycling along natural gradients in the Subarctic. Ecol Evol 2020; 10:11684-11698. [PMID: 33144993 PMCID: PMC7593201 DOI: 10.1002/ece3.6803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Herbivores can exert major controls over biogeochemical cycling. As invertebrates are highly sensitive to temperature shifts (ectothermal), the abundances of insects in high-latitude systems, where climate warming is rapid, is expected to increase. In subarctic mountain birch forests, research has focussed on geometrid moth outbreaks, while the contribution of background insect herbivory (BIH) to elemental cycling is poorly constrained. In northern Sweden, we estimated BIH along 9 elevational gradients distributed across a gradient in regional elevation, temperature, and precipitation to allow evaluation of consistency in local versus regional variation. We converted foliar loss via BIH to fluxes of C, nitrogen (N), and phosphorus (P) from the birch canopy to the soil to compare with other relevant soil inputs of the same elements and assessed different abiotic and biotic drivers of the observed variability. We found that leaf area loss due to BIH was ~1.6% on average. This is comparable to estimates from tundra, but considerably lower than ecosystems at lower latitudes. The C, N, and P fluxes from canopy to soil associated with BIH were 1-2 orders of magnitude lower than the soil input from senesced litter and external nutrient sources such as biological N fixation, atmospheric deposition of N, and P weathering estimated from the literature. Despite the minor contribution to overall elemental cycling in subarctic birch forests, the higher quality and earlier timing of the input of herbivore deposits to soils compared to senesced litter may make this contribution disproportionally important for various ecosystem functions. BIH increased significantly with leaf N content as well as local elevation along each transect, yet showed no significant relationship with temperature or humidity, nor the commonly used temperature proxy, absolute elevation. The lack of consistency between the local and regional elevational trends calls for caution when using elevation gradients as climate proxies.
Collapse
Affiliation(s)
- Jeppe A. Kristensen
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Geological Survey of Denmark and GreenlandCopenhagenDenmark
| | - Anders Michelsen
- Department of BiologyTerrestrial Ecology SectionUniversity of CopenhagenCopenhagenDenmark
- Center for PermafrostUniversity of CopenhagenCopenhagenDenmark
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Department of Ecology and Environmental SciencesUmeå Umeå UniversitetUmeåSweden
| |
Collapse
|
11
|
Wei W, Guo Z, Zhou L, Xie B, Zhou J. Assessing environmental interference in northern China using a spatial distance model: From the perspective of geographic detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136170. [PMID: 31884283 DOI: 10.1016/j.scitotenv.2019.136170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The rapid development of society and the expansion of human activities have resulted in interference with the natural environment. Assessing the environmental interference (EI) caused by human activities is highly important for socio-economic sustainable development. In this study, the spatial distance model (SDM) and resource endowment index (REI)-human activity index (HAI) ratio model were developed to calculate the environmental interference index (EII) in northern China (NC). The current spatial distribution and patterns of EII in NC were analyzed based on geographic information system (GIS) technology. In addition, the factors that influence the level of EI were examined through a geographical detector method. The results showed that the EII value in the eastern region was significantly higher than that in the western region and that differences in EI were spatial heterogeneity. The spatial distribution of EI was analyzed at the provincial, municipal and county scales, respectively. It was found that its distribution was closely related to urban development. The spatial distribution of EI displayed longitudinal zonality. East of 104.987°E, there were many large cities, such as Beijing, Tianjin, Qingdao and Zhengzhou, with high population densities and developed economies. Thus, these areas had high EI values. To the west of 104.987°E, such as in the Qinghai, Gansu, Xinjiang and Inner Mongolia regions, the EI values were generally low, with low environmental quality and fewer human activities. The level of EI in the Huang-Huai-Hai Plain region was higher than that in other areas, displaying obvious spatial dependence. Moreover, the distribution of EI exhibited high-high and low-low aggregation patterns, which accounted for 24.06% and 27.35% of the total study area, respectively. Specifically, in NC, the EI caused by human activities displayed obvious regional characteristics. In addition, the factors that influence EI were determined through a geographical detector model. The land use intensity was the direct factor related to changes in and the levels of EI, and the cover and growth of vegetation were the most important factors associated with mitigating human interference. The assessment results can provide a reference for the formulation of environmental governance and related policies.
Collapse
Affiliation(s)
- Wei Wei
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Zecheng Guo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Liang Zhou
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.
| | - Binbin Xie
- School of Urban Economics and Tourism Culture, Lanzhou City University, Lanzhou 730070, Gansu, China
| | - Junju Zhou
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
12
|
Rheubottom SI, Barrio IC, Kozlov MV, Alatalo JM, Andersson T, Asmus AL, Baubin C, Brearley FQ, Egelkraut DD, Ehrich D, Gauthier G, Jónsdóttir IS, Konieczka S, Lévesque E, Olofsson J, Prevéy JS, Slevan-Tremblay G, Sokolov A, Sokolova N, Sokovnina S, Speed JDM, Suominen O, Zverev V, Hik DS. Hiding in the background: community-level patterns in invertebrate herbivory across the tundra biome. Polar Biol 2019. [DOI: 10.1007/s00300-019-02568-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Hunter MD, Kozlov MV. The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient. J Anim Ecol 2018; 88:665-676. [PMID: 30471097 DOI: 10.1111/1365-2656.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022]
Abstract
Animal populations vary in response to a combination of density-dependent and density-independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density-dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world. Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal-fired power plant near Apatity, north-western Russia. Populations were monitored at 14 sites over 26 years. The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant. In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible. Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly changing world, effects of anthropogenic pollution may be as, or more, important than are effects of climate change on the future dynamics of animal populations.
Collapse
Affiliation(s)
- Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Mikhail V Kozlov
- Section of Ecology and Evolutionary Biology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Kozlov MV, Zverev V. Temperature and herbivory, but not pollution, affect fluctuating asymmetry of mountain birch leaves: Results of 25-year monitoring around the copper‑nickel smelter in Monchegorsk, northwestern Russia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:678-687. [PMID: 29870944 DOI: 10.1016/j.scitotenv.2018.05.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Fluctuating asymmetry (FA), which is defined as the magnitude of the random deviations from a symmetrical shape, reflects developmental instability and is commonly assumed to increase under environmental and genetic stress. We monitored the leaf FA of mountain birch, Betula pubescens subsp. czerepanovii, from 1993 to 2017 in individually marked trees at 21 sites around the copper‑nickel smelter at Monchegorsk, and we then analysed the results with respect to spatial and temporal variation in pollution, climate and background insect herbivory. Responses of leaf FA to different stressors were stressor specific: FA did not correlate with pollution load, it decreased significantly with an increase in June air temperature and it increased slightly but significantly with an increase in the previous-year leaf damage due to defoliating and leafmining insects. Our findings suggest that climate warming is unlikely to impose stress on the explored mountain birch populations, but even small increases in insect herbivory may adversely affect birch trees. However, these conclusions, since they are based on an observational study, should be viewed as tentative until confirmed by controlled experiments. We also demonstrated that the use of non-blinded measurements, which are prone to confirmation bias, was the primary reason for the earlier report of an increase in birch leaf FA near the Monchegorsk smelter. We hope that our findings will promote a wide use of blinded methods in ecological research and that they will contribute to debunking the myth that plant leaf FA consistently increases with increases in environmental pollution.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
15
|
Aydogan EL, Moser G, Müller C, Kämpfer P, Glaeser SP. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment. Front Microbiol 2018; 9:144. [PMID: 29487575 PMCID: PMC5816784 DOI: 10.3389/fmicb.2018.00144] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere), which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C) plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C) surface warming on the phyllosphere microbiota on plants. A reduction of beneficial bacteria and an enhancement of potential pathogenic bacteria in the phyllosphere of plants may indicate that this aspect of the ecosystem which has been largely neglected up till now, can be a potential risk for pathogen transmission in agro-ecosystems in the near future.
Collapse
Affiliation(s)
- Ebru L. Aydogan
- Institute for Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Gerald Moser
- Institute for Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Müller
- Institute for Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Peter Kämpfer
- Institute for Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Stefanie P. Glaeser
- Institute for Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Stiegel S, Mantilla-Contreras J. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany. INSECTS 2018; 9:E9. [PMID: 29373542 PMCID: PMC5872274 DOI: 10.3390/insects9010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 11/16/2022]
Abstract
Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient.
Collapse
Affiliation(s)
- Stephanie Stiegel
- Ecology and Environmental Education Group, Institute of Biology and Chemistry, University of Hildesheim, 31141 Hildesheim, Germany.
| | - Jasmin Mantilla-Contreras
- Ecology and Environmental Education Group, Institute of Biology and Chemistry, University of Hildesheim, 31141 Hildesheim, Germany
| |
Collapse
|
17
|
Mortality and Recovery of Hemlock Woolly Adelgid (Adelges tsugae) in Response to Winter Temperatures and Predictions for the Future. FORESTS 2017. [DOI: 10.3390/f8120497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|