1
|
Zhen Q, Wang X, Cheng X, Fang W. Remediation of toxic metal and metalloid pollution with plant symbiotic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:171-187. [PMID: 39389705 DOI: 10.1016/bs.aambs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.
Collapse
Affiliation(s)
- Qing Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China
| | - Xinru Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China
| | - Xianxian Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
2
|
Gu R, Xiao K, Zhu Z, He X, Li D. Afforestation enhances glomalin-related soil protein content but decreases its contribution to soil organic carbon in a subtropical karst area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120754. [PMID: 38522280 DOI: 10.1016/j.jenvman.2024.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Afforestation on degraded croplands has been proposed as an effective measure to promote ecosystem functions including soil organic carbon (SOC) sequestration. Glomalin-related soil protein (GRSP) plays a crucial role in promoting the accumulation and stability of SOC. Nevertheless, mechanisms underlying the effects of afforestation on GRSP accumulation have not been well elucidated. In the present study, 14 pairs of maize fields and plantation forests were selected using a paired-site approach in a karst region of southwest China. By measuring soil GRSP and a variety of soil biotic and abiotic variables, the pattern of and controls on GRSP accumulation in response to afforestation were explored. The average content of total GRSP (T-GRSP) and its contribution to SOC in the maize field were 5.22 ± 0.29 mg g-1 and 42.33 ± 2.25%, and those in the plantation forest were 6.59 ± 0.32 mg g-1 and 25.77 ± 1.17%, respectively. T-GRSP content was increased by 26.4% on average, but its contribution to SOC was decreased by 39.1% following afforestation. T-GRSP content decreased as soil depth increased regardless of afforestation or not. Afforestation increased T-GRSP indirectly via its positive effects on arbuscular mycorrhizal fungi biomass, which was stimulated by afforestation through elevating fine root biomass or increasing the availability of labile C and N. The suppressed contribution of T-GRSP to SOC following afforestation was due to the relatively higher increase in other SOC components than T-GRSP and the significant increase of soil C:N ratio. Our study reveals the mechanisms underlying the effects of afforestation on T-GRSP accumulation, and is conducive to improving the mechanistic understanding of microbial control on SOC sequestration following afforestation.
Collapse
Affiliation(s)
- Rui Gu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kongcao Xiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning, 530000, China
| | - Zihong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xunyang He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning, 530000, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China
| | - Dejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning, 530000, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China.
| |
Collapse
|
3
|
Zhou X, Wang T, Wang J, Chen S, Ling W. Research progress and prospect of glomalin-related soil protein in the remediation of slightly contaminated soil. CHEMOSPHERE 2023; 344:140394. [PMID: 37813247 DOI: 10.1016/j.chemosphere.2023.140394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Soil pollution caused by organic pollutants and potentially toxic elements poses a serious threat to sustainable agricultural development, global food security and human health. Therefore, strategies for reducing soil pollution are urgently required. Arbuscular mycorrhizal fungi (AMF)-assisted phytoremediation is widely recognized for its ability to remediate slightly-contaminated soil. Glomalin-related soil protein (GRSP) production by AMF is considered a vital mechanism of AMF-assisted phytoremediation. GRSP is widespread in soils and may contribute to the remediation of slightly contaminated soils. GRSP facilitates stabilization of pollutants in soils by interacting with pollutants owing to its abundant functional groups, recalcitrance, and long turnover time. It also enhances soil bioremediation and phytoremediation by stimulating soil microbial activity, improving soil structure, and providing nutrients for plants. However, research on GRSP is still in its early stages, and studies on contaminated soil remediation are limited. The effectiveness of GRSP in situ remediation remains to be proved. This review summarizes current knowledge regarding the GRSP distribution and its contribution to the remediation of slightly contaminated soils. Additionally, we present strategies to increase the GRSP content in contaminated soils, as well as prospects for future studies on the use of GRSP in contaminated soil remediation. This study focuses on recent developments that aim to improve awareness of the role of GRSP in soil remediation and relevant future directions.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuang Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Chen X, Su M, Wu S, He L, Zhang B, Zhang Y, Huang X, Liu J, Yan C, Liu W, Lu H. Change in glomalin-related soil protein along latitudinal gradient encompassing subtropical and temperate blue carbon zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165035. [PMID: 37379927 DOI: 10.1016/j.scitotenv.2023.165035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Glomalin-related soil protein (GRSP), an abundant and eco-friendly bioproduct associated with arbuscular mycorrhizal fungi (AMF), contributes significantly to the soil particle aggregation and carbon sequestration. Although much research has been conducted on the storage of GRSP at different spatio-temporal scales in terrestrial ecosystems. However, the deposition of GRSP in large-scale coastal environments has not been revealed, which hinders an in-depth understanding of GRSP storage patterns and environmental controls, and this knowledge gap has become one of the key uncertainties in understanding the ecological functions of GRSP as blue carbon components in coastal environments. Therefore, we conducted large-scale experiments (spanning subtropical and warm temperate climate zones, coastlines over 2500 km) to test the relative contributions of environmental drivers that shape unique GRSP storage. In salt marshes of China, we found that the abundance of GRSP ranges from 0.29 mg g-1 to 1.10 mg g-1, and its concentration decreases with increasing latitude (R2 = 0.30, p < 0.01). The GRSP-C/SOC of salt marshes ranged from 4 % to 43 % and increased with the increase in latitude (R2 = 0.13, p < 0.05). The carbon contribution of GRSP does not follow the trend of increasing abundance, but is limited by the total amount of background organic carbon. In salt marsh wetlands, precipitation, clay content and pH are the main factors influencing GRSP storage. GRSP is positively correlated with precipitation (R2 = 0.42, p < 0.01) and clay content (R2 = 0.59, p < 0.01), but negatively correlated with pH (R2 = 0.48, p < 0.01). The relative contributions of the main factors to the GRSP differed across climatic zones. Soil properties, such as clay content and pH, explained 19.8 % of the GRSP in subtropical salt marshes (20°N < 34°N), however, in warm temperate salt marshes (34°N < 40°N), precipitation explained 18.9 % of the GRSP variation. Our study provides insight into the distribution and function of GRSP in coastal environments.
Collapse
Affiliation(s)
- Xiangwen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Shengjie Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Binghuang Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xiaohong Huang
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Wang YJ, He XH, Meng LL, Zou YN, Wu QS. Extraradical Mycorrhizal Hyphae Promote Soil Carbon Sequestration through Difficultly Extractable Glomalin-Related Soil Protein in Response to Soil Water Stress. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02153-y. [PMID: 36471016 DOI: 10.1007/s00248-022-02153-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Soil water stress (WS) affects the decomposition of soil organic carbon (SOC) and carbon (C) emissions. Glomalin, released by arbuscular mycorrhizal fungi into soil that has been defined as glomalin-related soil protein (GRSP), is an important pool of SOC, with hydrophobic characteristics. We hypothesized that mycorrhizal fungi have a positive effect on SOC pools under soil WS for C sequestration in GRSP secreted by extraradical mycorrhizal hyphae. A microsystem was used to establish a root chamber (co-existence of roots and extraradical mycorrhizal hyphae) and a hyphal chamber (the presence of extraradical mycorrhizal hyphae) to study changes in plant growth, leaf water potential, soil aggregate stability, SOC, GRSP, C concentrations in GRSP (CGRSP), and the contribution of CGRSP to SOC after inoculating Rhizophagus intraradices with trifoliate orange (Poncirus trifoliata) in the root chamber under adequate water (AW) and WS. Inoculation with R. intraradices alleviated negative effects on leaf water potential and plant growth after 7 weeks of WS. Soil WS decreased SOC and mean weight diameter (MWD), while AMF inoculation led to an increase in SOC and MWD in both chambers, with the most prominent increase in the hyphal chamber under WS. The C concentration in easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) was 7.32 - 12.57 and 24.90 - 32.60 mg C/g GRSP, respectively. WS reduced CGRSP, while AMF mitigated the reduction. Extraradical mycorrhizal hyphae increased GRSP production and CGRSP, along with a more prominent increase in DE-GRSP under WS than under AW. Extraradical mycorrhizal hyphae increased the contribution of CDE-GRSP to SOC only under WS. CEE-GRSP and CDE-GRSP were significantly positively correlated with SOC and MWD. It is concluded that extraradical mycorrhizal hyphae prominently promoted C sequestration of recalcitrant DE-GRSP under soil WS, thus contributing more organic C accumulation and preservation in aggregates and soil C pool.
Collapse
Affiliation(s)
- Yu-Juan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xin-Hua He
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA
| | - Lu-Lu Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
6
|
Jin T, Liu W, Wang Y, Zhao M, Fu Y, Dong Y, Luo T, Fu H, Wang Q. Effects of urbanization intensity on glomalin-related soil protein in Nanchang, China: Influencing factors and implications for greenspace soil improvement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115611. [PMID: 35779297 DOI: 10.1016/j.jenvman.2022.115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glomalin-related soil protein (GRSP) is a stable and persistent glycoprotein secreted by arbuscular mycorrhizal fungi that plays an important role in sequestering soil organic carbon (SOC) and improving soil quality. Rapid urbanization disturbs and degrades the soil quality in the greenspace. However, few studies have investigated the effects of urbanization on GRSP and its influencing factors. This study selected impervious surface area as a measure of urbanization intensity. A total of 184 soil samples were collected from the 0-20 cm soil layer in the greenspace of Nanchang, China (505 km2). The GRSP content, soil properties, urban forest characteristics, and land-use configuration were determined. The total GRSP (TG) and easily extractable GRSP (EEG) contents were 2.38 and 0.57 mg g-1, respectively. TG and EEG decreased by 16.22% and 19.35%, respectively, from low to heavy urbanized areas. Moreover, SOC decreased from 39.9 to 1.4 mg g-1, while EEG/SOC and TG/SOC increased by approximately 17% and 34%, respectively, indicating the significant contribution of GRSP to the SOC pool. Pearson and redundancy analysis showed that GRSP was positively correlated with SOC, phosphorus, nitrogen, vegetation richness, and tree height, but negatively correlated with pH, bulk density, and impervious area. The partial least squares path model demonstrated that urbanization affected soil properties, forest characteristics, and land use factors, resulting in GRSP changes. This study clarifies the key factors of urbanization that affect GRSP and provides insight for urban greenspace soil improvement from the new perspective of enhancing the GRSP content.
Collapse
Affiliation(s)
- Taotao Jin
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Wei Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yu Wang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Ming Zhao
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yao Fu
- College of Geography and Land Engineering, Yuxi Normal University, Yuxi, 653100, PR China
| | - Yulin Dong
- Laboratory of Wetland Ecology and Environment, Northeast Institute and Agroecology, Chinese Academy of Science, Changchun, 130102, PR China
| | - Tianyu Luo
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Hang Fu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Qiong Wang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
7
|
Emran M, Naeim H, Rashad M, Gispert M. Seasonal changes in soil carbon storage capacity and glomalin-related soil protein under different agricultural activities, abandonment, and wildfire occurrence in Mediterranean region. JOURNAL OF THE SAUDI SOCIETY OF AGRICULTURAL SCIENCES 2022; 21:359-371. [DOI: 10.1016/j.jssas.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Guo Z, Liu J, Wu J, Yang D, Mei K, Li H, Lu H, Yan C. Spatial heterogeneity in chemical composition and stability of glomalin-related soil protein in the coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155351. [PMID: 35452734 DOI: 10.1016/j.scitotenv.2022.155351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
GRSP is widely distributed in coastal wetlands, and there is a tendency for it to degrade with increasing burial depth. However, the dynamic changes in the chemical composition and stability of GRSP during the burial process are still unclear. The purpose of this study is to clarify the chemical composition and accumulation characteristics of GRSP during the burial process in the Zhangjiang estuary. In a field study, soil cores to the depth of 100 cm were collected in the estuary from mangrove forests dominated by Kandelia obovata and Avicennia marina, and from mudflat. The results showed that the concentration of GRSP in mangrove forest soil was significantly higher than that in the mudflat (p < 0.05), and the C/N ratio of GRSP increased with depth at all sites. Analysis of Fourier transform infrared (FTIR) data showed that the degradation rates of the GRSP's compositions varied with increasing burial depth, with microbial action and pH possibly being the main factors affecting degradation. Values of recalcitrance index (RI) showed that the stability of GRSP increased with increasing depth, and the contribution of GRSP to soil organic carbon (SOC) also increased. This suggests that the burial process plays a role in screening and storing the stable components of GRSP. Overall, our findings suggest that the concentration and chemical composition of GRSP vary dynamically according to habitat and burial processes. In addition, the improved stability of GRSP could contribute to carbon sequestration in coastal wetlands.
Collapse
Affiliation(s)
- Zhenli Guo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Jiajia Wu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Dan Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Kang Mei
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Hanyi Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Zhu JJ, Yan B. Blue carbon sink function and carbon neutrality potential of mangroves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153438. [PMID: 35114248 DOI: 10.1016/j.scitotenv.2022.153438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are widely distributed in the upper part of tropical and subtropical intertidal zones, with the characteristics of high productivity and fast deposition rate. Under the combined action of its own growth and microorganisms, mangroves capture, transform and store CO2 in the atmosphere into coastal sediment for a long time, and export some organic carbon from the coastal zone to the offshore and ocean, which is of great significance to prevent coastal erosion and organic carbon burial. In recent years, with the worldwide problems caused by global warming, the concept of carbon neutrality has been widely proposed. Mangroves have attracted extensive attention due to their role in regulating the global carbon cycle. This viewpoint discusses the importance of mangroves to human beings, their role in carbon sequestration and nutrient cycling, their ability to capture CO2, and their carbon sequestration functions and mechanisms, aiming to provide reference for the protection and rational utilization of mangrove resources.
Collapse
Affiliation(s)
- Jing-Jing Zhu
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai 536000, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bing Yan
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai 536000, China.
| |
Collapse
|
10
|
Jia H, Wu Y, Daolin D, Yuan B, Zhou Z. Effects of different order spiking on bioavailability and ecological risk of phenanthrene in mangrove sediment-biochar system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112951. [PMID: 34739933 DOI: 10.1016/j.ecoenv.2021.112951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Biochar shows unique advantage in decreasing the bioavailability of phenanthrene and has huge potential into the in-situ remediation of contaminated sediment. The different order spiking influences the bioavailability and ecological risk of phenanthrene, this study provides a comprehensive investigation of biochar (derived from mangrove Kandelia obovata -sediment system under three conditions: I) co-addition of biochar and sediment; II) biochar and subsequently sediment addition (after biochar adsorption reached equilibrium); III) sediment and subsequently biochar addition (after sediment adsorption reached equilibrium). It was observed that the adsorption capability under model I and III was much smaller than that under model II (p < 0.05). Regardless of time, K. obovate - biochar significantly (p < 0.05) increase the sorption of phenanthrene in sediment -water system. The results provide valuable studies for further in-situ remediation of phenanthrene and engineering applications.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Du Daolin
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Zhengkun Zhou
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
11
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
12
|
Gujre N, Soni A, Rangan L, Tsang DCW, Mitra S. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115549. [PMID: 33246313 DOI: 10.1016/j.envpol.2020.115549] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Conservation of soil health and crop productivity is the central theme for sustainable agriculture practices. It is unrealistic to expect that the burgeoning crop production demands will be met by a soil ecosystem that is increasingly unhealthy and constrained. Therefore, the present review is focused on soil amendment techniques, using biochar in combination with arbuscular mycorrhizal fungi (AMF), which is an indispensable biotic component that maintains plant-soil continuum. Globally significant progress has been made in elucidating the physical and chemical properties of biochar; along with its role in carbon sequestration. Similarly, research advances on AMF include its evolutionary background, functions, and vital roles in the soil ecosystem. The present review deliberates on the premise that biochar and AMF have the potential to become cardinal to management of agro-ecosystems. The wider perspectives of various agronomical and environmental backgrounds are discussed. The present state of knowledge, different aspects and limitations of combined biochar and AMF applications (BC + AMF), mechanisms of interaction between biochar and AMF, effects on plant growth, challenges and future opportunities of BC + AMF applications are critically reviewed. Given the severely constrained nature of soil health, the roles of BC + AMF in agriculture, bioremediation and ecology have also been examined. In spite of the potential benefits, the functionality and dynamics of BC + AMF in soil are far from being fully elucidated.
Collapse
Affiliation(s)
- Nihal Gujre
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Ankit Soni
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
13
|
Chen S, Zhou Z, Tsang DCW, Wang J, Odinga ES, Gao Y. Glomalin-related soil protein reduces the sorption of polycyclic aromatic hydrocarbons by soils. CHEMOSPHERE 2020; 260:127603. [PMID: 32682136 DOI: 10.1016/j.chemosphere.2020.127603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Large amounts of glomalin-related soil protein (GRSP) are present in the soil; however, the impacts of GRSP on the chemical process of soil polycyclic aromatic hydrocarbons (PAHs) are far under investigation. This research sought to elucidate the sorption of phenanthrene as a representative PAH by soils, including Kandiudult, TypicPaleudalf, and Mollisols with co-existing GRSP (0-50 mg/L). The results indicated that soil sorption capacities for phenanthrene reduced significantly. Notably, GRSP changed the sorption process of phenanthrene by Kandiudult, well described as the Freundlich model. In contrast, the phenanthrene sorption isotherms were well described with the Linear model for TypicPaleudalf and Mollisols. The reduced percentage of phenanthrene sorption due to GRSP addition was 7.01%-49.21%, 23.92%-68.71%, and17.26%-66.80% for Kandiudult, TypicPaleudalf and Mollisols, respectively. It was noted that GRSP has a strong capacity for phenanthrene sorption in aqueous solutions and elevates the availability of phenanthrene for microorganisms or plants. During the sorption process, the introduction of GRSP resulted in the reduction of organic matter in soils and elevated the concentrations of dissolved organic matter in solutions, which was the primary mechanism of GRSP-reduced phenanthrene sorption by soils. The findings revealed that GRSP enrichment can increase the mobility of PAHs in contaminated soils.
Collapse
Affiliation(s)
- Shuang Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Tian Y, Yan C, Wang Q, Ma W, Yang D, Liu J, Lu H. Glomalin-related soil protein enriched in δ 13C and δ 15N excels at storing blue carbon in mangrove wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138327. [PMID: 32442764 DOI: 10.1016/j.scitotenv.2020.138327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Glomalin-related soil protein (GRSP) derived from arbuscular mycorrhizal fungi can be transported from land to sea and captured in mangrove wetlands, thereby contributing to soil C and N pools. However, the stable isotope signatures of GRSP and the key influencing factors that affect its isotope values in coastal wetlands remain unknown. In this study, the results showed that total-GRSP (T-GRSP) was a significant contributor of C and N content to mangrove soil. We first compared stable isotope (δ13C and δ15N) values and C/N ratios of GRSP with those of other blue carbon sources in a typical mangrove wetland. The isotope fingerprints of T-GRSP, mangrove soils, mangrove plants, and tidal waters were identified. Unlike those of the conventional sources, the δ13C and δ15N values of T-GRSP were -25.04‰ to -22.83‰ and 3.22‰ to 7.24‰, respectively, and the mean C/N ratio was 12.95 in the mangrove cover sites. These findings indicated that T-GRSP is a novel blue carbon source mainly originating from terrestrial ecosystems. Moreover, the δ13C and δ15N values of T-GRSP in mangrove wetlands were affected by vegetation interception and soil properties. Redundancy analysis results indicated that pH, moisture, depth, and salinity were key factors influencing the T-GRSP isotope fingerprints in mangrove wetlands. Additionally, the simultaneous changes in T-GRSP content, isotope values, and C/N ratios among mangrove cover sites, a mudflat, and tidal waters suggested that this protein is a sensitive tracer between land and sea. Overall, the isotope signatures of GRSP captured by mangroves were identified for the first time, which will have important implications for the estimation of the blue carbon budget and identification of the blue carbon sources in global coastal regions.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wei Ma
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Dan Yang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Wang Q, Lu H, Chen J, Jiang Y, Williams MA, Wu S, Li J, Liu J, Yang G, Yan C. Interactions of soil metals with glomalin-related soil protein as soil pollution bioindicators in mangrove wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136051. [PMID: 31887507 DOI: 10.1016/j.scitotenv.2019.136051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Through binding of mineral particles and elements, glomalin-related soil protein (GRSP) plays a critical role in sustaining terrestrial soil quality and contributes to the fate of elements from terrestrial to aquatic ecosystems. There is little knowledge, however, of the metal sequestration patterns of GRSP in both terrestrial and aquatic soils, and this limits progress in understanding how environmental conditions influence GRSP characteristics. Here, we employed microcosm experiments to determine the molecular composition of original GRSP derived from three arbuscular mycorrhizal fungi, Glomus intraradices, Glomus versiforme and Acaulospora laevis. To gain insight into the metal sequestration patterns of environmental GRSP, we investigated major subtropical and tropical mangrove wetlands in southern China. GRSP-bound metals were significantly and positively correlated with total metals, and the metal binding contributed to the metal sequestration of mangrove soils. Fourier-transform infrared spectroscopy results showed that original- and environmental GRSP fractions contained hydroxyl, carboxyl, amide and carbonyl functional groups, which enhanced metal binding. Environmental process had no effect on the type of functional groups of the GRSP, while it significantly changed the relative content of the functional groups. The infrared fingerprint analyses of original- and environmental GRSP revealed field-specific, however, no taxon-specific characteristics of GRSP. Biostatistical analysis of the GRSP molecular composition further revealed that the soil pollution sources regulated the ratios of functional group contents associated with hydrocarbons, proteins, polysaccharides and nucleic acids. By GRSP infrared fingerprints coupled with multivariate analyses, we developed a technique for source identification of heavy metal pollution, giving more reliable evidence about contributing sources.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yongcan Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Mark A Williams
- Department of Horticulture, Virginia Tech, Blacksburg, VA, United States
| | - Shengjie Wu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Junwei Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Guangsong Yang
- School of Information Engineering, Jimei University, Xiamen 361021, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Wang Q, Chen J, Chen S, Qian L, Yuan B, Tian Y, Wang Y, Liu J, Yan C, Lu H. Terrestrial-derived soil protein in coastal water: metal sequestration mechanism and ecological function. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121655. [PMID: 31780295 DOI: 10.1016/j.jhazmat.2019.121655] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/09/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial fungi, especially arbuscular mycorrhizal (AM) fungi, enhance heavy metal sequestration and promote ecosystem restoration. However, their ecological functions were historically overlooked in discussions regarding water quality. As an AM fungi-derived stable soil protein fraction, glomalin-related soil protein (GRSP) may provide insights into the ecological functions of AM fungi associated with water quality in coastal ecosystems. Here, we first assessed the metal-loading dynamics and ecological functions of GRSP transported into aquatic ecosystems, characterized the composition characteristics, and revealed the mechanisms underlying Cu and Cd sequestration. Combining in situ sampling and in vitro cultures, we found that the composition characteristics of GRSP were significantly affected by the element and mineral composition of sediments. In situ, GRSP-bound Cu and Cd contributed 18.91-22.03% of the total Cu and 2.27-6.37% of the total Cd. Functional group ligands and ion exchange were the principal mechanisms of Cu binding by GRSP, while Cd binding was dominated by functional group ligands. During the in vitro experiment, GRSP sequestered large amounts of Cu and Cd and formed stable complexes, while further dialysis only released 25.74 ± 3.85% and 33.53 ± 3.62% of GRSP-bound Cu and Cd, respectively.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Shan Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Lu Qian
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Bo Yuan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yuan Tian
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yazhi Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Mechanical Tillage Diversely Affects Glomalin Content, Water Stable Aggregates and AM Fungal Community in the Soil Profiles of Two Differently Managed Olive Orchards. Biomolecules 2019; 9:biom9100639. [PMID: 31652662 PMCID: PMC6843917 DOI: 10.3390/biom9100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
This work was designed to investigate the effect of mechanical tillage on glomalin content, arbuscular mycorrhizal fungi (AMF) abundance and diversity, and the concentration of water stable aggregates (WSA), in two adjacent olive groves located in Basilicata (Italy) that were managed over the course of 11 years in accordance with different horticultural models (conventional and sustainable). Soil sampling was performed at four depths between the trees within a row and between rows. In the end, WSA was found to be a highly sensitive indicator (especially in the "macro" fraction) of the effect of management on soil structure, showing the highest statistically significant values within the sustainable system. In the same regard, the diversity of the AM fungal community was negatively affected by conventional practices; on the other hand, a higher concentration of glomalin in the first 20 cm layer of the conventional system is here reported for the first time, as a likely result of disruption of the mycelium provoked by the mechanical tillage.
Collapse
|
18
|
Zhu R, Zheng Z, Li T, He S, Zhang X, Wang Y, Liu T. Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1973-1982. [PMID: 30460658 DOI: 10.1007/s11356-018-3782-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Glomalin-related soil protein (GRSP) is crucial for the accumulation of soil organic carbon (SOC), and contributes to the formation of soil aggregates. However, it remains unclear whether GRSP is involved in altering the stability of soil aggregates in the long-term tea planting process. The relationship between the distribution of GRSP and soil aggregates in tea plantations is poorly studied. We compared the distribution of SOC and GRSP in aggregates in tea plantations of different ages (18, 25, 33, and 55 years) and those in an abandoned land and investigated their potential contribution to the soil aggregate stability. Tea plantation was found to be beneficial for the accumulation of SOC and GRSP compared to the abandoned land. The content of SOC significantly increased after tea plantation, especially in surface soil (0-20 cm), and the increase range was 21.79%-46.51%, due to the centralized management of tea plantations. The content of total glomalin-related soil protein (T-GRSP) and easily extractable glomalin-related soil protein (EE-GRSP) varied with the increasing tea plantation age. The T-GRSP content was higher in 25-year-old tea plantation, while EE-GRSP was gradually decreased with the increasing age of the tea plantation, and T-GRSP had better correlation with SOC than EE-GRSP. Long-term tea plantation (after 33 years) was not conducive to the preservation of GRSP. The distribution of GRSP in the tea plantation soils differed greatly among the aggregates, with the 0.25-1-mm aggregate having less GRSP, which might be related to the distribution of soil fungi in the aggregates. There was a significant correlation between T-GRSP and mean weight diameter (MWD; P < 0.05) in the whole soil, whereas EE-GRSP had no correlation with the MWD of the aggregates. The T-GRSP content was correlated closely with the stability of soil aggregates in the tea plantations, and their relationship was dependent on the aggregate scale. Our results show that the T-GRSP content in the tea plantation soils has important effects on the formation and stability of aggregates in this region, which was one of the factors affecting the structure and quality of tea plantation soil. Improving GRSP is an effective way for the both SOC sequestration and soil health after long-term tea plantation.
Collapse
Affiliation(s)
- Renhuan Zhu
- College of Resources Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zicheng Zheng
- College of Resources Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Tingxuan Li
- College of Resources Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuqin He
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xizhou Zhang
- College of Resources Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongdong Wang
- College of Resources Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Liu
- College of Resources Science, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
19
|
Wang Q, Mei D, Chen J, Lin Y, Liu J, Lu H, Yan C. Sequestration of heavy metal by glomalin-related soil protein: Implication for water quality improvement in mangrove wetlands. WATER RESEARCH 2019; 148:142-152. [PMID: 30359944 DOI: 10.1016/j.watres.2018.10.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Glomalin-related soil protein (GRSP) is a widespread glycoprotein found to have strong ability of sequestering heavy metals in soils. However, the underlying mechanism for metal and metalloid removal as well as water quality improvement and the ecological role played by GRSP are still not well documented. This study was initiated to investigate the interconnection of metal loading in GRSP between sediments and suspended solids, focusing on the mobilization mechanisms of GRSP in the coastal mangrove wetland. Combined indicators of nine heavy metals were significantly positively correlated with GRSP concentration by Principal Component Analysis, indicating that GRSP could act as an indicator of contamination level in the mangrove wetlands. Large distribution of GRSP in sediments and suspended solids elevated sequestration potential of heavy metals (Fe, Mn, Cr, Cu, Zn, Ni, Cd, Pb) and metalloid arsenic in the mangrove aquatic ecosystem. GRSP mobilized and sequestered heavy metals in sediment profiles, which reduced the bioavailability of heavy metals. GRSP was also a significant contributor for suspended solids to adsorb heavy metals, enhancing suspended solids deposition and burial process in sediments. This new finding provided insights into the ecological functions of GRSP and the heavy metal cycling in wetland environments.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Degang Mei
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yushan Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
20
|
Wang Q, Li J, Chen J, Hong H, Lu H, Liu J, Dong Y, Yan C. Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:619-626. [PMID: 29304499 DOI: 10.1016/j.scitotenv.2017.12.303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Glomalin-related soil protein (GRSP), a particular terrigenous-derived carbon (C), is transported to the coastal oceans, where it accumulates in sediments. We hypothesized that terrigenous C (GRSP) accumulation could enhance marine C sequestration, and sediment fertility would increase the C stock in the marine ecosystem. In this study, we tested GRSP contribution to marine sediment C, nitrogen (N) and iron (Fe), and explored whether GRSP deposition varied with sediment fertility levels in the Old Yellow River delta. The mean concentration of total GRSP was 1.10±0.04mgg-1 (0.24MgCha-1), accounting for 6.41±0.17% of total organic C and 3.75±0.13% of total N in the 0-10cm marine sediments, indicating that the coastal marine system is an important sink of GRSP. GRSP also contained 1.46±0.06% Fe (20.7kgFeha-1), accounting for 0.058±0.003% of total Fe in marine sediments. Meanwhile, Fe-content in GRSP significantly decreased with distance from the shore, indicating that Fe was released with GRSP transfer and thus GRSP was a new natural Fe fertilization in marine environment. Furthermore, GRSP enhanced marine C sequestration by its rapid deposition and Fe contribution. Combined indicators of sediment fertility (factor 1) were significantly positively correlated with GRSP concentrations by Principal Component Analysis. Co-deposited with nutrient elements, GRSP fractions were accumulated more in more fertile sediments but less in less fertile sediments. GRSP, a mixture of co-existent multiple elements, can be used as a nutrient controlled-release agent in the marine ecosystem. GRSP fractions were responsive to marine sediment fertility levels and the understanding of their function in sediment C sequestration will provide new insights into the importance of terrestrial-marine linkages.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Junwei Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yunwei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|