1
|
Luo L, Zhang N, Wang E, Zhao C, Liu Q, Pang X, Yin C. Bacillus amyloliquefaciens application alleviated the stimulation of organic fertilizer on soil denitrification rate in acidic soils. Microbiol Res 2025; 298:128216. [PMID: 40424686 DOI: 10.1016/j.micres.2025.128216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Denitrification is important in regulating soil nitrogen (N) availability and greenhouse gas emissions. Whereas, how different fertilization strategies affect soil denitrification rate and denitrifying microbial community remains contradictory. Here, four fertilization strategies including no fertilizer (F0), biostimulant: Bacillus amyloliquefaciens (BA), organic fertilizer (OF), and both of them together (BAOF) application were conducted in a pot experiment to study the changes in denitrification process and its regulation factors in acidic soils. Compared with F0, treatment with BA, OF, and BAOF significantly increased denitrification rate by 400 %, 619 %, and 331 %, respectively; increased nitrate concentration and nirS abundance, while decreased nosZ abundance. Soil nitrite reductase activity and nirK abundance were significantly increased by OF and BAOF treatments. BA and OF treatments significantly decreased nirS Chao1 index. The composition of nirS denitrifying community, but not nirK, was significantly altered by all treatments; it was mainly affect by soil pH, total N, and nitrate. The increase in soil nitrate concentration, nitrite reductase activity, and nirK abundance, as well as the reduction in nirS α diversity and nosZ abundance, jointly lead to a higher denitrification rate in fertilization treatments. The denitrifying genes explained more denitrification rate variation than soil environmental properties. These results revealed that the stimulation effect of OF on denitrification was alleviated by BA application, and nirS microbial composition was more sensitive to fertilization than nirK. Therefore, our study suggests that in future organic agricultural practices, the combination of organic fertilizer with B. amyloliquefaciens can reduce N losses caused by the soil denitrification process in acidic soils.
Collapse
Affiliation(s)
- Lin Luo
- Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, PR China
| | - Nannan Zhang
- Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, PR China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico 11340, Mexico
| | - Chunzhang Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qinghua Liu
- Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, PR China
| | - Xueyong Pang
- Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, PR China
| | - Chunying Yin
- Mountain Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, PR China.
| |
Collapse
|
2
|
Huang X, Yu C, Sun W, Shi P, Wu J, Yu J, Wang J, Mu T. Partial organic substitution for chemical fertilizer reduces N 2O emissions but increases the risk of N loss through nitrification in Tibetan farmland. Sci Rep 2025; 15:14503. [PMID: 40281026 PMCID: PMC12032052 DOI: 10.1038/s41598-025-97657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3--N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions.
Collapse
Affiliation(s)
- Xiaofang Huang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengqun Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Sun
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Junxi Wu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiabao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tao Mu
- Institute of Plateau Biology, Lhasa Science and Technology Bureau, Lhasa, 850011, China
| |
Collapse
|
3
|
Deng X, Xu T, Zhang F, Xue L, Yang L, Hou P. Effects of warming and fertilization on nirK-, nirS- and nosZ-type denitrifier communities in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177057. [PMID: 39442729 DOI: 10.1016/j.scitotenv.2024.177057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The effects of fertilization on soil denitrifying microorganisms are well-documented. However, the impact of global warming on these microorganisms, particularly regarding the interaction with fertilization, remains poorly understood. Here, a 4-year field warming experiment that included experimental warming (ET) and ambient temperature control (AC), with nitrogen (N) fertilizer applied (CF) or without N fertilizer (CK), was employed to assess the response of the abundance and community of nirK-, nirS- and nosZ- type denitrifiers to warming and fertilization in paddies, and to understand their relationship with potential denitrification rate (PDR). The results showed that warming amplified the positive effect of fertilization on abundance of nirK and nirS genes, while the abundance of nosZ remained unaffected. The copies of nirK and nirS under the ET-CF treatment were notably higher than in the other treatments. In the terms of biodiversity, warming diminished the effect of fertilization on the α-diversity of nirK and nirS, but it did not influence the α-diversity of nosZ. Besides, warming intensified the effect of fertilization on the β-diversity of nirK, while the β-diversity of nirS and nosZ remained unchanged in response to fertilization. Additionally, the community structure of denitrifiers varied with warming and/or fertilization. Specifically, Mesorhizobium (nirK), Proteobacteria (nirS) and Rhizobiales (nosZ) were dominant in AC-CK treatment. In the AC-CF treatment, Proteobacteria (nirK/S), Rhizobiales (nosZ) were the main taxa. For the ET treatments (ET-CF, ET-CK), Bradyrhizobiaceae (nirK), Proteobacteria (nirS) and Alphaproteobacteria (nosZ) were predominant. Correlation analysis revealed that soil pH, carbon and N content were the primary factors influencing nirK-, nirS-and nosZ- type denitrifiers. Moreover, PDR showed a positive relationship with nirK abundance, α-diversity of nosZ, and SOC. Overall, the results demonstrate that warming can modify the response of denitrifiers to fertilization, subsequently affecting denitrification rates, a phenomenon that merits attention.
Collapse
Affiliation(s)
- Xuzhe Deng
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tingting Xu
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangqi Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfu Hou
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Wang Z, Li J, Wang H, Fan B, Bashir MA, Dai F, Zhai L, Liu H. Nitrous oxide emissions and soil profile responses to manure substitution in the North China Plain drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175820. [PMID: 39197772 DOI: 10.1016/j.scitotenv.2024.175820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Substituting synthetic fertilizers with manures in agriculture enhances soil properties and crop yield. However, the impact on nitrous oxide (N2O) emissions, especially from the soil profile, remains poorly understood. This study examined emissions from 2017 to 2019 on a well-established (>10-year) maize field site in the North China Plain. Three treatments were compared: 100 % synthetic nitrogen (NPK), 50 % synthetic fertilizer N + 50 % manure N substitution (50%MNS), and 100 % manure N substitution (100%MNS). N2O emissions were monitored for three years, and in 2019, N2O concentrations at 20 cm and 40 cm soil depths were analyzed in relation to surface N2O fluxes and environmental factors. The results showed manure substitution resulted in about 13.8 %-25.2 % (50%MNS) and 40.3 %-72.2 % (100%MNS) reduction in N2O emissions over the 3-year period compared with the NPK treatment. Throughout the maize growing season, the top-dressing accompanied by rainfall was responsible for the N2O emissions. The difference in N2O concentrations between all the treatments at 20 cm depth was insignificant, but at 40 cm depth the N2O concentrations were significantly higher for the 50%MNS treatment than the other treatments. The N2O fluxes and N2O concentration were not synchronized especially in NPK. The decoupled relationship between the N2O fluxes and the N2O concentration in the soil profile depth suggested the contribution of N2O produced in the soil profile to the surface N2O fluxes is limited. This study highlights that manure substitution is an efficient measure to reduce N2O emissions.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jungai Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongyuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Bingqian Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | - Fuyue Dai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Limei Zhai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongbin Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Heze Kingenta Ecological Engineering Co., Ltd, Shandong 274000, PR China.
| |
Collapse
|
5
|
Peng X, Chen D, Zhen J, Wang Y, Hu X. Greenhouse gas emissions and drivers of the global warming potential of vineyards under different irrigation and fertilizer management practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175447. [PMID: 39134274 DOI: 10.1016/j.scitotenv.2024.175447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
In the context of global warming and low water and fertilizer utilization efficiency in vineyards, identifying the driving factors of global warming potential (GWP) and proper irrigation and fertilization management strategies are crucial for high grape yields and emission reduction. In this experiment, drip fertigation technology was used, including three irrigation levels (W3 (100% M, where M is the irrigation quota), W2 (75% M) and W1 (50% M)) and four fertilization levels (F3 (648 kg hm-2), F2 (486 kg hm-2), F1 (324 kg hm-2) and F0 (0 kg hm-2)). Traditional furrow irrigation and fertilization (CG) and rainfed (CK) treatments were used as control treatments. The results indicated that under the drip fertigation system, fertilization significantly increased the grape leaf chlorophyll relative content (SPAD) and leaf area index (LAI) within a fertilizer application of 0-486 kg hm-2. Irrigation primarily had a direct positive effect on the water-filled pore space (WFPS) in the 0-60 cm soil layer, and the residual soil nutrient content was mainly affected by fertilization. The vital stage for reducing greenhouse gas emissions was the fruit-inflating and fruit-rendering stages. The CG treatment not only failed to ensure high grape yield but also adversely affected the soil environment and the reduction of greenhouse gas emissions in the vineyard. Fertilization had a direct positive effect on the grape SPAD, LAI, yield, and soil residual nutrient content. GWP was primarily directly driven by SPAD, WFPS, and soil residual nutrient content, while grape yield was primarily directly driven by fertilization and SPAD. In conclusion, the W2F2 treatment (25 % reduced irrigation and 486 kg hm-2 of fertilization) of drip fertigation in the vineyard was the preferred irrigation and fertilizer management strategy for maintaining good vine vigor and balancing grape yield and environmental benefits.
Collapse
Affiliation(s)
- Xuelian Peng
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Dianyu Chen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jingbo Zhen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yakun Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
6
|
Guo J, Haghshenas Y, Jiao Y, Kumar P, Yakobson BI, Roy A, Jiao Y, Regenauer-Lieb K, Nguyen D, Xia Z. Rational Design of Earth-Abundant Catalysts toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407102. [PMID: 39081108 DOI: 10.1002/adma.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Indexed: 10/18/2024]
Abstract
Catalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches. Additionally, biomimicry, inspired by efficient enzymes in nature, offers valuable insights. This review systematically analyses these design strategies, providing a roadmap for developing high-performance catalysts from abundant elements. Clean energy applications (water splitting, fuel cells, batteries) and green chemistry (ammonia synthesis, CO2 reduction) are targeted while delving into the fundamental principles, biomimetic approaches, and current challenges in this field. The way to a more sustainable future is paved by overcoming catalyst scarcity through rational design.
Collapse
Affiliation(s)
- Jinyang Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousof Haghshenas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yiran Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77251, USA
| | - Ajit Roy
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| | - Klaus Regenauer-Lieb
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6151, Australia
| | | | - Zhenhai Xia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| |
Collapse
|
7
|
Wei L, Li J, Qu K, Chen H, Wang M, Xia S, Cai H, Long XE, Miao Y, Liu D. Organic fertilizer application promotes the soil nitrogen cycle and plant starch and sucrose metabolism to improve the yield of Pinellia ternata. Sci Rep 2024; 14:12722. [PMID: 38830940 PMCID: PMC11148117 DOI: 10.1038/s41598-024-63564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
Pinellia ternata (Thunb.) Breit is a traditional Chinese medicine with important pharmacological effects. However, its cultivation is challenged by soil degradation following excessive use of chemical fertilizer. We conducted an experiment exploring the effects of replacing chemical fertilizers with organic fertilizers (OF) on the growth and yield of P. ternata, as well as on the soil physicochemical properties and microbial community composition using containerized plants. Six fertilization treatments were evaluated, including control (CK), chemical fertilizer (CF), different proportions of replacing chemical fertilizer with organic fertilizer (OM1-4). Containerized P. ternata plants in each OF treatment had greater growth and yield than the CK and CF treatments while maintaining alkaloid content. The OM3 treatment had the greatest yield among all treatments, with an increase of 42.35% and 44.93% compared to the CK and CF treatments, respectively. OF treatments improved soil quality and fertility by enhancing the activities of soil urease (S-UE) and sucrase (S-SC) enzymes while increasing soil organic matter and trace mineral elements. OF treatments increased bacterial abundance and changed soil community structure. In comparison to the CK microbial groups enriched in OM3 were OLB13, Vicinamibacteraceae, and Blrii41. There were also changes in the abundance of gene transcripts among treatments. The abundance of genes involved in the nitrogen cycle in the OM3 has increased, specifically promoting the transformation of N-NO3- into N-NH4+, a type of nitrogen more easily absorbed by P. ternata. Also, genes involved in "starch and sucrose metabolism" and "plant hormone signal transduction" pathways were positively correlated to P. ternata yield and were upregulated in the OM3 treatment. Overall, OF in P. ternata cultivation is a feasible practice in advancing sustainable agriculture and is potentially profitable in commercial production.
Collapse
Affiliation(s)
- Lu Wei
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinxin Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Kaili Qu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hong Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mingxing Wang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shuaijie Xia
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huixia Cai
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xi-En Long
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yuhuan Miao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dahui Liu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
8
|
Yang Y, Liu H, Chen Y, Wu L, Huang G, Lv J. Soil nitrogen cycling gene abundances in response to organic amendments: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171048. [PMID: 38387590 DOI: 10.1016/j.scitotenv.2024.171048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Quantification of nitrogen (N) cycling genes contributes to our best understanding of N transformation processes. The application of organic amendment (OA) is widely recognized as an effective measure to improve N management and soil fertility in various ecosystems. However, our understanding of N-cycling gene abundances in response to OA application remains deficient. We performed a meta-analysis embracing 124 sets of observation data to study the impact of OA application on the main N-cycling gene abundances, including nifH, amoA, nirS, nirK and nosZ. We found that the significantly positive response of N-cycling gene abundances to OA application was attributed to the rotation cropping system (by 6.45 %-104.20 %) in the field experiment (by 19.43 %-52.56 %), OA application alone (by 8.29 %-111.70 %) especially manure addition (by 33.43 %-98.70 %), application dose of OAs within 10-20 t ha-1 (by 45.33 %-381.90 %), fertilization duration <5 years (by 43.69 %-112.63 %), C/N of OA <25 (by 37.87 %-160.90 %), SOC lower than 1.2 % (by 41.44 %-157.89 %) and application to alkaline soil (by 32.24 %-134.40 %). Moreover, soil organic carbon (SOC) and pH were the most essential regulators associated with N-cycling gene abundances with OA application. Identification of key driving factors of the abundance of N-cycling functional genes will help remedy strategies for managing OAs in ecosystems.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Hexiang Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yi Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lijuan Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guan Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jialong Lv
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|
9
|
Li D, Qiu H, Tian G, Zhao Y, Zhou X, He S. Soil salinity is the main factor influencing the soil bacterial community assembly process under long-term drip irrigation in Xinjiang, China. Front Microbiol 2023; 14:1291962. [PMID: 38029139 PMCID: PMC10644797 DOI: 10.3389/fmicb.2023.1291962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Identifying the potential factors associated with the impact of long-term drip irrigation (DI) on soil ecosystems is essential for responding to the environmental changes induced by extensive application of DI technology in arid regions. Herein, we examined the effects of the length of time that DI lasts in years (NDI) on soil bacterial diversity as well as the soil bacterial community assembly process and the factors influencing it. The results showed that long-term DI substantially reduced soil salinity and increased soil bacterial diversity while affecting the soil bacterial community structure distinctly. Null model results showed that the soil bacterial community assembly transitioned from stochastic processes to deterministic processes, as NDI increased. Homogeneous selection, a deterministic process, emerged as the dominant process when NDI exceeded 15 years. Both random forest and structural equation models showed that soil salinity was the primary factor affecting the bacterial community assembly process. In summary, this study suggested that soil bacteria respond differently to long-term DI and depends on the NDI, influencing the soil bacterial community assembly process under long-term DI.
Collapse
Affiliation(s)
- Dongwei Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Husen Qiu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, China
| | - Guangli Tian
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Yulong Zhao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Xinguo Zhou
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Shuai He
- Northwest Oasis Water-saving Agriculture Key Laboratory, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Fudjoe SK, Li L, Anwar S, Shi S, Xie J, Yeboah FK, Wang L. The impact of fertilization on ammonia-oxidizing bacteria and comammox Nitrospira communities and the subsequent effect on N 2O emission and maize yield in a semi-arid region. Front Microbiol 2023; 14:1249668. [PMID: 37840719 PMCID: PMC10570556 DOI: 10.3389/fmicb.2023.1249668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
The control of nitrous oxide (N2O) emissions through nitrification and the optimization of maize yield are important in agricultural systems. However, within the semi-arid region, the impact of fertilization on the function of nitrification communities and its connection with N2O emissions in the rhizosphere soil is still unclear. Our study investigates the influence of fertilization treatments on the communities of ammonia-oxidizing bacteria (AOB) and the complete ammonia oxidizers of the Nitrospira known as comammox (CAOB) in a maize agroecosystem. Nitrous oxide production, potential nitrification activity (PNA), maize yield, and nitrogen use efficiency (NUE) were determined for the same samples. The fertilizer treatments included a control group without fertilization (NA), inorganic fertilizer (CF), organic fertilizer (SM), combined inorganic and organic fertilizer (SC), and maize straw (MS). The SC treatment indicated a lower cumulative N2O emission than the CF treatment in the 2020 and 2021 cropping seasons. The AOB community under the CF, MS, and SM treatments was predominantly composed of Nitrosospira cluster 3b, while the SC treatment was associated with the comammox Nitrospira clade A.1 lineage, related to key species such as Ca. Nitrospira inopinata and Ca. Nitrospira nitrificans. Network analysis demonstrated a positive potential for competitive interaction between hub taxonomy and distinct keystone taxa among AOB and comammox Nitrospira nitrifiers. The structural equation model further revealed a significant positive association between AOB nitrifiers and N2O emission, PNA, soil pH, SOC, NO 3 - -N, and DON under organic fertilization. The keystone taxa in the comammox Nitrospira nitrifier and network Module II exhibited a positive correlation with maize productivity and NUE, likely due to their functional activities stimulated by the SC treatment. It is noteworthy that the AOB community played a more significant role in driving nitrification compared to the composition of comammox Nitrospira. Collectively, combined inorganic and organic fertilizer (SC) treatment exhibits high potential for reducing N2O emissions, enhancing maize productivity, increasing NUE, and increasing the sustainability of the nitrogen dynamics of maize agroecosystems in the semi-arid Loess Plateau.
Collapse
Affiliation(s)
- Setor Kwami Fudjoe
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Frederick Kwame Yeboah
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Linlin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Fudjoe SK, Li L, Anwar S, Shi S, Xie J, Wang L, Xie L, Yongjie Z. Nitrogen fertilization promoted microbial growth and N 2O emissions by increasing the abundance of nirS and nosZ denitrifiers in semiarid maize field. Front Microbiol 2023; 14:1265562. [PMID: 37720157 PMCID: PMC10501401 DOI: 10.3389/fmicb.2023.1265562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Nitrous oxide (N2O) emissions are a major source of gaseous nitrogen loss, causing environmental pollution. The low organic content in the Loess Plateau region, coupled with the high fertilizer demand of maize, further exacerbates these N losses. N fertilizers play a primary role in N2O emissions by influencing soil denitrifying bacteria, however, the underlying microbial mechanisms that contribute to N2O emissions have not been fully explored. Therefore, the research aimed to gain insights into the intricate relationships between N fertilization, soil denitrification, N2O emissions, potential denitrification activity (PDA), and maize nitrogen use efficiency (NUE) in semi-arid regions. Four nitrogen (N) fertilizer rates, namely N0, N1, N2, and N3 (representing 0, 100, 200, and 300 kg ha-1 yr.-1, respectively) were applied to maize field. The cumulative N2O emissions were 32 and 33% higher under N2 and 37 and 39% higher under N3 in the 2020 and 2021, respectively, than the N0 treatment. N fertilization rates impacted the abundance, composition, and network of soil denitrifying communities (nirS and nosZ) in the bulk and rhizosphere soil. Additionally, within the nirS community, the genera Cupriavidus and Rhodanobacter were associated with N2O emissions. Conversely, in the nosZ denitrifier, the genera Azospirillum, Mesorhizobium, and Microvirga in the bulk and rhizosphere soil reduced N2O emissions. Further analysis using both random forest and structural equation model (SEM) revealed that specific soil properties (pH, NO3--N, SOC, SWC, and DON), and the presence of nirS-harboring denitrification, were positively associated with PDA activities, respectively, and exhibited a significant association to N2O emissions and PDA activities but expressed a negative effect on maize NUE. However, nosZ-harboring denitrification showed an opposite trend, suggesting different effects on these variables. Our findings suggest that N fertilization promoted microbial growth and N2O emissions by increasing the abundance of nirS and nosZ denitrifiers and altering the composition of their communities. This study provides new insights into the relationships among soil microbiome, maize productivity, NUE, and soil N2O emissions in semi-arid regions.
Collapse
Affiliation(s)
- Setor Kwami Fudjoe
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lihua Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhou Yongjie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Li R, Ren C, Wu L, Zhang X, Mao X, Fan Z, Cui W, Zhang W, Wei G, Shu D. Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. ENVIRONMENTAL RESEARCH 2023; 231:116194. [PMID: 37217131 DOI: 10.1016/j.envres.2023.116194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.
Collapse
Affiliation(s)
- Ruochen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Likun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinxin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinyi Mao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Weili Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 150086, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Wang X, Wang S, Zang H, Nie J, Zhao J, Wang P, Peixoto L, Yang Y, Olesen JE, Zeng Z. Replacing chemical fertilizer with manure reduces N 2O emissions in winter wheat - summer maize cropping system under limited irrigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117677. [PMID: 36913855 DOI: 10.1016/j.jenvman.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nitrous oxide (N2O) emissions from agroecosystems are a major contributor to global warming and stratospheric ozone depletion. However, knowledge concerning the hotspots and hot moments of soil N2O emissions with manure application and irrigation, as well as the underlying mechanisms remain incomplete. Here, a 3-year field experiment was conducted with the combination of fertilization (no fertilizer, F0; 100% chemical fertilizer N, Fc; 50% chemical N + 50% manure N, Fc + m; and 100% manure N, Fm) and irrigation (with irrigation, W1; and without irrigation, W0; at wheat jointing stage) for winter wheat - summer maize cropping system in the North China Plain. Results showed that irrigation did not affect annual N2O emissions of the wheat-maize system. Manure application (Fc + m and Fm) reduced annual N2O emissions by 25-51% compared with Fc, which mainly occurred during 2 weeks after fertilization combined with irrigation (or heavy rainfall). In particular, Fc + m reduced the cumulative N2O emissions during 2 weeks after winter wheat sowing and summer maize top dressing by 0.28 and 0.11 kg ha-1, respectively, compared with Fc. Meanwhile, Fm maintained the grain N yield and Fc + m increased grain N yield by 8% compared with Fc under W1. Overall, Fm maintained the annual grain N yield and lower N2O emissions compared to Fc under W0, and Fc + m increased the annual grain N yield and maintained N2O emissions compared with Fc under W1, respectively. Our results provide scientific support for using manure to minimize N2O emissions while maintaining crop N yield under optimal irrigation to support the green transition in agricultural production.
Collapse
Affiliation(s)
- Xiquan Wang
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China; College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 10010, China
| | - Shang Wang
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China; Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, 24118, Germany
| | - Huadong Zang
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jiangwen Nie
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jie Zhao
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Peixin Wang
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Leanne Peixoto
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Yadong Yang
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology / Key Laboratory of Farming System of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Zhang X, Liang Q, Wang G, Zhang H, Zhang A, Tan Y, Bol R. Incorporating straw into intensively farmed cropland soil can reduce N 2O emission via inhibition of nitrification and denitrification pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118115. [PMID: 37196616 DOI: 10.1016/j.jenvman.2023.118115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Straw incorporation (SI) combined with N fertilizer has been shown to affect soil N2O emission and N-related functional microbes in agriculture. However, the responses of N2O emission, community structure of nitrifiers and denitrifiers and related microbial functional genes to straw management strategies in the winter wheat season in China remain unclear. Here, we conducted a two-season experiment in a winter wheat field in Ningjing County, northern China, to examine four treatments: no fertilizer with (N0S1) and without maize straw (N0S0); N fertilizer with (N1S1) and without maize straw (N1S0), and their effects on N2O emissions, soil chemical parameters, crop yield, as well as the dynamics of nitrifying and denitrifying microbial communities. We found that seasonal N2O emissions decreased by 7.1-11.1% (p < 0.05) in N1S1 as compared to N1S0, without significant difference between N0S1 and N0S0. In combination with N fertilization, SI increased the yield by 2.6-4.3%, altered the microbial community composition, increased Shannon and ACE indexes, and decreased the abundance of AOA (9.2%), AOB (32.2%; p < 0.05), nirS (35.2%; p < 0.05), nirK (21.6%; p < 0.05) and nosZ (19.2%). However, in the absence of N fertilizer, SI promoted the major genera of Nitrosavbrio (AOB), unclassifiied_Gammaproteobacteria, Rhodanobacter (nirS), Sinorhizobium (nirK), which strongly correlated positively with N2O emissions. Thereby, a negative interaction effect between SI and N fertilizer on AOB and nirS emphasized that SI could offset the increase of N2O emission caused by fertilization. Soil moisture and NO3- concentration were the major factors affecting N-related microbial community structure. Our study reveals that SI suppressed N2O emission significantly and simultaneously decreased the abundance of N-related functional genes and altered denitrifying bacterial community composition. We conclude that SI helps to enhance yield and alleviate fertilizer-induced environmental costs in intensively farmed fields in northern China.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, China.
| | - Qing Liang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Guiyan Wang
- Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, 071001, China
| | - Haowen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Aijun Zhang
- Mountainous Area Research Institute of Hebei Province, Baoding, 071000, China
| | - Yuechen Tan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany; School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
| |
Collapse
|
15
|
Bi R, Xu X, Zhan L, Chen A, Zhang Q, Xiong Z. Proper organic substitution attenuated both N 2O and NO emissions derived from AOB in vegetable soils by enhancing the proportion of Nitrosomonas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161231. [PMID: 36586678 DOI: 10.1016/j.scitotenv.2022.161231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The ammonia oxidation process driven by microorganisms is an essential source of nitrous oxide (N2O) and nitric oxide (NO) emissions. However, few evaluations have been performed on the changes in the community structure and abundance of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under substituting portion of chemical fertilizers with organic manure (organic substitution) and their relative contribution to the ammonia oxidation process. Here, five long-term fertilization strategies were applied in field (SN: synthetic fertilizer application; OM: organic manure; M1N1: substituting 50 % of chemical N fertilizer with organic manure; M1N4: substituting 20 % of chemical N fertilizer with organic manure; and CK: no fertilizer). We investigated the response characteristics of AOB and AOA community structures by selective inhibitor shaking assays and high-throughput sequencing and further explained their relative contribution to the ammonia oxidation process during three consecutive years of vegetable production. Compared to SN and M1N4, the potential of ammonia oxidation (PAO) was significantly reduced by 26.4 % and 22.3 % in OM and 9.5 % and 4.4 % in M1N1, resulting in N2O reductions of 38.9 % and 30.8 % (OM) and 31.2 % and 21.1 % (M1N1), respectively, and NO reductions of 45.0 % and 34.1 % (OM) and 40.1 % and 28.3 % (M1N1). RDA and correlation analyses showed that the soil organic carbon and ammonium nitrogen content increased while AOB gene abundance and diversity significantly decreased with increasing organic replacement ratio; however, the relative abundance of Nitrosomonas in AOB increased in OM and M1N1, which further demonstrates that AOB are the main driver in vegetable soils. Therefore, the appropriate proportion of organic substitution (OM and M1N1) could decrease the N2O and NO emissions contributed by AOB by affecting the soil physicochemical properties and AOB community structure.
Collapse
Affiliation(s)
- Ruiyu Bi
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xintong Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Zhan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anfeng Chen
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
You X, Wang X, Sun R, Liu Q, Fang S, Kong Q, Zhang X, Xie C, Zheng H, Li H, Li Y. Hydrochar more effectively mitigated nitrous oxide emissions than pyrochar from a coastal soil of the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159628. [PMID: 36283526 DOI: 10.1016/j.scitotenv.2022.159628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Application of char amendments (e.g., pyrochar or biochar, hydrochar) in degraded soils is proposed as a promising solution for mitigating climate change via carbon sequestration and greenhouse gases (GHGs) emission reduction. However, the hydrochar-mediated microbial modulation mechanisms underlying N2O emissions from coastal salt-affected soils, one of essential blue C ecosystems, were poorly understood. Therefore, a wheat straw derived hydrochar (SHC) produced at 220 °C was prepared to investigate its effects on N2O emissions from a coastal salt-affected soil in the Yellow River Delta and to distinguish the microbial regulation mechanisms in comparison with corresponding pyrochar pyrolyzed at 500 °C (SPC) using a 28-day soil microcosm experiment. Compared with SPC, the acidic SHC (pH 4.15) enriched in oxygenated functional groups, labile C and N constituents. SHC application more efficiently depressed cumulative soil N2O emissions (48.4-61.1 % vs 5.57-45.2 %) than those of SPC. SHC-induced inhibition of ammonia-oxidizing gene (amoA)-mediated nitrification and promotion of full reduction of N2O to N2 by nitrous oxide reductase gene (nosZ) were the underlying microbial mechanisms. Structural equation models further revealed that SHC-modulated bacterial N-transformation responses, i.e., inhibited nitrification and promoted heterotrophic denitrification, mainly contributed to reduced N2O emissions, whereas modification of soil properties (e.g., decreased pH, increased total C content) by SPC dominantly accounted for decreased N2O emissions. These results address new insights into microbial regulation of N2O emission reduction from the coastal salt-affected soils amended with hydrochar, and provide the promising strategies to enhance C sequestration and mitigate GHG emissions in the blue C ecosystems.
Collapse
Affiliation(s)
- Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ruixue Sun
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Song Fang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
17
|
Kang H, Lee J, Zhou X, Kim J, Yang Y. The Effects of N Enrichment on Microbial Cycling of Non-CO 2 Greenhouse Gases in Soils-a Review and a Meta-analysis. MICROBIAL ECOLOGY 2022; 84:945-957. [PMID: 34725713 DOI: 10.1007/s00248-021-01911-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial ecosystems are typically nitrogen (N) limited, but recent years have witnessed N enrichment in various soil ecosystems caused by human activities such as fossil fuel combustion and fertilizer application. This enrichment may alter microbial processes in soils in a way that would increase the emissions of methane (CH4) and nitrous oxide (N2O), thereby aggravating global climate change. This review focuses on the effects of N enrichment on methanogens and methanotrophs, which play a central role in the dynamics of CH4 at the global scale. We also address the effects of N enrichment on N2O, which is produced in soils mainly by nitrification and denitrification. Overall, N enrichment inhibits methanogenesis in pure culture experiments, while its effects on CH4 oxidation are more complicated. The majority of previous studies reported that N enrichment, especially NH4+ enrichment, inhibits CH4 oxidation, resulting in higher CH4 emissions from soils. However, both activation and neutral responses have also been reported, particularly in rice paddies and landfill sites, which is well reflected in our meta-analysis. In contrast, N enrichment substantially increases N2O emission by both nitrification and denitrification, which increases proportionally to the amount of N amended. Future studies should address the effects of N enrichment on the active microbes of those functional groups at multiple scales along with parameterization of microbial communities for the application to climate models at the global scale.
Collapse
Affiliation(s)
- Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea.
| | - Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Xue Zhou
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
18
|
Fudjoe SK, Li L, Jiang Y, Alhassan ARM, Xie J, Anwar S, Wang L, Xie L. Impact of soil amendments on nitrous oxide emissions and the associated denitrifying communities in a semi-arid environment. Front Microbiol 2022; 13:905157. [PMID: 36060775 PMCID: PMC9428159 DOI: 10.3389/fmicb.2022.905157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Denitrifying bacteria produce and utilize nitrous oxide (N2O), a potent greenhouse gas. However, there is little information on how organic fertilization treatments affect the denitrifying communities and N2O emissions in the semi-arid Loess Plateau. Here, we evaluated how the denitrifying communities are responsible for potential denitrification activity (PDA) and N2O emissions. A field experiment was conducted with five fertilization treatments, including no fertilization (CK), mineral fertilizer (MF), mineral fertilizer plus commercial organic fertilizer (MOF), commercial organic fertilizer (OFP), and maize straw (MSP). Our result showed that soil pH, soil organic carbon (SOC), and dissolved organic nitrogen (DON) were significantly increased under MSP treatment compared to MF treatment, while nitrate nitrogen (NO3−−N) followed the opposite trend. Organic fertilization treatments (MOF, OFP, and MSP treatments) significantly increased the abundance and diversity of nirS- and nosZ-harboring denitrifiers, and modified the community structure compared to CK treatment. The identified potential keystone taxa within the denitrifying bacterial networks belonged to the distinct genera. Denitrification potentials were significantly positively correlated with the abundance of nirS-harboring denitrifiers, rather than that of nirK- and nosZ-harboring denitrifiers. Random forest modeling and structural equation modeling consistently determined that the abundance, community composition, and network module I of nirS-harboring denitrifiers may contribute significantly to PDA and N2O emissions. Collectively, our findings highlight the ecological importance of the denitrifying communities in mediating denitrification potentials and the stimulatory impact of organic fertilization treatments on nitrogen dynamics in the semi-arid Loess Plateau.
Collapse
Affiliation(s)
- Setor Kwami Fudjoe
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Lingling Li,
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Yuji Jiang,
| | - Abdul-Rauf Malimanga Alhassan
- Department of Water Resources and Sustainable Development, The University of Environment and Sustainable Development, Somanya, Ghana
| | - Junhong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Linlin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lihua Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Chen X, Du G, Wu C, Li Q, Zhou P, Shi J, Zhao Z. Effect of thermophilic microbial agents on nitrogen transformation, nitrogen functional genes, and bacterial communities during bean dregs composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31846-31860. [PMID: 35013954 DOI: 10.1007/s11356-021-17946-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
This study explored how a thermophilic microbial agent altered nitrogen transformation, nitrogen functional genes, and bacterial communities during bean dregs composting with (T) and without (CK) a thermophilic microbial agent for 15 days. The results showed that the maximum temperature in T reached 73 °C and remained above 70 °C for 8 days, while that in CK was only 65 °C. The pH in T had essentially stabilized on day 7, while that in CK was still increasing. On day 15, the seed germination index (GI) of T (95%) reached maturity (defined by GI ≥ 85%), while the GI of CK was only 36%. The concentrations of total nitrogen, water-soluble nitrogen, ammonia nitrogen, and nitrate nitrogen in T (2.5%, 18.9 g/kg, 8.75 g/kg, and 1.69 g/kg) were all lower than those in CK (3.6%, 28.9 g/kg, 12.75 g/kg, and 6.82 g/kg). During composting, Bacillus played a major role in nitrogen reduction, nitrogen mineralization, denitrification, and the conversion between nitrite and nitrate. Weissella played a major role in nitrogen assimilation. Komagataeibacter and Bacillus played a major role in nitrogen fixation in CK and T, respectively. Nitrification was not observed during composting. The nosZ gene, which converts nitrous oxide to nitrogen, was found only in T. Network analysis suggested that the average number of neighbours in T was 3.30% higher than that in CK and the characteristic path length in T was 14.15% higher than that in CK. Therefore, the thermophilic microbial agents could cause nitrogen loss but promote the maturity of bean dregs, which have great potential application.
Collapse
Affiliation(s)
- Xiaojia Chen
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengjian Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Qinyu Li
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhou
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Jiping Shi
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Zhijun Zhao
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Zhang Y, Zhao H, Hu W, Wang Y, Zhang H, Zhou X, Fei J, Luo G. Understanding how reed-biochar application mitigates nitrogen losses in paddy soil: Insight into microbially-driven nitrogen dynamics. CHEMOSPHERE 2022; 295:133904. [PMID: 35157877 DOI: 10.1016/j.chemosphere.2022.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Biochar application to chemical-amended paddy soils has been proposed as a potential strategy to enhance nitrogen (N) retention and nitrogen use efficiency (NUE) by crops. However, optimal concentrations for these enhancements and the potential drivers are not well understood. Herein, a column-based pot experiment was carried out to investigate the impacts of reed-biochar application rate on N losses and dynamics in paddy soils treated by chemical fertilizer, and particularly, to explore the dominant factors of the processes. The addition of 2-4% reed-biochar had the most significant effects on mitigating N loss by leaching. Reed-biochar amendment increased soil total N and mineral N (NH4+-N and NO3--N) content, and denitrifying gene abundance, and the increments of those variables were positively related to the application rate. Soil treated with 1-4% reed-biochar at harvest period showed higher gene abundances of ammonia-oxidizing and dissimilatory nitrate reduction to ammonium (DNRA) and higher activity of β-1,4-N-acetyl-glucosaminidase (NAG) and leucine aminopeptidase compared with the 4-8% application rate. The amoA-AOA gene abundance, NAG activity, and total carbon (C) content were the main predictors of total N and mineral N accumulated leakage. Total C content was the main predictor of soil total N and mineral N content, followed by the pH and NAG activity. These results suggest that adding 2-4% reed-biochar was more beneficial to mitigate N loss and thus enhance soil N storage and availability. This study highlights the importance of understanding how microbial populations mediate N transformation to decipher biochar-driven NUE enhancement in paddy soils.
Collapse
Affiliation(s)
- Yuping Zhang
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Hang Zhao
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Wang Hu
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Yizhe Wang
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Hanfeng Zhang
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Xuan Zhou
- Institute of Soil and Fertilizer, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiangchi Fei
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
21
|
Abstract
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Collapse
|
22
|
Chen X, Wei H, Zhang J. Nitrogen and Sulfur Additions Improved the Diversity of nirK- and nirS-Type Denitrifying Bacterial Communities of Farmland Soil. BIOLOGY 2021; 10:biology10111191. [PMID: 34827184 PMCID: PMC8615190 DOI: 10.3390/biology10111191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic nitrogen (N) and sulfur (S) deposition can change above- and belowground biodiversity, including soil microbial diversity. The diversity of denitrifying microorganisms is of great significance to the calculation of the global nitrogen cycle and nitrogen flux. For a long time, nirK and nirS have been used as the functional genes to study denitrifying microorganisms, and have gradually become molecular markers for studying the composition and diversity of denitrifying bacteria. Here, three-time exposures to N and S applications (7, 30, and 60 days), were independently established. Additionally, the abundance, diversity, and structure of nirK- and nirS-type denitrifying communities were examined by sequencing analyses in response to three treatments, namely, N and S (TN/S), sodium chloride (TNaCl) and deionized water (pH = 7.0) (CK). Our results suggest that TN/S led to higher electrical conductivity (EC), total nitrogen (TN), total organic carbon (TOC), nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N), and lower pH compared with TNaCl and CK, which affected the diversity of nirK- and nirS-type denitrifying bacterial communities. We also observed that the nirK-type denitrifying community demonstrated a higher sensitivity to N and S additions. Overall, our results are important for the understanding of nitrogen in soil and N2O emissions.
Collapse
Affiliation(s)
- Xuan Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.C.); (H.W.)
| | - Hui Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.C.); (H.W.)
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.C.); (H.W.)
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Guo J, Zhou Y, Guo H, Min W. Saline and alkaline stresses alter soil properties and composition and structure of gene-based nitrifier and denitrifier communities in a calcareous desert soil. BMC Microbiol 2021; 21:246. [PMID: 34521348 PMCID: PMC8442331 DOI: 10.1186/s12866-021-02313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saline and alkaline stresses damages the health of soil systems. Meanwhile, little is known about how saline or alkaline stress affects soil nitrifier and denitrifier communities. Therefore, we compared the responses of gene-based nitrifier and denitrifier communities to chloride (CS), sulfate (SS), and alkaline (AS) stresses with those in a no-stress control (CK) in pots with a calcareous desert soil. RESULTS Compared with CK, saline and alkaline stress decreased potential nitrification rate (PNR) and NO3-N; increased pH, salinity, water content, and NH4-N; and decreased copy numbers of amoA-AOA and amoA-AOB genes but increased those of denitrifier nirS and nosZ genes. Copies of nirK increased in SS and AS but decreased in CS. There were more copies of amoA-AOB than of amoA-AOA and of nirS than of nirK or nosZ. Compared with CK, SS and AS decreased operational taxonomic units (OTUs) of amoA-AOB but increased those of nirS and nosZ, whereas CS decreased nirK OTUs but increased those of nosZ. The numbers of OTUs and amoA-AOB genes were greater than those of amoA-AOA. There were positive linear relations between PNR and amoA-AOA and amoA-AOB copies. Compared with CK, the Chao 1 index of amoA-AOA and amoA-AOB decreased in AS, that of nirK increased in CS and SS, but that of nirS and nosZ increased in all treatments. The Shannon index of amoA-AOB decreased but that of nirS increased in CS and SS, whereas the index of nirK decreased in all treatments. Saline and alkaline stress greatly affected the structure of nitrifier and denitrifier communities and decreased potential biomarkers of nirS-type; however, AS increased those of nirK- and nosZ-type, and SS decreased those of nosZ-type. Soil water content, pH, and salinity were important in shaping amoA-AOA and denitrifier communities, whereas soil water and pH were important to amoA-AOB communities. CONCLUSION These results indicate that the nitrifier and denitrifier communities respond to saline and alkaline stresses conditions. Communities of amoA-AOA and amoA-AOB contribute to nitrification in alluvial gray desert soil, and those of nirS are more important in denitrification than those of nirK or nosZ.
Collapse
Affiliation(s)
- Jiaxin Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Yongxue Zhou
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Huijuan Guo
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Wei Min
- Department of Resources and Environmental Science, Agriculture College, Shihezi University, Box #425, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
24
|
Kuang W, Gao X, Tenuta M, Zeng F. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. GLOBAL CHANGE BIOLOGY 2021; 27:3244-3256. [PMID: 33931928 DOI: 10.1111/gcb.15636] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Drip irrigation is a useful practice to enhance water and fertilizer nitrogen (N) use efficiency. However, the use of drip irrigation to mitigate nitrous oxide (N2 O) emissions in agricultural systems globally is uncertain. Here, we performed a global meta-analysis of 485 field measurements of N2 O emissions from 74 peer-reviewed publications prior to March 2021, to quantify the fertilizer-induced N2 O emission factor (EF) of drip irrigation and examine the influencing factors of climate, crop, soil properties, and source and rate of fertilizer N application. The results showed that drip irrigation reduced (p < 0.05) N2 O emissions by 32% and 46% compared to furrow and sprinkler irrigation systems, respectively. The overall average EF with drip irrigation was 0.35%, being two-thirds lower than the IPCC Tier I default value of 1% (kg N2 O-N/kg added fertilizer N). The EF was not significantly affected by climate, crop, soil texture, soil organic carbon content, and pH. The EF was also not significantly (p > 0.05) affected by synthetic N fertilizer source despite a lower numerical value with enhanced efficiency than conventional fertilizers. The EF increased significantly (p < 0.001) with N addition rate in a binomial distribution. Using the IPCC default EF overestimated N2 O emissions inventories for drip-irrigated cropping systems by 7614 and 13,091 Mg per year for China and the globe, respectively. These results indicate that drip irrigation should be recommended as an essential N2 O mitigation strategy for irrigated crop production.
Collapse
Affiliation(s)
- Wennong Kuang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaopeng Gao
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Mario Tenuta
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
25
|
Yan Q, Yang H, Yan L, Zhang K, Li J, Wang F. Quantifying soil N 2O emissions from soil and anaerobically digested swine manure, nitrification and denitrification using 15N isotope labeling method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:32015-32025. [PMID: 33624240 DOI: 10.1007/s11356-021-12981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Increasing use of anaerobically digested swine manure in the farmland makes it necessary to understand its impact on N2O emissions, regarding the source of N2O and the corresponding mechanism of action. We used a 15N-labeled sulfate modifying the soil in order to identify the sources of N2O and the pathways of nitrification and denitrification. Three soil moisture contents (50% WHC, 75% WHC, and 100% WHC) along with three levels of anaerobically digested swine manure (0 g·kg-1, 10 g·kg-1, and 25 g·kg-1) were tested using randomized block design. Although the combined effect of contents of anaerobically digested swine manure and the soil moisture contents added to the system stimulated the utilization of soil N and promoted denitrification, the process of nitrification dominated. In anaerobically digested swine manure-treated soils, the rate of contribution of anaerobically digested swine manure to N2O accounted for 68.6-99.8%. In the 25 g·kg-1 treatment, the maximum of N2O produced by denitrification and nitrification were 14.1% and 93.1%.
Collapse
Affiliation(s)
- Qing Yan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houhua Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiajia Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
26
|
Wu L, Li Z, Zhao F, Zhao B, Phillip FO, Feng J, Liu H, Yu K. Increased Organic Fertilizer and Reduced Chemical Fertilizer Increased Fungal Diversity and the Abundance of Beneficial Fungi on the Grape Berry Surface in Arid Areas. Front Microbiol 2021; 12:628503. [PMID: 34025598 PMCID: PMC8139630 DOI: 10.3389/fmicb.2021.628503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Fertilizer practices can significantly impact the fruit quality and microbial diversity of the orchards. The fungi on the surface of fruits are essential for fruit storability and safety. However, it is not clear whether fertilization affects the fungal diversity and community structure on the surface of grape berries. Here, grape quality and the fungal diversity on the surface of grapes harvested from three fertilizer treatments were analyzed shortly after grape picking (T0) and following 8 days of storage (T1). The study involved three treatments: (1) common chemical fertilizer for 2 years (CH); (2) increased organic fertilizer and reduced chemical fertilizer for 1 year (A.O); and (3) increased organic fertilizer and reduced chemical fertilizer for 2 years (B.O). The application of increased organic fertilizer and reduced chemical fertilizer increased the soluble solids content (SSC) of the grape berries and decreased the pH of the grape juice. A total of 827,947 high-quality fungal sequences were recovered and assigned to 527 operational taxonomic units. Members of the Ascomycota phylum were dominant in all samples and accounted for 94.41% of the total number of detected sequences, followed by the Basidiomycota (5.05%), and unidentified fungi (0.54%). Alpha and beta diversity analyses revealed significantly different fungal populations in the three fertilizer treatments over the two time periods. The fungal diversity and richness on the grape berry surface in the B.O and A.O treatments were higher than those in the CH treatment. Among the detected fungi, the B.O treatments were mainly Pichia, Aureobasidium, and Candida genera, while the CH treatments were Botrytis, Aspergillus, and Penicillium. Moreover, significant differences were revealed between the two assessment times (T0 and T1). The samples from the T0 timepoint had higher fungal richness and diversity than the samples from T1 timepoint. Increasing organic fertilizer usage in grape management could improve grape quality and went on to increase the fungal diversity, as well as the relative abundance (RA) of beneficial fungi on grape berry surfaces. The correlation analysis suggested that the pH of the grape juice was significantly negatively correlated with fungal diversity parameters.
Collapse
Affiliation(s)
- Linnan Wu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Zhiqiang Li
- Shihezi Academy of Agricultural Sciences, Shihezi, China
| | - Fengyun Zhao
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Benzhou Zhao
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Fesobi Olumide Phillip
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Huaifeng Liu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Kun Yu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| |
Collapse
|
27
|
Ji B, Chen J, Li W, Mei J, Yang Y, Chang J. Greenhouse gas emissions from constructed wetlands are mitigated by biochar substrates and distinctly affected by tidal flow and intermittent aeration modes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116328. [PMID: 33360581 DOI: 10.1016/j.envpol.2020.116328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Biochar substrates and tidal flow (TF) and intermittent aeration (IA) operation modes have recently been applied to improve the treatment performance of constructed wetlands (CWs), but their roles in regulating greenhouse gas (GHG) emissions from CWs are still unclear. In this preliminary study, CO2, CH4 and N2O fluxes and associated microbial characteristics in four groups of subsurface-flow CWs, i.e., ceramsite CWs (C-CWs), biochar-amended CWs (B-CWs), intermittently aerated B-CWs (AB-CWs) and tide-flow B-CWs (TB-CWs), were comparatively investigated. The results showed that biochar amendment significantly mitigated CH4 and N2O fluxes from the CWs by supporting higher abundances of mcrA and nosZ genes and higher ratios of pmoA/mcrA and nosZ/(nirK + nirS), thus reducing global warming potential (GWP, a decrease of 55.8%), in addition to promoting total nitrogen (TN) removal by 41.3%, mainly by increasing the abundances and activities of nitrifiers and denitrifiers. The TF mode efficiently improved nitrogen removal, but it greatly increased GHG fluxes since large amounts of GHGs escaped from the empty CW matrix after water draining. IA abated GHG emissions from the CWs, mainly after aeration. TF and IA decreased the abundances of functional bacteria and archaea related to C and N transformation, except nitrifiers, and shaped the microbial community structures. The application of a biochar substrate and IA mode can facilitate the design and operation of CWs in a more ecologically sustainable way.
Collapse
Affiliation(s)
- Bohua Ji
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Wei Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jian Mei
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Ying Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments (Yunnan University), Kunming, 650091, China.
| |
Collapse
|
28
|
Liu X, Shi Y, Zhang Q, Li G. Effects of biochar on nitrification and denitrification-mediated N 2O emissions and the associated microbial community in an agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6649-6663. [PMID: 33006095 DOI: 10.1007/s11356-020-10928-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 05/25/2023]
Abstract
Nitrous oxide (N2O) is a strong greenhouse gas, and it is of great significance for N2O reduction to study the effects of biochar on its production pathway. In this research, the contributions and mechanisms of biochar on autotrophic nitrification (ANF), heterotrophic nitrification (HNF), and denitrification (DF) to N2O emissions were studied by using 15N stable isotopes and high-throughput sequencing after laboratory incubation. The results showed that biochar addition at 2% (B2) significantly reduced the N2O emissions from the ANF by an average of 20.6%, while adding 5% biochar (B5) had no significant effect on the ANF. Both B2 and B5 significantly reduced the N2O emissions from the HNF by 15.7% and 13.2%, respectively, and reduced the N2O emissions from the DF by 40.9% and 11.7%, respectively. B2 enhanced the relative contribution rate of the ANF to N2O emissions by 6.3%, while B5 had little effect on it. Biochar addition significantly changed the copy numbers of the AOA and AOB, as well as the nirK, nirS, and nosZ genes, but it had no significant effect on the community composition of the AOA and had minimal effect on the AOB community. B2 significantly increased the abundance of the genus Rhodococcus of nirK type denitrifiers and had a significant effect on the relative abundance of Cupriavidus and Pseudomonas of the nosZ type denitrifiers. These results revealed that the inhibitory effects of biochar on N2O emissions from nitrification might be attributed to the direct immobilization and adsorption of inorganic N by biochar and to its promotion of the genus Rhodococcus of nirK-type denitrifiers and the genera Cupriavidus and Pseudomonas of the nosZ-type denitrifiers. The soil exchangeable NH4+-N and NO3--N concentrations were the primary factors affecting the N2O emission rates. These results help to elucidate the effects and mechanisms of biochar on N2O production pathways in agricultural soil.
Collapse
Affiliation(s)
- Xingren Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guichun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
29
|
Lei L, Gu J, Wang X, Song Z, Yu J, Wang J, Dai X, Zhao W. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141746. [PMID: 33207482 DOI: 10.1016/j.scitotenv.2020.141746] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
This study explored the effects of adding phosphogypsum (PPG), medical stone (MS), and both (PPM) during composting on nitrogen transformation, nitrogen functional genes, the bacterial community, and their relationships with NH3 and N2O emissions. Adding MS and PPM reduced NH3 emissions by 25.78-68.37% and N2O emissions by 19.00-42.86%. PPG reduced NH3 emissions by 59.74% but slightly increased N2O emissions by 8.15%. MS was strongly correlated with the amoA-dominated nitrification process. PPG and PPM had strong correlations with nirS- and nirK-dominated, and nosZ-dominated denitrification processes, respectively. PPM promoted nitrification and denitrification processes more than PPG and MS. Different functional bacteria had key roles in nitrification and denitrification during different composting stages. Firmicutes probably contributed to the conversion and release of nitrogen in the thermophilic period, whereas Proteobacteria, Chloroflexi, Bacteroidetes, and other phyla might have played important roles in the cooling and maturation periods. PPM obtained the greatest reductions in NH3 and N2O release via the regulation of environmental variables, nitrogen functional genes, and the bacterial community. Overall, these results provide insights at a molecular level into the effects of PPG and MS on nitrogen transformation and NH3 and N2O emissions during composting.
Collapse
Affiliation(s)
- Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Tao R, Li J, Hu B, Chu G. Mitigating N 2O emission by synthetic inhibitors mixed with urea and cattle manure application via inhibiting ammonia-oxidizing bacteria, but not archaea, in a calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116478. [PMID: 33453701 DOI: 10.1016/j.envpol.2021.116478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Synthetic inhibitors and organic amendment have been proposed for mitigating greenhouse gas N2O emissions. However, their combined effect on the N2O emissions and ammonia-oxidizer (ammonia-oxidizing bacteria and archaea, AOB and AOA) communities remains unclear in calcareous soils under climate warming. We conducted two incubation experiments (25 and 35 °C) to examine how N2O emissions and AOA and AOB communities responded to organic amendment (urea plus cattle manure, UCM), and in combination with urease (N-(n-butyl) thiophosphoric triamide, NBPT) and nitrification inhibitor (nitrapyrin). The treatments of UCM + nitrapyrin and UCM + nitrapyrin + NBPT significantly lowered total N2O emissions by average 64.5 and 71.05% at 25 and 35 °C, respectively, compared with UCM treatment. AOB gene abundance and α-diversity (Chao1 and Shannon indices) were significantly increased by the application of urea and manure (P < 0.05). However, relative to UCM treatment, nitrapyrin addition treatments decreased AOB gene abundance and Chao 1 index by average 115.4 and 30.4% at 25 and 35 °C, respectively. PCA analysis showed that UCM or UCM plus nitrapyrin notably shifted AOB structure at both temperatures. However, fertilization had little effects on AOA community (P > 0.05). Potential nitrification rate (PNR) was greatly decreased by nitrapyrin addition, and PNR significantly positively correlated with AOB gene abundance (P = 0.0179 at 25 °C and P = 0.0029 at 35 °C) rather than AOA (P > 0.05). Structural equation model analysis showed that temperature directly increased AOA abundance but decrease AOB abundance, while fertilization indirectly influenced AOB community by altering soil NH4+, pH and SOC. In conclusion, the combined application of organic amendment, NBPT and nitrapyrin significantly lowered N2O emissions via reducing AOB community in calcareous soil even at high temperature. Our findings provide a solid theoretical basis in mitigating N2O emissions from calcareous soil under climate warming.
Collapse
Affiliation(s)
- Rui Tao
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Jun Li
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Guixin Chu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China.
| |
Collapse
|
31
|
Walling E, Vaneeckhaute C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111211. [PMID: 32987233 DOI: 10.1016/j.jenvman.2020.111211] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fertilizers have become an essential part of our global food supply chain and are necessary to sustain our growing population. However, fertilizers can also contribute to greenhouse gas (GHG) emissions, along with other potential nutrient losses in the environment, e.g. through leaching. To reduce this environmental impact, tools such as life cycle assessments and decision support systems are being used to aid in selecting sustainable fertilization scenarios. These scenarios often include organic waste-derived amendments, such as manures, composts and digestates. To produce an accurate assessment and comparison of potential fertilization scenarios, these tools require emission factors (EFs) that are used to estimate GHG emissions and that are an integral part of these analyses. However, such EFs seem to be very variable in nature, thereby often resulting in high uncertainty on the outcomes of the analyses. This review aims to identify ranges and sources of variability in EFs to provide a better understanding of the potential uncertainty on the outcomes, as well as to provide recommendations for selecting EFs for future studies. As such, an extensive review of the literature on GHG emissions from production, storage, transportation and application of synthetic fertilizers (N, P, K), composts, digestates and manures was performed. This paper highlights the high variability that is present in emissions data and confirms the great impact of this uncertainty on the quality and validity of GHG predictions related to fertilizers. Variability in EFs stem from the energy source used for production, operating conditions, storage systems, crop and soil type, soil nutrient content, amount and method of fertilizer application, soil bacterial community, irrigation method, among others. Furthermore, a knowledge gap exists related to EFs for potassium fertilizers and waste valorization (anaerobic digestion/composting) processes. Overall, based on this review, it is recommended to determine EFs on a case by case basis when possible and to use uncertainty analyses as a tool to better understand the impact of EF variability.
Collapse
Affiliation(s)
- Eric Walling
- BioEngine - Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 Ave. de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Céline Vaneeckhaute
- BioEngine - Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 Ave. de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
32
|
Tian D, Zhang Y, Mu Y, Liu J, He K. Effect of N fertilizer types on N 2O and NO emissions under drip fertigation from an agricultural field in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136903. [PMID: 32032987 DOI: 10.1016/j.scitotenv.2020.136903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
N2O and NO emissions from a winter wheat-summer maize rotation field in the North China Plain were comparably investigated under three different treatments: 1) flood irrigation (A-Flood treatment) plus fertilization of NH4Cl, 2) drip fertigation (A-Drip treatment) plus fertilization of NH4Cl and 3) drip fertigation (AN-Drip treatment) plus fertilization of a mixture of Ca(NO3)2 and NH4Cl. The annual N2O cumulative emissions from the A-Drip treatment and the A-Flood treatment were almost identical, whereas it from the AN-Drip treatment was significantly lower (33%) than that from the A-Flood treatment. Compared with the A-Flood treatment, the annual NO cumulative emission from the A-Drip treatment was significantly increased by 140% but it from the AN-Drip treatment was only slightly increased by 14%. Compared with drip fertigation with NH4Cl, drip fertigation with the mixture of Ca(NO3)2 and NH4Cl significantly reduced the cumulative emissions of N2O (31%) and NO (52%) from the nitrification dominated fields by decreasing the supplement of NH4+ substrate. Among the three fertilization treatments, the yields of the maize from the A-Drip and AN-Drip treatments were significantly increased, while the yields of the wheat were almost the same. Considering the benefit of increasing yields and reducing N fertilizer and water input, the application of nitrate-based fertilizer instead of partial ammonium-based fertilizer through drip fertigation could be a promising method for keeping agronomic productivity and environmental sustainability.
Collapse
Affiliation(s)
- Di Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Yang Z, Guan Y, Bello A, Wu Y, Ding J, Wang L, Ren Y, Chen G, Yang W. Dynamics of ammonia oxidizers and denitrifiers in response to compost addition in black soil, Northeast China. PeerJ 2020; 8:e8844. [PMID: 32341890 PMCID: PMC7182023 DOI: 10.7717/peerj.8844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
Organic fertilizer application could have an impact on the nitrogen cycle mediated by microorganisms in arable soils. However, the dynamics of soil ammonia oxidizers and denitrifiers in response to compost addition are less understood. In this study, we examined the effect of four compost application rates (0, 11.25, 22.5 and 45 t/ha) on soil ammonia oxidizers and denitrifiers at soybean seedling, flowering and mature stage in a field experiment in Northeast China. As revealed by quantitative PCR, compost addition significantly enhanced the abundance of ammonia oxidizing bacteria (AOB) at seedling stage, while the abundance of ammonia oxidizing archaea was unaffected across the growing season. The abundance of genes involved in denitrification (nirS, nirK and nosZ) were generally increased along with compost rate at seedling and flowering stages, but not in mature stage. The non-metric multidimensional scaling analysis revealed that moderate and high level of compost addition consistently induced shift in AOB and nirS containing denitrifers community composition across the growing season. Among AOB lineages, Nitrosospira cluster 3a gradually decreased along with the compost rate across the growing season, while Nitrosomonas exhibited an opposite trend. Network analysis indicated that the complexity of AOB and nirS containing denitrifiers network gradually increased along with the compost rate. Our findings highlighted the positive effect of compost addition on the abundance of ammonia oxidizers and denitrifiers and emphasized that compost addition play crucial roles in shaping their community compositions and co-occurrence networks in black soil of Northeast China.
Collapse
Affiliation(s)
- Zhongzan Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yupeng Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanxiang Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiayi Ding
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Leiqi Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuqing Ren
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guangxin Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
34
|
Huang R, Wang Y, Gao X, Liu J, Wang Z, Gao M. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110291. [PMID: 32061984 DOI: 10.1016/j.ecoenv.2020.110291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Partially substituting chemical fertilizer with organic manure can aid in the disposal of agricultural wastes via recycling into agricultural land, reduce chemical fertilizer application, and influence nitrogen (N) transformation. However, relatively few studies have investigated the association between soil physicochemical properties, denitrifier communities and N2O emission after short-term substitution of organic manure in vegetable fields. We conducted a short-term vegetable field experiment which included one control treatment (CT, no fertilizer) and three fertilization treatments containing equal amount of total N, phosphorus and potassium (CF, chemical fertilizer only; CMR, chemical fertilizer plus mushroom residue; COM, chemical fertilizer plus cattle manure). The results showed that partial substitution of chemical fertilizer with organic manure greatly increased cumulative N2O emissions, N2O emission factors and yield-scaled N2O emissions by 122-203%, 238-600% and 128-181%, respectively. Compared with the CF treatment, short-term substitution with organic manure reduced the abundance of nirS- and nosZ-type denitrifiers, and increased that of nirK-type denitrifiers. Modeling indicated that nirS abundance, together with soil available N, NIR activity, nirK abundance, SOC, NH4+, and NO3- were the primary factors associated with cumulative N2O emissions. The denitrifier community composition of the CF- treated soil was separated from that of soils treated with CMR and COM, and was primarily influenced by soil NH4+ concentration. NIR activity showed a significant correlation with denitrifier community composition. Overall, short-term substitution of chemical fertilizer with cattle manure (lower C/N ratio) reduced the abundance of nirS- and nosZ-type denitrifiers, but stimulated N2O emission.
Collapse
Affiliation(s)
- Rong Huang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yingyan Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jiang Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zifang Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
35
|
Wang Y, Qi L, Huang R, Wang F, Wang Z, Gao M. Characterization of Denitrifying Community for Application in Reducing Nitrogen: a Comparison of nirK and nirS Gene Diversity and Abundance. Appl Biochem Biotechnol 2020; 192:22-41. [PMID: 32212109 DOI: 10.1007/s12010-020-03250-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023]
Abstract
Studies have shown that the addition of biochar to agricultural soils has the potential to mitigate climate change by decreasing nitrous oxide (N2O) emissions resulting from denitrification. Rice paddy field soils have been known to have strong denitrifying activity, but the response of microbes to biochar for weakening denitrification in rice paddy field soils is not well known. In this work, compared with the chemical fertilizer alone, the chemical fertilizer + 20 t hm-2 biochar fertilizer slightly decreased denitrifying the nitrite reductase activity (S-NiR) and N2O emission without statistic difference, whereas the chemical fertilizer + 40 t hm-2 biochar significantly boosted them. The abundance of nir-denitrifiers contributed to S-NiR and N2O emission, especially nirS-denitrifiers, rather than the variation of community structure. Pearson correlation analysis showed that NO2--N was a key factor for controlling the abundance of nir-denitrifiers, S-NiR and N2O emission. The biochar addition fertilization treatments strongly shaped the community structure of nirK-denitrifiers, while the community structure of nirS-denitrifiers remained relatively stable. In addition, Paracoccus and Sinorhizobium were revealed to be as the predominant lineage of nirS- and nirK-containing denitrifiers, respectively. Distance-based redundancy analysis (db-RDA) showed that changes in the nir-denitrifier community structure were significantly related to soil organic carbon, NO3--N, and total phosphorus. Our findings suggest that, although the nirS- and nirK-denitrifiers are both controlling nitrite reductase, their responses to biochar addition fertilization treatments showed significant discrepancies of diversity, abundance, and contribution to N2O and S-NiR in a paddy soil.
Collapse
Affiliation(s)
- Yingyan Wang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China
| | - Le Qi
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China
| | - Rong Huang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China.,College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuhua Wang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China
| | - Zifang Wang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China.
| | - Ming Gao
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
36
|
Yin Y, Yang C, Gu J, Wang X, Zheng W, Wang R, Wang X, Chen R. Roles of nxrA-like oxidizers and nirS-like reducers in nitrite conversion during swine manure composting. BIORESOURCE TECHNOLOGY 2020; 297:122426. [PMID: 31776106 DOI: 10.1016/j.biortech.2019.122426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 05/22/2023]
Abstract
Nitrite has a key role in nitrogen conversion during composting. In this study, the dynamic changes in the NO2- contents, abundances of nirS and nxrA, and the bacteria that harbored these genes were determined during composting. NO2- accumulated during the initial composting stage. The nirS gene was abundant throughout composting, whereas the nxrA gene was only abundant in the late composting phases. Ralstonia sp. and Thauera sp. were the dominant denitrifiers that harbored nirS, and Nitrobacter winogradskyi Nb-255 was the dominant nitrifier that harbored nxrA. Structural equation modeling showed that NO2- was mainly reduced by nirS in the early phases, and oxidized by nxrA in the late phases, but especially in the maturity phase. Network analysis showed that the dominant bacteria harboring nirS and nxrA were hubs in the modules related to the reduction and oxidation of NO2-, and they had competitive relationships during the cooling and maturity phases.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zheng
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
37
|
Xiao Z, Rasmann S, Yue L, Lian F, Zou H, Wang Z. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133984. [PMID: 31465924 DOI: 10.1016/j.scitotenv.2019.133984] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) cycling by soil microbes can be estimated by quantifying the abundance of microbial functional genes (MFG) involved in N-transformation processes. In agro-ecosystems, biochars are regularly applied for increasing soil fertility and stability. In turn, it has been shown that biochar amendment can alter soil N cycling by altering MFG abundance and richness. However, the general patterns and mechanisms of how biochar amendment modifies N-cycling gene abundance have not been synthesized to date. Here, we addressed this knowledge gap by performing a meta-analysis of existing literatures up to 2019. We included five main marker genes involved in N cycling: nifH, amoA, nirK, nirS and nosZ. We found that biochar addition significantly increased the abundance of ammonia-oxidizing archaea (AOA), nirK, nirS and nosZ by an average of 25.3%, 32.0%, 14.6% and 17.0%, respectively. Particularly, biochar amendment increased the abundances of most N-cycling genes when soil pH changed from very acidic (pH < 5) to acidic (pH: 5.5-6.5). Experimental conditions, cover plants, biochar pyrolysis temperature and fertilizer application were also important factors regulating the response of most N-cycling genes to biochar amendment. Moreover, soil pH significantly correlated with ammonia-oxidizing bacteria (AOB) abundance, while we found that most genes involved in nitrification and denitrification were not significantly correlated with each other across studies. Our results contribute to developing quantitative models of microbially-mediated N-transforming processes in response to biochar addition, and stimulate research on how to use biochar amendment for reducing reactive N gas emissions and enhancing N bioavailability to crop plants in agro-ecosystems.
Collapse
Affiliation(s)
- Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchatel 2000, Switzerland
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Lian
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
Yin M, Gao X, Tenuta M, Kuang W, Gui D, Zeng F. Manure application increased denitrifying gene abundance in a drip-irrigated cotton field. PeerJ 2019; 7:e7894. [PMID: 31660271 PMCID: PMC6815196 DOI: 10.7717/peerj.7894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 01/08/2023] Open
Abstract
Application of inorganic nitrogen (N) fertilizer and manure can increase nitrous oxide (N2O) emissions. We tested the hypothesis that increased N2O flux from soils amended with manure reflects a change in bacterial community structure and, specifically, an increase in the number of denitrifiers. To test this hypothesis, a field experiment was conducted in a drip-irrigated cotton field in an arid region of northwestern China. Treatments included plots that were not amended (Control), and plots amended with urea (Urea), animal manure (Manure) and a 50/50 mix of urea and manure (U+M). Manure was broadcast-incorporated into the soil before seeding while urea was split-applied with drip irrigation (fertigation) over the growing season. The addition treatments did not, as assessed by nextgen sequencing of PCR-amplicons generated from rRNA genes in soil, affect the alpha diversity of bacterial communities but did change the beta diversity. Compared to the Control, the addition of manure (U+M and Manure) significantly increased the abundance of genes associated with nitrate reduction (narG) and denitrfication (nirK and nosZ). Manure addition (U+M and Manure) did not affect the nitrifying enzyme activity (NEA) of soil but resulted in 39–59 times greater denitrifying enzyme activity (DEA). In contrast, urea application had no impact on the abundances of nitrifier and denitrifier genes, DEA and NEA; likely due to a limitation of C availability. DEA was highly correlated (r = 0.70–0.84, P < 0.01) with the abundance of genes narG, nirK and nosZ. An increase in the abundance of these functional genes was further correlated with soil NO3−, dissolved organic carbon, total C, and total N concentrations, and soil C:N ratio. These results demonstrated a positive relationship between the abundances of denitrifying functional genes (narG, nirK and nosZ) and denitrification potential, suggesting that manure application increased N2O emission by increasing denitrification and the population of bacteria that mediated that process.
Collapse
Affiliation(s)
- Mingyuan Yin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Cele, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Cele, China.,Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Mario Tenuta
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Wennong Kuang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Cele, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Cele, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Cele, China
| |
Collapse
|
39
|
Shi Y, Liu X, Zhang Q. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:199-211. [PMID: 31176819 DOI: 10.1016/j.scitotenv.2019.05.394] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/19/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
This study intended to evaluate the combined effects of both biochar and organic fertilizer on nitrous oxide (N2O) fluxes and composition of nitrifier and denitrifier of saline-alkali soil. Therefore, four different treatments such as CK (only chemical fertilizer), B (only biochar), M (only organic fertilizer), BM (B:M = 1:1) were used in this experiment. The results showed that N2O emissions were decreased in B and BM treatments compare to the control. In contrast, N2O emissions were highest before day 12 but lowest after day 19 in M treatment compare to the control. Application of biochar, organic fertilizer and biochar plus organic fertilizer decreased the nirS and nirK genes copies and enhanced the nosZ gene copies which resulting in the lower N2O fluxes. The ammonia-oxidizing bacteria (AOB) amoA and nirK genes copies were significantly increased by organic fertilizer before day 12, leading to high N2O emissions. The genera Nitrosospira (AOB) and Nitrososphaera (ammonia-oxidizing archaea, AOA) assumed absolute superiority. Additionally, Nitrosospira (AOB) was also appeared in nirK-type denitrifiers, illustrating denitrification was carried out by nitrifiers. The genera Azospirillum (nirS), Burkholderia (nosZ) and Polymorphum (nosZ) were dominant in CK. There was only one dominant genus, Mesorhizobium (nosZ) in the B treatment. The genera Mesorhizobium (nirK), Azoarcus (nirS), Kocuria (nirS) and Pseudomonas (nosZ) occupied the main status in the M treatment. The relative abundance of Rhodanobacter (nirS) and Azospirillum (nosZ) were higher in the BM treatment compared with other treatments. Soil water content (SWC), pH, NH4+-N and NO3--N were the main factors affecting AOB and denitrifiers, which influencing N2O emissions. Overall, combined application of biochar and organic fertilizer can reduce the N2O emission where AOB and nirK-type denitrifier were the main contributors to the N2O emission.
Collapse
Affiliation(s)
- Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingren Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
40
|
Comparison of the Abundance and Community Structure of N-Cycling Bacteria in Paddy Rhizosphere Soil under Different Rice Cultivation Patterns. Int J Mol Sci 2018; 19:ijms19123772. [PMID: 30486439 PMCID: PMC6321513 DOI: 10.3390/ijms19123772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023] Open
Abstract
Eco-agricultural systems aim to reduce the use of chemical fertilizers in order to improve sustainable production and maintain a healthy ecosystem. The aim of this study was to explore the effects of rice-frog farming on the bacterial community and N-cycling microbes in paddy rhizosphere soil. This experiment involved three rice cultivation patterns: Conventionally cultivated rice (CR), green rice-frog farming (GR), and organic rice-frog farming (OR). The rice yield, paddy soil enzyme activities, physicochemical variables and bacterial and N-cycling bacterial abundances were quantitatively analyzed. Rice-frog cultivations significantly increased soil protease, nitrate and reductase activity. Additionally, the nirS gene copy number and the relative abundance of denitrifying bacteria also increased, however urease activity and the relative abundance of nitrifying bacteria significantly decreased. The bacterial community richness and diversity of OR soil was significantly higher than that of the GR or CR soil. Nitrogen use efficiency (NUE) of GR was highest. The N-cycling bacterial community was positively correlated with the total carbon (TC), total nitrogren (TN) and carbon to nitrogen (C:N) ratio. The present work strengthens our current understanding of the soil bacterial community structure and its functions under rice-frog farming. The present work also provides certain theoretical support for the selection of rational rice cultivation patterns.
Collapse
|
41
|
Guo L, Wang X, Diao T, Ju X, Zheng L, Zhang X, Han X. N 2O emission contributions by different pathways and associated microbial community dynamics in a typical calcareous vegetable soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:2005-2013. [PMID: 30061078 DOI: 10.1016/j.envpol.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/18/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Nitrous oxide, one of the powerful long-lived greenhouse gases, is emitted mainly through biological processes, especially from fertilized soil. It is critical to partition the contribution of different pathways to N2O emissions and the relevant characteristics of microbial communities to identify the key N2O processes. An microcosm was conducted to partition the N2O emissions from different pathways, and the changes in soil mineral nitrogen and various nitrifiers (amoA bacteria and amoA archaea) and denitrifiers (nirS, nirK, and nosZ) were also determined using qPCR and high-throughput sequencing methods. Different gas inhibitor combinations (i.e., 0.06% acetylene, pure oxygen, 0.06% acetylene in pure oxygen, and pure helium) were used to partition the N2O pathways. A 5% oxygen treatment, with and without acetylene, was also included so that the N2O emissions could be measured under lower oxygen partial pressure. Results showed that ammonia-oxidation (AO) and successive nitrifier denitrification (NiD) were the main pathways contributing to N2O emissions at the earlier period after ammonium sulfate application with the cumulative N2O emissions accounting for 30.9% and 59.2% of the total N2O emissions, respectively. The higher NiD N2O contributions occurred when the soil nitrite concentration appeared higher, especially under the lower oxygen conditions. Higher N2O emissions from AO and NiD were associated with the compositional proportion of some dominant AOB species. Denitrification contributed more N2O (63.6%-69.3%) in the later period during incubation, coinciding with the following characteristics for denitrifiers: a) lower nosZ/(nirS + nirK) ratio, b) more diversity in nirS, and c) different proportions of some dominant species in nirK. Our results demonstrated that higher AO and successive NiD were the main N2O emission pathways, suggesting that controlling the ammonium content and weakening the AO are critical in decreasing N2O emissions.
Collapse
Affiliation(s)
- Liping Guo
- Key Lab for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Tiantian Diao
- Key Lab for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotang Ju
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction of MOE, China Agricultural University, Beijing 100093, China
| | - Lei Zheng
- Key Lab for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xinyue Zhang
- Key Lab for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xue Han
- Key Lab for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|