1
|
Duchet C, Verheyen J, Van Houdt R, Grabicová K, Dekan Carreira V, Stoks R, Boukal DS. Bioenergetic responses mediate interactive effects of pharmaceuticals and warming on freshwater arthropod populations and ecosystem functioning. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137814. [PMID: 40048784 DOI: 10.1016/j.jhazmat.2025.137814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/27/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Freshwater ecosystems are increasingly impacted by pharmaceutical contaminants (PhACs) and climate change-induced warming. Yet, their joint effects on freshwater taxa remain unclear. This is partly due to poorly understood mechanisms linking the effects on (sub)individual scales to higher levels of ecological organisation. We investigated the responses of two aquatic arthropods, Asellus aquaticus and Cloeon dipterum, to environmentally realistic levels of a 15-PhAC mixture (total concentration: 2.9 µg/L) and warming (+4 °C above ambient) in outdoor pond mesocosms (1000 L) across winter and summer. We measured physiological traits (bioenergetic responses based on quantification of energy consumption and energy stored in proteins, sugars and lipids, and oxidative damage based on malondialdehyde [MDA] levels), population density and ecosystem functions (leaf litter decomposition and insect emergence). In winter, PhACs reduced energy availability and increased MDA levels. In contrast, PhACs increased energy availability and decreased MDA levels in summer. The stressors reduced Asellus abundance, leading to reduced leaf litter decomposition, while Cloeon emergence in summer declined due to a PhAC-induced decline in larval abundance. Warming alone consistently decreased arthropod abundances and emergence, except for Asellus abundance in winter. The stressor effects through changes in bioenergetics were stronger than their direct effects on population abundances and ecosystem functions. Our findings highlight the vulnerability of aquatic arthropods to PhAC pollution and warming, emphasising the need for effective management strategies to mitigate the effects of emerging contaminants and climate change on freshwater biota.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Ria Van Houdt
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Vladimíra Dekan Carreira
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences of the University of Lisbon, Bloco C2, Campo Grande, Lisbon 1749-016, Portugal
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
2
|
Grønlund SN, Læssøe CD, Cedergreen N, Selck H. The Importance of Including Variable Exposure Concentrations When Assessing Toxicity of Sediment-Associated Pharmaceuticals to an Amphipod. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1767-1777. [PMID: 38804665 DOI: 10.1002/etc.5894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals have been classified as an environmental concern due to their increasing consumption globally and potential environmental impact. We examined the toxicity of sediment-associated diclofenac and citalopram administered as both single compounds and in a mixture to the sediment-living amphipod Corophium volutator. This laboratory-based study addressed the following research questions: (1) What is the toxicity of sediment-associated diclofenac and citalopram to C. volutator? (2) Can the mixture effect be described with either of the two mixture models: concentration addition (CA) or independent action (IA)? (3) What is the importance of the choice of (i) exposure measure (start concentration, time-weighted average [TWA], full exposure profile) and (ii) effect model (concentration-response vs. the toxicokinetic-toxicodynamic model general unified threshold model for survival in its reduced form [GUTS-RED]) for the derived effect concentration values? Diclofenac was more toxic than citalopram to C. volutator as a single compound (10-day exposure). Diclofenac exposure to C. volutator provided median lethal concentrations (LC50s) within the same range (11 µg g-1 dry wt sediment) using concentration-response based on TWA and both GUTS-RED models. However, concentration-response based on measured start concentrations provided an approximately 90% higher LC50 (21.6 ± 2.0 µg g-1 dry wt sediment). For citalopram, concentration-response parameters were similar regardless of model or concentration used (LC50 85-97 µg g-1 dry wt sediment), however, GUTS-RED with the assumption of individual tolerance resulted in a lower LC50 (64.9 [55.3-74.8] µg g-1 dry wt sediment). The mixture of diclofenac and citalopram followed the CA quite closely, whereas the result was synergistic when using the IA prediction. In summary, concentration-response based on TWA and GUTS-RED provided similar and reasonably good fits compared to the data set. The implications are that GUTS-RED will provide a more flexible model, which, in principle, can extend beyond the experimental period and make predictions based on variable exposure profiles (toxicity at different time frames and at different variable exposure scenarios) compared to concentration-response, which provides contaminant toxicity at one point in time. Environ Toxicol Chem 2024;43:1767-1777. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Sara Nicoline Grønlund
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Casper D Læssøe
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nina Cedergreen
- Department of Plant and Environment Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
3
|
Ojemaye CY, Pampanin DM, Sydnes MO, Green L, Petrik L. The burden of emerging contaminants upon an Atlantic Ocean marine protected reserve adjacent to Camps Bay, Cape Town, South Africa. Heliyon 2022; 8:e12625. [PMID: 36619409 PMCID: PMC9816787 DOI: 10.1016/j.heliyon.2022.e12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The presence and levels of fifteen chemicals of emerging concerns, including five perfluorinated compounds (PFCs), two industrial chemicals, seven pharmaceuticals and one personal care product, were evaluated in biota, seawater and sediments obtained from near-shore coastal zone in Camps Bay, Cape Town, South Africa. Eight compounds were found in seawater, and between nine to twelve compounds were quantified in marine invertebrates, sediment and seaweed. Diclofenac was the prevalent pharmaceutical with a maximum concentration of 2.86 ng/L in seawater, ≥110.9 ng/g dry weight (dw) in sediments and ≥67.47 ng/g dw in marine biotas. Among PFCs, perfluoroheptanoic acid was predominant in seawater (0.21-0.46 ng/L). Accumulation of perfluorodecanoic acid (764 ng/g dw) as well as perfluorononanoic acid and perfluorooctanoic acid (504.52 and 597.04 ng/g dw, respectively) was highest in samples of seaweed. The environmental risk assessment carried out in this study showed that although individual pollutants pose a low acute and chronic risk, yet individual compounds each had a high bioaccumulation factor in diverse marine species, and their combination as a complex mixture in marine organisms might have adverse effects upon aquatic organisms. Data revealed that this Atlantic Ocean marine protected environment is affected by the presence of numerous and diverse emerging contaminants that could only have originated from sewage discharges. The complex mixture of persistent chemicals found bioaccumulating in marine organisms could bode ill for the propagation and survival of marine protected species, since many of these compounds are known toxicants.
Collapse
Affiliation(s)
- Cecilia Y. Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa,Corresponding author.
| | - Daniela M. Pampanin
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Nazari MT, Schnorr C, Rigueto CVT, Alessandretti I, Melara F, da Silva NF, Crestani L, Ferrari V, Vieillard J, Dotto GL, Silva LFO, Piccin JS. A review of the main methods for composite adsorbents characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88488-88506. [PMID: 36334205 DOI: 10.1007/s11356-022-23883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Adsorption is a promising technology for removing several contaminants from aqueous matrices. In the last years, researchers worldwide have been working on developing composite adsorbents to overcome some limitations and drawbacks of conventional adsorbent materials, which depend on various factors, including the characteristics of the adsorbents. Therefore, it is essential to characterize the composite adsorbents to describe their properties and structure and elucidate the mechanisms, behavior, and phenomenons during the adsorption process. In this sense, this work aimed to review the main methods used for composite adsorbent characterization, providing valuable information on the importance of these techniques in developing new adsorbents. In this paper, we reviewed the following methods: X-Ray diffraction (XRD); spectroscopy; scanning electron microscopy (SEM); N2 adsorption/desorption isotherms (BET and BJH methods); thermogravimetry (TGA); point of zero charge (pHPZC); elemental analysis; proximate analysis; swelling and water retention capacities; desorption and reuse.
Collapse
Affiliation(s)
- Mateus T Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Carlos Schnorr
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Cesar V T Rigueto
- Graduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ingridy Alessandretti
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Flávia Melara
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália F da Silva
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Larissa Crestani
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Valdecir Ferrari
- Graduate Program in Metallurgical, Materials, and Mining Engineering (PPG3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Julien Vieillard
- CNRS, INSA Rouen, UNIROUEN, COBRA (UMR 6014 and FR 3038), Normandie University, Evreux, France
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Jeferson S Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
5
|
Picone M, Distefano GG, Marchetto D, Russo M, Volpi Ghirardini A. Spiking organic chemicals onto sediments for ecotoxicological analyses: an overview of methods and procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31002-31024. [PMID: 35113376 DOI: 10.1007/s11356-022-18987-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Laboratory testing with spiked sediments with organic contaminants is a valuable tool for ecotoxicologists to study specific processes such as effects of known concentrations of toxicants, interactions of the toxicants with sediment and biota, and uptake kinetics. Since spiking of the sediment may be performed by using different strategies, a plethora of procedures was proposed in the literature for spiking organic chemicals onto sediments to perform ecotoxicological analyses. In this paper, we reviewed the scientific literature intending to characterise the kind of substrates that were used for spiking (i.e. artificial or field-collected sediment), how the substrates were handled before spiking and amended with the organic chemical, how the spiked sediment was mixed to allow the homogenisation of the chemical on the substrate and finally how long the spiked sediment was allowed to equilibrate before testing. What emerged from this review is that the choice of the test species, the testing procedures and the physicochemical properties of the organic contaminant are the primary driving factors affecting the selection of substrate type, sediment handling procedures, solvent carrier and mixing method. Finally, we provide recommendations concerning storage and characterization of the substrate, equilibrium times and verification of both equilibration and homogeneity.
Collapse
Affiliation(s)
- Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Davide Marchetto
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Martina Russo
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy.
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| |
Collapse
|
6
|
Di Cicco M, Di Lorenzo T, Fiasca B, Ruggieri F, Cimini A, Panella G, Benedetti E, Galassi DMP. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149461. [PMID: 34426329 DOI: 10.1016/j.scitotenv.2021.149461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is one of the most widespread pharmaceutical compounds found in freshwaters as a pseudo-persistent pollutant due to its continuous release from point and diffuse sources, being its removal in Wastewater Treatment Plants incomplete. Moreover, DCF is particularly persistent in interstitial habitats and potentially toxic for the species that spend their whole life cycle among the same sediment grains. This study is aimed at offering a first contribution to the assessment of DCF effects on freshwater invertebrate species living in the interstitial habitats of springs, rivers, lakes and groundwaters. The Crustacea Copepoda are one of the main components of the freshwater interstitial communities, with the primacy taken by the worm-like and small-sized harpacticoids. A sub-lethal concentration of 50 μg L-1 DCF significantly affected six out of the eight behavior parameters of the burrower/interstitial crustacean harpacticoid Bryocamptus pygmaeus recorded by video tracking analysis. DCF exposure reduced swimming speed, swimming activity, exploration ability and thigmotaxis, and increased swimming path tortuosity. The biochemical approach revealed a reduced level of the mitochondrial superoxide dismutase 2 in individuals exposed to DCF. It could be explained by a decline in mitochondrial performance or by a reduced number of functional mitochondria. Since mitochondrial dysfunction may determine ATP reduction, it comes that less energy is produced for maintaining the cell functions of the DCF-exposed individuals. In addition, the increasing energy demand for the detoxification process further contributes to decrease the total energetic budget allocated for other physiological activities. These observations can explain the changes we have observed in the swimming behavior of the copepod B. pygmaeus.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca 400006, Romania
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Fabrizio Ruggieri
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
7
|
Di Lorenzo T, Cifoni M, Baratti M, Pieraccini G, Di Marzio WD, Galassi DMP. Four scenarios of environmental risk of diclofenac in European groundwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117315. [PMID: 34000671 DOI: 10.1016/j.envpol.2021.117315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is the largest source of liquid freshwater on Earth. Groundwater ecosystems harbor a rich biodiversity, mainly consisting of microbes and invertebrates that provide substantial ecological services. Despite its importance, groundwater is affected by several anthropic pressures, including pollution from pharmaceutical compounds. Diclofenac is the non-steroidal drug most widely detected in freshwaters, both in surface waters (e.g., rivers, streams, lakes etc.) and groundwaters. Unlike surface waters, the environmental risk of diclofenac in European groundwaters has not yet been assessed by the competent Authorities. The environmental risk assessment refers to the analysis of the potential risk that a chemical compound poses to a given environment by comparing its measured environmental concentrations to its predicted no-effect concentration. In this study, we explored four environmental risk scenarios in European groundwaters using different methodologies. We obtained diverse risk expectations, some indicative of a moderately diffuse environmental risk for concentrations of diclofenac ≥42 ng/L and others indicative of a widespread environmental risk for concentrations ≥5 ng/L. The difference among the four scenarios mainly related to the methods of calculating the predicted no-effect concentration of diclofenac. We discussed the four scenarios in order to identify the most realistic risk expectations posed by diclofenac to European groundwater ecosystems.
Collapse
Affiliation(s)
- T Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Florence, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca, 400006, Romania.
| | - M Cifoni
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - M Baratti
- Institute of Biosciences and Bioresources of the National Research Council of Italy (IBBR-CNR), Via Madonna Del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - G Pieraccini
- Mass Spectrometry Center, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - W D Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Ruta 5 y Avenida Constitución, 6700, Luján, Buenos Aires, Argentina
| | - D M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| |
Collapse
|
8
|
Park K, Kwak IS. Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:77-122. [PMID: 34661753 DOI: 10.1007/398_2021_79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords "Chironomus and gene expression" by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science and Fisheries Science Institute, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
9
|
Parolini M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140043. [PMID: 32559537 DOI: 10.1016/j.scitotenv.2020.140043] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 05/14/2023]
Abstract
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) represent one of the main therapeutic classes of molecules contaminating aquatic ecosystems worldwide. NSAIDs are commonly and extensively used for their analgesic, antipyretic and anti-inflammatory properties to cure pain and inflammation in human and veterinary therapy. After use, NSAIDs are excreted in their native form or as metabolites, entering the aquatic ecosystems. A number of monitoring surveys has detected the presence of different NSAIDs in freshwater ecosystems in the ng/L - μg/L concentration range. Although the concentrations of NSAIDs in surface waters are low, the high biological activity of these molecules may confer them a potential toxicity towards non-target aquatic organisms. The present review aims at summarizing toxicity, in terms of both acute and chronic toxicity, induced by the main NSAIDs detected in surface waters worldwide, namely acetylsalicylic acid (ASA), paracetamol (PCM), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX), both singularly and in mixture, towards freshwater invertebrates. Invertebrates play a crucial role in ecosystem functioning so that NSAIDs-induced effects may result in hazardous consequences to the whole freshwater trophic chain. Acute toxicity of NSAIDs occurs only at high, unrealistic concentrations, while sub-lethal effects arise also at low, environmentally relevant concentrations of all these drugs. Thus, further studies represent a priority in order to improve the knowledge on NSAID toxicity and mechanism(s) of action in freshwater organisms and to shed light on their real ecological hazard towards freshwater communities.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| |
Collapse
|
10
|
Planelló R, Herrero O, García P, Beltrán EM, Llorente L, Sánchez-Argüello P. Developmental/reproductive effects and gene expression variations in Chironomus riparius after exposure to reclaimed water and its fortification with carbamazepine and triclosan. WATER RESEARCH 2020; 178:115790. [PMID: 32334179 DOI: 10.1016/j.watres.2020.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The potential benefits of reclaimed water (RW) uses for environmental enhancement and restoration could become adverse impacts if RW does not meet the quality criteria that ensure wildlife preservation. RW can contain complex mixtures of micropollutants that may accumulate in sediment after environmental uses and affect benthic fauna. Therefore, we designed this study to assess the effects of RW on a sediment insect species used mainly in ecotoxicology (Chironomus riparius). Whole organism effects and gene expression were measured in a water sediment system after spiking RW as overlying water, which was renewed 3 times during the test. Development rate, emergence rate and fecundity were monitored after the 21-day exposure. Endocrine-related genes (EcR, ERR, E75, Vtg), cellular stress genes (hsp70, hsc70, hsp24, hsp10) and biotransformation genes (gp93, GSTd3, GPx, cyp4g) were assessed in larvae after the 10-day exposure. The experimental design also included single or binary fortifications of both test medium and RW, obtained by adding two emerging pollutants: carbamazepine (100 μg/L CBZ) and triclosan (20 μg/L TCS). The chemical characterisation of RW showed that 20 of the 23 screened emerging pollutants fell within the detection limit, 10 exceeded 0.01 μg/L (including CBZ) and three exceeded 0.1 μg/L (hydrochlorothiazide, atenolol, ibuprofen). The analytical measures of sediment (day 21) and overlying water (days 7, 14 and 21) were taken to know the water-sediment distribution of CBZ and TCS added to fortifications. CBZ distributed mainly in overlying water (110-164 μg/L and 73-100 μg/kg), while TCS showed a higher affinity to sediment (2.8-5.1 μg/L and 36-55 μg/kg). RW had significant effects in molecular terms (Vtg, hsp70, hsc70), but had no significant effects on the whole organism. Nevertheless, the single RW fortifications impaired both the development rate and fecundity, while the binary RW fortification impaired only fecundity. The most marked increase in EcR expression was observed for the binary RW fortification. Hsps, GSTd3 and cyp4g showed a similar tendency to that observed for EcR and Vtg in the binary and single RW fortifications. The binary mixture (CBZ and TCS together) in RW was toxic, but not in the medium tests. Therefore, the major concern of RW uses is apparently related to the interactivity between this complex matrix and any other pollutants possibly present in the environment where RW is applied. Our results underscore the need for raising awareness about RW effects, which can be achieved by ecotoxicological testing.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040, Madrid, Spain
| | - Oscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040, Madrid, Spain
| | - Pilar García
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040, Madrid, Spain
| | - Eulalia María Beltrán
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040, Madrid, Spain
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040, Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
da Silva AQ, de Souza Abessa DM. Toxicity of three emerging contaminants to non-target marine organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18354-18364. [PMID: 31044378 DOI: 10.1007/s11356-019-05151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Coastal areas are continually impacted by anthropic activities because they shelter large urban conglomerates. Urban effluents directly or indirectly end up reaching the marine environment, releasing a large number of pollutants which include the so-called contaminants of emerging concern (CECs), since the conventional treatment plants are not effective in removing these compounds from the effluents. These substances include hormones, pharmaceuticals and personal care products, nanoparticles, biocides, among others. The aim of this study was to evaluate the toxicity of the 17α-ethinylestradiol (EE2), acetylsalicylic acid (ASA), and bisphenol-A (BPA) to two marine crustaceans and one echinoderm, evaluating the following parameters: survival (Artemia sp. and Mysidopsis juniae), embryo-larval development (Echinometra lucunter). The LC50 values calculated in the acute toxicity tests showed that the compounds were more toxic to M. juniae than to the Artemia sp. Among the three contaminants, EE2 was the most toxic (LC50-48h = 18.4 ± 2.7 mg L-1 to Artemia sp.; LC50-96h = 0.36 ± 0.07 mg L-1 to M. juniae). The three tested compounds affected significantly the embryonic development of the sea urchin in all tested concentrations, including ecologically relevant concentrations, indicating the potential risk that these contaminants may present to the marine biota.
Collapse
Affiliation(s)
- Allyson Q da Silva
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará, Av. da Abolição, 3207, Bairro Meireles, Fortaleza, Ceará, CEP 60165-081, Brazil.
| | - Denis Moledo de Souza Abessa
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Campus Experimental do Litoral Paulista (UNESP), Praça Infante Dom Henrique s/n, Parque Bitaru, São Vicente, SP, 11330-90, Brazil.
| |
Collapse
|
13
|
Heye K, Wiebusch J, Becker J, Rongstock L, Bröder K, Wick A, Schulte-Oehlmann U, Oehlmann J. Ecotoxicological characterization of the antiepileptic drug carbamazepine using eight aquatic species: baseline study for future higher tier tests. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:441-451. [PMID: 30789049 DOI: 10.1080/10934529.2018.1562819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Ecotoxicological effects of the antiepileptic drug carbamazepine (CBZ) were investigated in one primary producer (Desmodesmus subspicatus) and seven invertebrate species (Daphnia magna, Daphnia pulex, Ceriodaphnia dubia, Gammarus fossarum, Potamopyrgus antipodarum, Lumbriculus variegatus and Chironomus riparius) using OECD and US EPA guidelines for chronic toxicity testing. The present data set was used to conduct a hazard assessment for CBZ including confirmatory data. While most of our results were in accordance with previous studies, published effect data for C. dubia and D. pulex could not be confirmed, even though they have previously been considered to be the most sensitive invertebrate species to CBZ exposure. The non-biting midge, C. riparius, was the most sensitive test organism in the present study. From an EC10 of 406 µg/L and a no observed effect concentration (NOEC) of 400 µg/L, a predicted no effect concentration (PNEC) of 8 µg/L was calculated. With regard to realistic predicted and measured environmental concentrations, the environmental risk can be considered as low for CBZ when the assessment is based on laboratory-based effect data. To conduct a refined and more realistic assessment, this study provides foundational data for two future, higher tier studies: one multiple-stressor experiment and one mesocosm study.
Collapse
Affiliation(s)
- Katharina Heye
- a Department Aquatic Ecotoxicology, Faculty of Biological Sciences , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - Janina Wiebusch
- a Department Aquatic Ecotoxicology, Faculty of Biological Sciences , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - Johannes Becker
- a Department Aquatic Ecotoxicology, Faculty of Biological Sciences , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - Lydia Rongstock
- a Department Aquatic Ecotoxicology, Faculty of Biological Sciences , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - Kathrin Bröder
- b German Federal Institute of Hydrology (BfG) , Koblenz , Germany
| | - Arne Wick
- b German Federal Institute of Hydrology (BfG) , Koblenz , Germany
| | - Ulrike Schulte-Oehlmann
- a Department Aquatic Ecotoxicology, Faculty of Biological Sciences , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| | - Jörg Oehlmann
- a Department Aquatic Ecotoxicology, Faculty of Biological Sciences , Goethe University Frankfurt am Main , Frankfurt am Main , Germany
| |
Collapse
|
14
|
Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review. WATER 2018. [DOI: 10.3390/w10101351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is widely believed that constructed wetlands (CWs) own great potentiality as polishing wastewater treatment methods for removing carbamazepine (CBZ). Although the typical CBZ removal efficiencies in CWs are quite low, the CBZ removal performance could be improved to some extend by optimizing the CW design parameters. A comparison of current relevant studies indicates that horizontal sub-surface flow CWs (HSSF-CWs) and hybrid wetlands are attracting more interest for the treatment of CBZ wastewater. According to CBZ’s physicochemical properties, substrate adsorption (25.70–57.30%) and macrophyte uptake (22.30–51.00%) are the two main CBZ removal pathways in CWs. The CBZ removal efficiency of CWs employing light expanded clay aggregate (LECA) as a substrate could reach values higher than 90%, and the most favorable macrophyte species is Iris sibirica, which has shown the highest total CBZ assimilation capacity. Several methods for enhancement have been proposed to optimize CBZ removal in CWs, including development of hydraulic models for optimization of CW operation, introduction of extra new CBZ removal ways into CW through substrate modification, design of combined/integrated CW, etc.
Collapse
|
15
|
Mezzelani M, Gorbi S, Fattorini D, d'Errico G, Consolandi G, Milan M, Bargelloni L, Regoli F. Long-term exposure of Mytilus galloprovincialis to diclofenac, Ibuprofen and Ketoprofen: Insights into bioavailability, biomarkers and transcriptomic changes. CHEMOSPHERE 2018; 198:238-248. [PMID: 29421735 DOI: 10.1016/j.chemosphere.2018.01.148] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 05/17/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent a growing concern for marine ecosystems due to their ubiquitous occurrence and documented adverse effects on non-target organisms. Despite the remarkable efforts to elucidate bioaccumulation and ecotoxicological potential under short-term conditions, limited and fragmentary information is available for chronic exposures. In this study bioavailability, molecular and cellular effects of diclofenac (DIC), ibuprofen (IBU) and ketoprofen (KET) were investigated in mussels Mytilus galloprovincialis exposed to the realistic environmental concentration of 2.5 μg/L for up to 60 days. Results indicated a significant accumulation of DIC and IBU but without a clear time-dependent trend; on the other hand, KET concentrations were always below the detection limit. Analyses of a large panel of molecular, biochemical and cellular biomarkers highlighted that all investigated NSAIDs caused alterations of immunological parameters, genotoxic effects, modulation of lipid metabolism and changes in cellular turn-over. This study provided the evidence of long-term ecotoxicological potential of NSAIDs, further unraveling the possible hazard for wild marine organisms.
Collapse
Affiliation(s)
- M Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - S Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - D Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - G d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - G Consolandi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - M Milan
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Italy
| | - L Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
16
|
Park K, Kwak IS. Disrupting effects of antibiotic sulfathiazole on developmental process during sensitive life-cycle stage of Chironomus riparius. CHEMOSPHERE 2018; 190:25-34. [PMID: 28972920 DOI: 10.1016/j.chemosphere.2017.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 05/26/2023]
Abstract
Antibiotics in the environment are a concern due to their potential to harm humans and interrupt ecosystems. Sulfathiazole (STZ), a sulfonamide antibiotic, is commonly used in aquaculture and is typically found in aquatic ecosystems. We evaluated the ecological risk of STZ by examining biological, molecular and biochemical response in Chironomus riparius. Samples were exposed to STZ for 12, 24 and 96 h, and effects of STZ were evaluated at the molecular level by analyzing changes in gene expression related to the endocrine system, cellular stress response and enzyme activity of genes on antioxidant and detoxification pathways. STZ exposure induced significant effects on survival, growth and sex ratio of emergent adults and mouthpart deformity in C. riparius. STZ caused concentration and time-dependent toxicity in most of the selected biomarkers. STZ exposure leads to significant heat-shock response of protein genes (HSP70, HSP40, HSP90 and HSP27) and to disruption by up-regulating selected genes, including the ecdysone receptor gene, estrogen-related receptors, ultraspiracle and E74 early ecdysone-responsive gene. Furthermore, STZ induced alteration of enzyme activities on antioxidant and detoxification responses (catalase, superoxide dismutase, glutathione peroxidase and peroxidase) in C. riparius. By inducing oxidative stress, antibiotic STZ disturbs the endocrine system and produces adverse effects in growth processes of invertebrates.
Collapse
Affiliation(s)
- Kiyun Park
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea
| | - Ihn-Sil Kwak
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|