1
|
Ao Y, Liu X, Zhou X, Ran G, Yang S, Yuan W, Hu F. Differential thresholds of net ecosystem productivity in karst and non-karst regions for identifying their potential carbon sinks areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123618. [PMID: 39675321 DOI: 10.1016/j.jenvman.2024.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Within ecosystems, habitat influences structure, and structure determines function, forming a habitat-structure-function framework (HSFF). Net ecosystem productivity (NEP) is a key indicator for assessing regional or global carbon dynamics. However, the response thresholds of NEP to habitat and structural factors, along with management strategies based on these thresholds, remain under-explored. Therefore, this study examines the response thresholds of NEP to habitat and structural factors in the karst and non-karst regions of southwest China, which exhibit strong surface heterogeneity, based on the HSFF using a restricted cubic spline method. The results are, (1) The interannual NEP increase rate and carbon storage per unit area were notably greater in karst regions than in non-karst ones. However, compared to non-karst regions, karst regions show greater NEP variability and lower stability. (2) Significant nonlinear relationships were identified between NEP and nine habitat factors and six structural factors. NEP thresholds due to habitat and structural factors were smaller in karst regions than in non-karst regions. (3) Habitat factors had greater relative importance and marginal contribution than structural factors in karst and non-karst regions, with energy and water as the main influences on NEP. (4) Using the potential carbon sinks areas determined by the threshold, the karst areas in the entire study will play an important role in carbon sinks in the future. Overall, this study not only deepens the understanding of the differences in ecosystem NEP between karst and non-karst regions, but also provides new perspectives and strategies for optimizing ecosystem management based on habitat and structural characteristics.
Collapse
Affiliation(s)
- Yang Ao
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang, 550025, China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiaolin Liu
- Soil and Water Conservation Monitoring Center of Pearl River Basin, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, 510611, China
| | - Xu Zhou
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang, 550025, China.
| | - Guangyan Ran
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Shengtian Yang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wenling Yuan
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Feng Hu
- Guizhou Ecological Meteorology and Agrometeorology Center, Guiyang, 550025, China
| |
Collapse
|
2
|
Bao X, Sun X, Bao G. Response mechanism of ecosystem gross primary productivity to cloud and aerosol changes in a Chinese winter-wheat cropland. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2103-2113. [PMID: 39080005 DOI: 10.1007/s00484-024-02734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 10/22/2024]
Abstract
Changes in clouds and aerosols may alter the quantity of solar radiance and its diffuse components, as well as air temperature (Ta) and vapor pressure deficit (VPD), thereby affecting canopy photosynthesis. Our aim was to determine how ecosystem gross primary productivity (GPP) responds to the cloudiness and aerosol depth changes, as indicated by diffuse light fraction (fDIF). The environmental factors that caused these responses were examined using 2 years of eddy covariance data from a winter-wheat cropland in northern China. The GPP decreased significantly along with the fDIF in a nonlinear pattern, with a determination coefficient of 0.91. Changes in fDIF altered total photosynthetic active radiation (PAR), diffuse PAR, Ta and VPD. The variations in GPP with fDIF in both fDIF change Phase I (fDIF < 0.65) and Phase II (fDIF > 0.65) resulted from the combined effects of multiple environmental factors. Because the driving factors were closely correlated, a path analysis was used to distinguish their respective contribution to the GPP response to fDIF by integrating path coefficients. In Phases I and II, the decreased responses of GPP to fDIF were mainly caused by total PAR and diffuse PAR, respectively, which contributed approximately 49% and 37% to GPP variations, respectively. Our research has certain implications for the necessity to consider fDIF and to incorporate diffuse light into photosynthetic models.
Collapse
Affiliation(s)
- Xueyan Bao
- Agricultural School, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xiaomin Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guirong Bao
- Grassland School, Inner Mongolia Minzu University, Tongliao, 028000, China
| |
Collapse
|
3
|
Bao X, Sun X. Effects of diffuse light on the gross ecosystem primary productivity of a winter wheat (Triticum aestivum L.) cropland in northern China. Sci Rep 2024; 14:14420. [PMID: 38909065 PMCID: PMC11193753 DOI: 10.1038/s41598-024-65279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Diffuse light is produced by clouds and aerosols in the atmosphere. Exploring the effects of diffuse light on ecosystem productivity is important for understanding the terrestrial carbon (CO2) cycle. Here, 2 years of gross ecosystem primary productivity (GEP) from a (winter) wheat cropland in China was assessed using eddy covariance technology to explore the effects of diffuse photosynthetic active radiance (PAR) on wheat GEP. Wheat GEP increased significantly and positively along with diffuse PAR. In addition, wheat GEP was significantly affected by total PAR, air temperature, and vapor press deficit in different diffuse PAR fraction (fDIF) change stages. Because significant autocorrelations existed among the controlling factors, a path analysis was used to quantify the effects of diffuse light on GEP. Diffuse PAR was the primary and secondary importance factors affecting GEP with direct path coefficients of 0.54 and 0.48, respectively, in different fDIF change stages. A multilayer canopy model revealed that the middle and lower canopy levels intercepted more light when diffuse PAR increased. This resulted in the photosynthetic enhancement of middle and lower canopy levels, which contributed approximately 65% and 35%, respectively, to the increase in photosynthesis for the entire canopy (~ 30.5%). Overall, our study provided new evidence regarding the importance of diffuse light for CO2 uptake in agroecosystems, which is important for predicting the responses of ecosystem CO2 budgets to future climate-related light changes.
Collapse
Affiliation(s)
- Xueyan Bao
- Agricultural School, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xiaomin Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Li J, Zhang X, Guo L, Zhong J, Wang D, Wu C, Li F, Li M. Invert global and China's terrestrial carbon fluxes over 2019-2021 based on assimilating richer atmospheric CO 2 observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172320. [PMID: 38614352 DOI: 10.1016/j.scitotenv.2024.172320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
With China's commitment to reach carbon peak by 2030 and achieve carbon neutrality by 2060, it is particularly important to obtain terrestrial ecosystem carbon fluxes with low uncertainty both globally and in China. The use of more observation data may help reduce the uncertainty of inverting carbon fluxes. This study uses the observation data from global stations, background stations and provincial stations in China, as well as the OCO-2 satellite, and uses the China Carbon Monitoring, Verification and Supporting System for Global (CCMVS-G) to estimate the carbon fluxes of global and Chinese terrestrial ecosystems from 2019 to 2021. The results revealed that the global terrestrial ecosystem carbon sink was approximately -3.40 Pg C/yr from 2019 to 2021. The carbon sinks in the Northern Hemisphere are large, especially in Asia, North America, and Europe. From 2019 to 2021, the carbon sink of China's terrestrial ecosystem was approximately -0.44 Pg C/yr. Carbon sinks exhibit significant seasonal and interannual variations in China. After assimilating the observation data, the uncertainty of the posterior flux is smaller than that of the prior flux, a more reasonable distribution of carbon sources and sinks can be obtained, and more accurate boundary conditions can be provided for the China Carbon Monitoring, Verification and Supporting System for Regional (CCMVS-R). In the future, it is important to establish a well-designed CO2 ground-based observation network.
Collapse
Affiliation(s)
- Jiaying Li
- Monitoring and Assessment Center for GHGs and Carbon Neutrality, State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoye Zhang
- Monitoring and Assessment Center for GHGs and Carbon Neutrality, State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Joint Laboratory of Climate Change Mitigation and Carbon Neutrality of Henan Univ. & CAMS, Henan 475001, China.
| | - Lifeng Guo
- Monitoring and Assessment Center for GHGs and Carbon Neutrality, State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Joint Laboratory of Climate Change Mitigation and Carbon Neutrality of Henan Univ. & CAMS, Henan 475001, China.
| | - Junting Zhong
- Monitoring and Assessment Center for GHGs and Carbon Neutrality, State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Joint Laboratory of Climate Change Mitigation and Carbon Neutrality of Henan Univ. & CAMS, Henan 475001, China.
| | - Deying Wang
- Monitoring and Assessment Center for GHGs and Carbon Neutrality, State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Joint Laboratory of Climate Change Mitigation and Carbon Neutrality of Henan Univ. & CAMS, Henan 475001, China.
| | - Chongyuan Wu
- Monitoring and Assessment Center for GHGs and Carbon Neutrality, State Key Laboratory of Severe Weather of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Fugang Li
- China Global Atmosphere Watch Baseline Observatory, Xining 810000, China.
| | - Ming Li
- China Global Atmosphere Watch Baseline Observatory, Xining 810000, China.
| |
Collapse
|
5
|
Jiao L, Kosugi Y, Sakabe A, Sempuku Y, Chang TW, Chen S. Wet canopy photosynthesis in a temperate Japanese cypress forest. TREE PHYSIOLOGY 2024; 44:tpae041. [PMID: 38598321 DOI: 10.1093/treephys/tpae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
This study aimed to reveal the mechanism and significance of wet canopy photosynthesis during and after rainfall in temperate coniferous ecosystems by evaluating the influence of abaxial leaf interception on wet canopy photosynthesis. We used the eddy covariance method in conjunction with an enclosed-path gas analyser to conduct continuous ecosystem CO2 flux observations in a Japanese cypress forest within the temperate Asian monsoon area over 3 years. The observation shows that wet-canopy CO2 uptake predominantly occurred during the post-rainfall canopy-wet period rather than the during-rainfall period. Then, the measured canopy-wet net ecosystem exchange was compared with the soil-vegetation-atmosphere transfer multilayer model simulations under different parameter settings of the abaxial (lower) leaf surface wet area ratio. The multilayer model predicted net ecosystem exchange most accurately when it assumed the wet area ratio of the abaxial surface was 50% both during and after rainfall. For the wet canopy both during and after rainfall, the model overestimated CO2 uptake when it assumed no abaxial interception in the simulation, but underestimated CO2 uptake when it assumed that the entire abaxial leaf surface was wet. These results suggest that the abaxial surface of the Japanese cypress leaf is only partly wet to maintain stomatal openness and a low level of photosynthesis. These results allow for an evaluation of the effect of rainfall on forest carbon circulation under a changing climate, facilitating an improvement of ecosystem carbon exchange models.
Collapse
Affiliation(s)
- Linjie Jiao
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Yoshiko Kosugi
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ayaka Sakabe
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Yuichi Sempuku
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- East Nippon Expressway Company Ltd. Kanto Branch, Chiba, Management Office Chiba, Chiba 263-0001, Japan
| | - Ting-Wei Chang
- Laboratory of Plant and Environmental Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka 422-8526, Japan
| | - Siyu Chen
- Forest Hydrology Laboratory, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Jia H, Fei X, Zhu J, Chen W, Chen R, Liao Z, Zhou B, Huang Y, Du H, Xu P, Zhang X, Li W. Soil respiration and its response to climate change and anthropogenic factors in a karst plateau wetland, southwest China. Sci Rep 2024; 14:8653. [PMID: 38622331 PMCID: PMC11018823 DOI: 10.1038/s41598-024-59495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
It is important to investigate the responses of greenhouse gases to climate change (temperature, precipitation) and anthropogenic factors in plateau wetland. Based on the DNDC model, we used meteorological, soil, and land cover data to simulate the soil CO2 emission pattern and its responses to climate change and anthropogenic factors in Guizhou, China. The results showed that the mean soil CO2 emission flux in the Caohai Karst Plateau Wetland was 5.89 ± 0.17 t·C·ha-1·yr-1 from 2000 to 2019, and the annual variation showed an increasing trend with the rate of 23.02 kg·C·ha-1·yr-1. The soil total annual mean CO2 emissions were 70.62 ± 2.04 Gg·C·yr-1 (annual growth rate was 0.28 Gg·C·yr-1). Caohai wetland has great spatial heterogeneity. The emissions around Caohai Lake were high (the areas with high, middle, and low values accounted for 3.07%, 70.96%, and 25.97%, respectively), and the emission pattern was characterized by a decrease in radiation from Caohai Lake to the periphery. In addition, the cropland and forest areas exhibited high intensities (7.21 ± 0.15 t·C·ha-1·yr-1 and 6.73 ± 0.58 t·C·ha-1·yr-1, respectively) and high total emissions (54.97 ± 1.16 Gg·C·yr-1 and 10.24 ± 0.88 Gg·C·yr-1, respectively). Croplands and forests were the major land cover types controlling soil CO2 emissions in the Caohai wetland, while anthropogenic factors (cultivation) significantly increased soil CO2 emissions. Results showed that the soil CO2 emissions were positively correlated with temperature and precipitation; and the temperature change had a greater impact on soil respiration than the change in precipitation. Our results indicated that future climate change (increased temperature and precipitation) may promote an increase in soil CO2 emissions in karst plateau wetlands, and reasonable control measures (e.g. returning cropland to lakes and reducing anthropogenic factors) are the keys to controlling CO2 emissions.
Collapse
Affiliation(s)
- Hongyu Jia
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Xuehai Fei
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China.
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China.
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, National Forestry and Grassland Administration, Weining, 553100, Guizhou, China.
| | - Jingyu Zhu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Weiduo Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Rui Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Zhangze Liao
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Binghuang Zhou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Yingqian Huang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Haiqiang Du
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Peng Xu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guizhou University, 2708 Huaxi Avenue, Guiyang, 550025, Guizhou, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
- Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guiyang, 550025, Guizhou, China
| | - Xu Zhang
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, National Forestry and Grassland Administration, Weining, 553100, Guizhou, China
| | - Wangjun Li
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands (Guizhou University of Engineering Science), Bijie, 55170, Guizhou, China
| |
Collapse
|
7
|
Yuan W, Wang X, Lin CJ, Zhang G, Wu F, Liu N, Jia L, Zhang H, Lu H, Dong J, Feng X. Fate and Transport of Mercury through Waterflows in a Tropical Rainforest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4968-4978. [PMID: 38452105 DOI: 10.1021/acs.est.3c09265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ge Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhou B, Sterck F, Kruijt B, Fan ZX, Zuidema PA. Diel and seasonal stem growth responses to climatic variation are consistent across species in a subtropical tree community. THE NEW PHYTOLOGIST 2023; 240:2253-2264. [PMID: 37737019 DOI: 10.1111/nph.19275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
Understanding how intra-annual stem growth responds to atmospheric and soil conditions is essential for assessing the effects of climate extremes on forest productivity. In species-poor forests, such understanding can be obtained by studying stem growth of the dominant species. Yet, in species-rich (sub-)tropical forests, it is unclear whether these responses are consistent among species. We monitored intra-annual stem growth with high-resolution dendrometers for 27 trees belonging to 14 species over 5 yr in a montane subtropical forest. We quantified diel and seasonal stem growth patterns, verified to what extent observed growth patterns coincide across species and analysed their main climatic drivers. We found very consistent intra-annual growth patterns across species. Species varied in the rate but little in the timing of growth. Diel growth patterns revealed that - across species - trees mainly grew before dawn when vapour pressure deficit (VPD) was low. Within the year, trees mainly grew between May and August driven by temperature and VPD, but not by soil moisture. Our study reveals highly consistent stem growth patterns and climatic drivers at community level. Further studies are needed to verify whether these results hold across climates and forests, and whether they can be scaled up to estimate forest productivity.
Collapse
Affiliation(s)
- Bo Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Bart Kruijt
- Water Systems and Global Change Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan, 676209, China
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
9
|
Yuan W, Wang X, Lin CJ, Song Q, Zhang H, Wu F, Liu N, Lu H, Feng X. Deposition and Re-Emission of Atmospheric Elemental Mercury over the Tropical Forest Floor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10686-10695. [PMID: 37437160 DOI: 10.1021/acs.est.3c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 μg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 μg m-2 year-1, of which 63.0 ± 9.3 μg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 μg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 μg m-2 year-1), we estimated a ∼12.6 μg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Qinghai Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
10
|
Yong Z, Wang Z, Xiong J, Tian J. Tropical volcanic eruptions reduce vegetation net carbon uptake on the Qinghai-Tibet Plateau under background climate conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1122959. [PMID: 37008501 PMCID: PMC10061027 DOI: 10.3389/fpls.2023.1122959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The vegetation carbon uptake plays an important role in the terrestrial carbon cycle on the Qinghai-Tibet Plateau (QTP), while it is extremely sensitive to the impact of natural external forcings. Until now, there is limited knowledge on the spatial-temporal patterns of vegetation net carbon uptake (VNCU) after the force that caused by tropical volcanic eruptions. Here, we conducted an exhaustive reconstruction of VNCU on the QTP over the last millennium, and used a superposed epoch analysis to characterize the VNCU response of the QTP after the tropical volcanic eruptions. We then further investigated the divergent changes of VNCU response across different elevation gradients and vegetation types, and the impact of teleconnection forcing on VNCU after volcanic eruptions. Within a climatic background, we found that VNCU of the QTP tends to decrease after large volcanic eruptions, lasting until about 3 years, with a maximum decrease value occurring in the following 1 year. The spatial and temporal patterns of the VNCU were mainly driven by the post-eruption climate and moderated by the negative phase trends of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation. In addition, elevation and vegetation types were undeniable driving forces associated with VNCU on QTP. Different water-heat conditions and vegetation types contributed to significant differences in the response and recovery processes of VNCU. Our results emphasized the response and recovery processes of VNCU to volcanic eruptions without the strong anthropogenic forcings, while the influence mechanisms of natural forcing on VNCU should receive more attention.
Collapse
Affiliation(s)
- Zhiwei Yong
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China
| | - Zegen Wang
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China
| | - Junnan Xiong
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, China
- Institute of Oil and Gas Spatial Information Engineering, Southwest Petroleum University, Chengdu, China
| | - Jie Tian
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, China
| |
Collapse
|
11
|
Gao J, Zhou W, Liu Y, Sha L, Song Q, Lin Y, Yu G, Zhang J, Zheng X, Fang Y, Grace J, Zhao J, Xu J, Gui H, Sinclair F, Zhang Y. Litter-derived nitrogen reduces methane uptake in tropical rainforest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157891. [PMID: 35952876 DOI: 10.1016/j.scitotenv.2022.157891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Litter comprises a major nutrient source when decomposed via soil microbes and functions as subtract that limits gas exchange between soil and atmosphere, thereby restricting methane (CH4) uptake in soils. However, the impact and inherent mechanism of litter and its decomposition on CH4 uptake in soils remains unknown in forest. Therefore, to declare the mechanisms of litter input and decomposition effect on the soil CH4 flux in forest, this study performed a litter-removal experiment in a tropical rainforest, and investigated the effects of litter input and decomposition on the CH4 flux among forest ecosystems through a literature review. Cumulative annual CH4 flux was -3.30 kg CH4-C ha-1 y-1. The litter layer decreased annual accumulated CH4 uptake by 8% which greater in the rainy season than the dry season in the tropical rainforest. Litter decomposition and the input of carbon and nitrogen in litter biomass reduced CH4 uptake significantly and the difference in CH4 flux between treatment with litter and without litter was negatively associated with N derived from litter input. Based on the literature review about litter effect on soil CH4 around world forests, the effect of litter dynamics on CH4 uptake was regulated by litter-derived nitrogen input and the amount soil inorganic nitrogen content. Our results suggest that nitrogen input via litter decomposition, which increased with temperature, caused a decline in CH4 uptake by forest soils, which could weaken the contribution of the forest in mitigating global warming.
Collapse
Affiliation(s)
- Jinbo Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenjun Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yuntong Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, China
| | - Liqing Sha
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qinghai Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Youxing Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guirui Yu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junhui Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yunting Fang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - John Grace
- School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Junbin Zhao
- Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway
| | - Jianchu Xu
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, China; East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
| | - Heng Gui
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Fergus Sinclair
- World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box 30677-00100, Nairobi, Kenya
| | - Yiping Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China; Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
12
|
Maenpuen P, Katabuchi M, Onoda Y, Zhou C, Zhang JL, Chen YJ. Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). AMERICAN JOURNAL OF BOTANY 2022; 109:1242-1250. [PMID: 35862826 DOI: 10.1002/ajb2.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Leaf mass per area (LMA), which is an important functional trait in leaf economic spectrum and plant growth analysis, is measured from leaf discs or whole leaves. Differences between the measurement methods may lead to large differences in the estimates of LMA values. METHODS We examined to what extent estimates of LMA based on whole leaves match those based on discs using 334 woody species from a wide range of biomes (tropics, subtropics, savanna, and temperate), whether the relationship varied by leaf morphology (tissue density, leaf area, leaf thickness), punch size (0.6- and 1.0-cm diameter), and whether the extent of intraspecifc variation for each species matches. RESULTS Disc-based estimates of species mean LMA matched the whole-leaf estimates well, and whole-leaf LMA tended to be 9.69% higher than leaf-disc LMA. The ratio of whole-leaf LMA to leaf-disc LMA was higher for species with higher leaf tissue density and larger leaves, and variance in the ratio was greater for species with lower leaf tissue density and thinner leaves. Estimates based on small leaf discs also inflated the ratio. The extent of the intraspecific variation only weakly matched between whole-leaf and disc-based estimates (R2 = 0.08). CONCLUSIONS Our results suggest that simple conversion between whole-leaf and leaf-disc LMA is difficult for species obtained with a small leaf punch, but it should be possible for species obtained with a large+ leaf punch. Accurately representing leaf traits will likely require careful selection between leaf-disc and whole-leaf traits depending on the objectives. Quantifying intraspecific variation using leaf discs should be also considered with caution.
Collapse
Affiliation(s)
- Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Cong Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
- Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 6663300, China
| |
Collapse
|
13
|
Wang B, Yuan W, Wang X, Li K, Lin CJ, Li P, Lu Z, Feng X, Sommar J. Canopy-Level Flux and Vertical Gradients of Hg 0 Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-Around Net Hg 0 Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5950-5959. [PMID: 35420795 DOI: 10.1021/acs.est.2c00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Vegetation uptake represents the dominant route of Hg input to terrestrial ecosystems. However, this plant-directed sink is poorly constrained due to the challenges in measuring the net Hg0 exchange on the ecosystem scale over a long period. Particularly important is the contribution in the subtropics/tropics, where the bulk (∼70%) of the Hg0 deposition is considered to occur. Using the relaxed eddy accumulation technique, this study presents for the first time a whole ecosystem Hg0 flux record over an evergreen hardwood forest. This tower-based micrometeorological method gauged a cumulated net Hg0 flux of -41.1 μg m-2 over 16 months, suggesting that the subtropical montane forest acts as a large and continuous sink of atmospheric Hg0. The monthly net fluxes were consistently negative (-7.3 to -1.0 μg m-2 month-1) throughout the year, with the smallest absolute values occurring during the mild and dry subseason in spring, which was also the annual lowest in vegetation activity. Colocated measurements of multilevel gradients of Hg0 concentration and its stable isotopic composition support the finding of year-round Hg0 deposition. The stable Hg isotope measurements also show that in-canopy bi-directional Hg0 exchange is prevalent.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kai Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Zhiyun Lu
- National Forest Ecosystem Research Station at Ailaoshan, Jingdong, Yunnan 676209, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
14
|
Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China. FORESTS 2022. [DOI: 10.3390/f13020306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ongoing climate changes reportedly affect the potential distribution and carbon sequestration potential (CSP) of forest vegetation. The combined effects of increasing temperature and decreasing precipitation on these features of forest vegetation are poorly understood. In this study, classification and regression tree (CART) models were used to predict the potential distribution and estimate the CSP of forest vegetation in Yunnan Province, Southwest China, under different simulation scenarios. The minimum temperature of the coldest month (TMW) was the main factor limiting the suitable habitat of all forest vegetation types except for warm–temperate coniferous (WTC) forests. When the temperature increased by 1 °C and the precipitation decreased by 20%, the potential distribution area of the 7 forest vegetation types decreased by 12.41% overall. The potential distribution of WTC forests was the least sensitive to temperature increases and precipitation decreases. The CSP of vegetation was higher (1187.69 TgC) under the constant temperature and 10% precipitation decrease scenario than the CSP of vegetation under the 2 °C temperature increase and constant precipitation scenario (647.24 TgC). Specifically, the highest CSP (1337.88 TgC) was observed under the 1 °C temperature increase and 10% precipitation decrease scenario, and the lowest (617.91 TgC) occurred under the constant temperature and 20% precipitation decrease scenario. In summary, the forest vegetation in Yunnan Province has a high CSP under climate change, and the combined effect of increased temperature and decreased precipitation can increase the CSP of forest vegetation in Yunnan Province. This finding is important for improving scientific decision making and policy planning.
Collapse
|
15
|
A Study on Sensitivities of Tropical Forest GPP Responding to the Characteristics of Drought—A Case Study in Xishuangbanna, China. WATER 2022. [DOI: 10.3390/w14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Droughts that occur in tropical forests (TF) are expected to significantly impact the gross primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global climate change. In this study, the standardized precipitation index (SPI) was used to define the drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results showed that drought events in the dry season have a significantly greater impact on TF-GPP than drought events in the rainy season, especially short-duration drought events. Furthermore, the impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to abundant rainfall in the rainy season, only extreme drought events caused a significant reduction in GPP, while the lack of water in the dry season caused significant impacts due to light drought. Effective precipitation and soil moisture stock in the rainy season are the most important support for the tropical forest dry season to resist extreme drought events in the study area. Further water deficit may render the tropical forest ecosystem more sensitive to drought events.
Collapse
|
16
|
Bao X, Wen X, Sun X. Effects of environmental conditions and leaf area index changes on seasonal variations in carbon fluxes over a wheat-maize cropland rotation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:213-224. [PMID: 34694487 DOI: 10.1007/s00484-021-02208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Environmental conditions (EV) changes not only affect temporal variations in carbon fluxes directly, but affect them indirectly by impacting plant biotic traits. Investigating the extent of the effects of EV and biotic changes can help deepen our understanding of ecosystem carbon cycling. Therefore, we partitioned and quantified the contributions of EV and biotic changes' effects on seasonal variations in carbon fluxes (net ecosystem carbon exchange (NEE), and its components, i.e., gross ecosystem carbon exchange (GEE) and ecosystem respiration (RE)) in a (winter) wheat-(summer) maize rotation ecosystem from 2010 to 2012. A path analysis accompanied by Granger causality tests (GCTs), which filtered out several variables that were not causal for dependent variables, was used to calculate their respective contributions by integrating path coefficients. The seasonal variations in NEE, RE, and GEE were significantly and jointly affected by EV and the leaf area index (LAI) with R2 values ranging from 0.63 to 0.94 after the GCT. The path analysis indicated that the seasonal variations of carbon fluxes were dominated by the effects of EV changes (induced from varying EV for different fluxes, crops, and years), which contributed 60.7% (mean of two years), 64.5%, and 58.2% to wheat NEE, RE, and GEE, respectively, and 62.5%, 82.3%, and 58.1% to maize NEE, RE, and GEE, respectively. Overall, our study provided a new basis that future climatic changes may have important impacts on carbon exchanges in this rotation cropland.
Collapse
Affiliation(s)
- Xueyan Bao
- Agricultural School, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xuefa Wen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Sun J, Ye C, Liu M, Wang Y, Chen J, Wang S, Lu X, Liu G, Xu M, Li R, Liu S, Zhou H, Du Z, Peng F, Tsunekawa A, Tsubo M. Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 203:111894. [PMID: 34418448 DOI: 10.1016/j.envres.2021.111894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The Tibetan Plateau (TP) has a variety of vegetation types that range from alpine tundra to tropic evergreen forest, which play an important role in the global carbon (C) cycle and is extremely vulnerable to climate change. The vegetation C uptake is crucial to the ecosystem C sequestration. Moreover, net reduction in vegetation C uptake (NRVCU) will strongly affect the C balance of terrestrial ecosystem. Until now, there is limited knowledge on the recovery process of vegetation net C uptake and the spatial-temporal patterns of NRVCU after the disturbance that caused by climate change and human activities. Here, we used the MODIS-derived net primary production to characterize the spatial-temporal patterns of NRVCU. We further explored the influence factors of the net reduction rate in vegetation C uptake (NRRVCU) and recovery processes of vegetation net C uptake across a unique gradient zone on the TP. Results showed that the total net reduction amount of vegetation C uptake gradually decreased from 2000 to 2015 on the TP (Slope = -0.002, P < 0.05). Specifically, an increasing gradient zone of multi-year average of net reduction rate in vegetation carbon uptake (MYANRRVCU) from east to west was observed. In addition, we found that the recovery of vegetation net C uptake after the disturbance caused by climate change and anthropogenic disturbance in the gradient zone were primarily dominated by precipitation and temperature. The findings revealed that the effects of climate change on MYANRRVCU and vegetation net C uptake recovery differed significantly across geographical space and vegetation types. Our results highlight that the biogeographic characteristics of the TP should be considered for combating future climate change.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chongchong Ye
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Miao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ji Chen
- Department of Agroecology, Aarhus University, 8830, Tjele, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark; CLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 4000, Roskilde, Denmark.
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, China.
| | - Xuyang Lu
- Institute of Mountain Hazard and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Ming Xu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Renqiang Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shiliang Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Zhong Du
- College of Land and Resources, China West Normal University, Nanchong, 637009, China.
| | - Fei Peng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Atsushi Tsunekawa
- Arid Land Research Center, Tottori University, Tottori, 6800001, Japan.
| | - Mitsuru Tsubo
- Arid Land Research Center, Tottori University, Tottori, 6800001, Japan.
| |
Collapse
|
18
|
Gui X, Wang L, Su X, Yi X, Chen X, Yao R, Wang S. Environmental factors modulate the diffuse fertilization effect on gross primary productivity across Chinese ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148443. [PMID: 34171807 DOI: 10.1016/j.scitotenv.2021.148443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Diffuse radiation allocated by cloud cover and aerosols can promote vegetation photosynthesis, which is known as the diffuse fertilization effect (DFE). As an important uncertain factor regulating the DFE, understanding the role of environmental conditions in the response of terrestrial ecosystems to diffuse radiation is vital for quantitative and intensive studies. By using a light use efficiency model and statistical methods with satellite data and ChinaFLUX observation data, the optimal environmental range of DFE was estimated, the indirect role of vapor pressure deficit (VPD) and air temperature (Ta) on DFE was explored, and the relative contribution of diffuse photosynthetically active radiation (PARdif) on gross primary productivity (GPP) was analyzed across Chinese ecosystems under different sky conditions. The results showed that the DFE increased with leaf area index (LAI), but distributed a unimodal curve along with VPD and Ta, both of which had an optimum range that was lower in the forest (or cropland) and higher in the grass (or desert) ecosystem. When considering the co-effect of VPD and Ta, the strongest positive effect of DFE was found at 0-5 h Pa and 20-25 °C. Based on path analysis, PARdif promoted GPP and served as the main controlling factor in forest ecosystems predominantly through a direct pathway from half-hourly to the daily scale, while Ta and VPD occupied the dominant position at single-canopy ecosystem sites. When the aerosol optical depth (AOD) increased, the relative contribution of PARdif increased in multiple-canopy ecosystems and decreased in single-canopy ecosystems; when the sky conditions changed from sunny to cloudy, the relative contribution of PARdif was higher in the forest ecosystem and increased significantly in the grass ecosystem. These findings offer a more comprehensive understanding of the environmental effects of regulating DFE on GPP across ecosystems.
Collapse
Affiliation(s)
- Xuan Gui
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lunche Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Xin Su
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Xiuping Yi
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Xinxin Chen
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Rui Yao
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Shaoqiang Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
19
|
Bennett AC, Arndt SK, Bennett LT, Knauer J, Beringer J, Griebel A, Hinko-Najera N, Liddell MJ, Metzen D, Pendall E, Silberstein RP, Wardlaw TJ, Woodgate W, Haverd V. Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems. GLOBAL CHANGE BIOLOGY 2021; 27:4727-4744. [PMID: 34165839 DOI: 10.1111/gcb.15760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Gross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%-75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt ). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary-line analysis to eddy covariance flux observations to (a) derive ecosystem GPP-Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP-Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down-welling short-wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP-Ta relationship. GPP-Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna-wet and dry seasons). The shape of GPP-Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2 : 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.
Collapse
Affiliation(s)
- Alison C Bennett
- School of Ecosystem and Forest Science, University of Melbourne, Richmond, Vic., Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Science, University of Melbourne, Richmond, Vic., Australia
| | - Lauren T Bennett
- School of Ecosystem and Forest Science, University of Melbourne, Creswick, Vic., Australia
| | - Jürgen Knauer
- CSIRO, Oceans and Atmosphere, Canberra, ACT, Australia
| | - Jason Beringer
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Anne Griebel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Nina Hinko-Najera
- School of Ecosystem and Forest Science, University of Melbourne, Creswick, Vic., Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Cairns, Qld, Australia
| | - Daniel Metzen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Richard P Silberstein
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Timothy J Wardlaw
- ARC Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - William Woodgate
- CSIRO, Land and Water, Canberra, ACT, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Qld, Australia
| | | |
Collapse
|
20
|
Wang ZP, Li HL, Wu HH, Han SJ, Huang JH, Zhang XM, Han XG. Methane Concentration in the Heartwood of Living Trees and Estimated Methane Emission on Stems in Upland Forests. Ecosystems 2021. [DOI: 10.1007/s10021-020-00596-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Yu L, Zhu J, Ji H, Bai X, Lin Y, Zhang Y, Sha L, Liu Y, Song Q, Dörsch P, Mulder J, Zhou W. Topography-related controls on N 2O emission and CH 4 uptake in a tropical rainforest catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145616. [PMID: 33631582 DOI: 10.1016/j.scitotenv.2021.145616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Forest soils in the warm-humid tropics significantly contribute to the regional greenhouse gas (GHG) budgets. However, spatial heterogeneity of GHG fluxes is often overlooked. Here, we present a study of N2O and CH4 fluxes over 1.5 years, along a topographic gradient in a rainforest catchment in Xishuangbanna, SW China. From the upper hillslope to the foot of the hillslope, and further to the flat groundwater discharge zone, we observed a decrease of N2O emission associated with an increase of soil water-filled-pore-space (WFPS), which we tentatively attribute to more complete denitrification to N2 at larger WFPS. In the well-drained soils on the hillslope, denitrification at anaerobic microsites or under transient water-saturation was the potential N2O source. Negative CH4 fluxes across the catchment indicated a net soil CH4 sink. As the oxidation of atmospheric CH4 is diffusion-limited, soil CH4 consumption rates were negatively related to WFPS, reflecting the topographic control. Our observations also suggest that during dry seasons N2O emission was significantly dampened (<10 μg N2O-N m-2 h-1) and CH4 uptake was strongly enhanced (83 μg CH4-C m-2 h-1) relative to wet seasons (17 μg N2O-N m-2 h-1 and 56 μg CH4-C m-2 h-1). In a post-drought period, several rain episodes induced exceptionally high N2O emissions (450 μg N2O-N m-2 h-1) in the groundwater discharge zone, likely driven by flushing of labile organic carbon accumulated during drought. Considering the global warming potential associated with both GHGs, we found that N2O emissions largely offset the C sink contributed by CH4 uptake in soils (more significant in the groundwater discharge zone). Our study illustrates important topographic controls on N2O and CH4 fluxes in forest soils. With projected climate change in the tropics, weather extremes may interact with these controls in regulating forest GHG fluxes, which should be accounted for in future studies.
Collapse
Affiliation(s)
- Longfei Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China; Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr. 129, CH-8600 Duebendorf, Switzerland
| | - Jing Zhu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 54004 Guilin, China.
| | - Hongli Ji
- Lushan Botanical Garden, Jiangxi Province, Chinese Academy of Sciences, 332900 Jiujiang, China
| | - Xiaolong Bai
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China
| | - Youxing Lin
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China
| | - Yiping Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China
| | - Liqing Sha
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China
| | - Yuntong Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China
| | - Qinghai Song
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, N-1432 Aas, Norway
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, N-1432 Aas, Norway
| | - Wenjun Zhou
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Xishuangbanna, Yunnan, China; University of Chinese Academy of Sciences, 100039 Beijing, China.
| |
Collapse
|
22
|
Wang Q, Yang F, Jia D, Wu T. Polysaccharides and polyphenol in dried Morinda citrifolia fruit tea after different processing conditions: Optimization analysis using response surface methodology. PeerJ 2021; 9:e11507. [PMID: 34123597 PMCID: PMC8164410 DOI: 10.7717/peerj.11507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
The increasing popularity of Morinda citrifolia has many medical and health benefits because of its rich polysaccharides (PSC) and polyphenols (PPN). It has become popular to brew the dry M. citrifolia fruit slice as tea in some regions of China. In this study, optimize the extraction parameters of M. citrifolia fruit tea polysaccharides and polyphenols using response surface methodology. The results indicated the highest PSC yield of 17% at 46 °C for 11 min and the ratio of water/M. citrifolia fruit powder was 78 mL/g. The optimum extraction of PPN was at 95 °C for 10 min and the ratio of water/M. citrifolia fruit powder 90 mL/g, with 8.93% yield. Using dry M. citrifolia fruit slices as a tea is reported for the first time. Based on the results, the maximum level of PSC can be obtained under condition by infusing about four dried M. citrifolia fruit slice with average thickness and size in warm boiled water for 11 min, taking a 300 mL cup (300 mL of water) for example. The maximum level of PPN can be obtained by adding three slices of dried M. citrifolia fruit slice to boiled water for 10 min. Considering the powder used in our study, the further pulverization of cutting into powder is more conducive to material precipitation. This study provides a scientific basis for obtaining PSC and PPN from dry M. citrifolia fruit slice tea by brewing.
Collapse
Affiliation(s)
- Qingfen Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Fei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Dandan Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Tian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| |
Collapse
|
23
|
Zhou Y, Li X, Gao Y, Wang Y, Mao Z. Response of ecosystem functioning to environmental variations in an artificial sand-binding vegetation desert in northwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15325-15336. [PMID: 32072426 DOI: 10.1007/s11356-020-08035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The establishment of artificial sand-binding vegetation is one of the main means for restoring damaged ecosystems that are impacted by global change. This study was conducted to evaluate the influence of environmental factors on ecosystem function (net ecosystem exchange (NEE), evapotranspiration (ET), and water use efficiency (WUE)) in an artificial sand-binding vegetation desert (with dominant shrubs, such as Artemisia ordosica and Caragana korshinskii, and herbaceous plants) in northwestern China. NEE, ET, and meteorological data were observed with the eddy covariance (EC) technique. The random forest (RF) method was used to identify major environmental factors that affected NEE, ET, and WUE. Our results showed that the mean annual NEE, ET, and WUE values were - 112.4 g C m-2, 232.1 mm, and 0.49 g C kg-1 H2O, respectively, during the 2015 to 2018 growing seasons. At the weekly scale, the most important drivers of NEE were the normalized difference vegetation index (NDVI) and soil water content (SWC). Rainfall, SWC, and NDVI were important drivers of ET. WUE was mainly controlled by rainfall and SWC. Linear regression showed that NEE had significant negative relationships with the NDVI and SWC. ET had positive relationships with rainfall, SWC, and the NDVI. WUE had significant negative relationships with SWC and rainfall. These findings indicate that drought inhibited ET more than carbon absorption, thus promoting the WUE of the ecosystem to some extent. The close relation of the ecosystem function to SWC implies that this ecosystem may be critically regulated by future climate change (specifically, changes in rainfall patterns).
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yanhong Gao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanli Wang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongchao Mao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Wang H, Li X, Xiao J, Ma M, Tan J, Wang X, Geng L. Carbon fluxes across alpine, oasis, and desert ecosystems in northwestern China: The importance of water availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:133978. [PMID: 31491642 DOI: 10.1016/j.scitotenv.2019.133978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Dryland regions cover >40% of the Earth's land surface, making these ecosystems the largest biome in the world. Ecosystems in these areas play an important role in determining the interannual variability of the global terrestrial carbon sink. Examining carbon fluxes of various types of dryland ecosystems and their responses to climatic variability is essential for improving projections of the carbon cycle in these regions. In this study, we made use of observations from a regional flux tower observation network in a typical arid endorheic basin, the Heihe river basin (HRB). As a representative area of both the arid region of China and the entire region of central Asia, the HRB includes the main ecosystems in arid regions. We compared the spatial variations of carbon fluxes of five terrestrial ecosystems (i.e., grassland, cropland, desert, wetland, and forest ecosystems) and explored the responses of ecosystem carbon fluxes to climatic factors across different ecosystems. We found that our region exhibits a carbon sink ranging from 85.9 to 508.7 gC/m2/yr for different ecosystems, and the water availability is critical to the spatial variability of carbon fluxes in arid regions. Carbon fluxes across all sites exhibited weak correlations with temperature and precipitation. Marked differences in precipitation effects were observed between the sites within oases and those outside of oases. Irrigation and groundwater recharge were of great importance to the variations in carbon fluxes for the sites within oases. Evapotranspiration (ET) exhibited strong relationships with carbon fluxes, indicating that ET was a better metric of soil water availability than was precipitation in driving the spatial variability of carbon fluxes in arid regions. This study has implications for better understanding the carbon budget of terrestrial ecosystems and informing ecological management in dryland regions.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Xin Li
- National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Mingguo Ma
- Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Junlei Tan
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xufeng Wang
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liying Geng
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
25
|
Xiang J, Zhang W, Song X, Li J. Impacts of Precipitation and Temperature on Changes in the Terrestrial Ecosystem Pattern in the Yangtze River Economic Belt, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4872. [PMID: 31816963 PMCID: PMC6926689 DOI: 10.3390/ijerph16234872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
The terrestrial ecosystem plays an important role in maintaining an ecological balance, protecting the ecological environment, and promoting the sustainable development of human beings. The impacts of precipitation, temperature, and other natural factors on terrestrial ecosystem pattern change (TEPC) are the basis for promoting the healthy development of the terrestrial ecosystem. This paper took the Yangtze River Economic Belt (YREB) as the study area, analyzed the temporal and spatial characteristics of TEPC from 1995 to 2015, and used spatial transfer matrix and terrestrial ecosystem pattern dynamic degree models to analyze the area transformation between different terrestrial ecosystem types. A bivariate spatial autocorrelation model and a panel data regression model were used to study the impacts of precipitation and temperature on TEPC. The results show that: (1) The basic pattern of the terrestrial ecosystem developed in a relatively stable manner from 1995 to 2005 in the YREB, and transformations between the farmland ecosystem, forest ecosystem, and grassland ecosystem were more frequent. The temporal and spatial evolution of precipitation and temperature in the YREB showed significant regional differences. (2) There was a significant negative bivariate global spatial autocorrelation effect of precipitation and temperature on the area change of the forest ecosystem, and a positive effect on the area change of the settlement ecosystem. The local spatial correlation between precipitation or temperature and the terrestrial ecosystem showed significant scattered distribution characteristics. (3) The impacts of precipitation and temperature on TEPC showed significant regional characteristics on the provincial scale. The impact utility in the tail region is basically negative, while both positive and negative effects exist in the central and head regions of the YREB. Moreover, the impact showed significant spatial heterogeneity on the city scale. (4) The Chinese government has promulgated policies and measures for strategic planning, ecological environment protection, and economic support, which could effectively promote ecological and sustainable development of the YREB and promote the coordinated development of the ecology, economy, and society in China.
Collapse
Affiliation(s)
- Jingwei Xiang
- School of Public Administration, China University of Geosciences, Wuhan 430074, China; (J.X.); (J.L.)
| | - Weina Zhang
- Hunan Key Laboratory of Land Resources Evaluation and Utilization, Changsha 410118, China
| | - Xiaoqing Song
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;
| | - Jiangfeng Li
- School of Public Administration, China University of Geosciences, Wuhan 430074, China; (J.X.); (J.L.)
| |
Collapse
|
26
|
Development of a Tree Growth Difference Equation and Its Application in Forecasting the Biomass Carbon Stocks of Chinese Forests in 2050. FORESTS 2019. [DOI: 10.3390/f10070582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global climate change has raised concerns about the relationship between ecosystems and forests, which is a core component of the carbon cycle and a critical factor in understanding and mitigating the effects of climate change. Forest models and sufficient information for predictions are important for ensuring efficient afforestation activities and sustainable forest development. Based on the theory of difference equations and the general rules of tree growth, this study established a difference equation for the relationship between the ratio of tree diameter at breast height (DBH) to the tree height and age of age of China’s main arbor species. A comparison with equations that represent the traditional tree growth models, i.e., Logistic and Richards equations, showed that the difference equations exhibited higher precision for both fitting and verification data. Moreover, the biomass carbon stocks (BCS) of Chinese forests from 2013 to 2050 were predicted by combining the 8th Chinese Ministry of Forestry and partial continuous forest inventory (CFI) data sets. The results showed that the BCS of Chinese forests would increase from 7342 to 11,030 terra grams of carbon (Tg C) in 2013–2050, with an annual biomass C (carbon) sink of 99.68 Tg C year−1, and they indicated that the Chinese land-surface forest vegetation has an important carbon sequestration capability.
Collapse
|
27
|
Han J, Zhang L, Li S, Wen X, Li Q, Wang H. Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3002-3014. [PMID: 30463150 DOI: 10.1016/j.scitotenv.2018.10.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
The dynamic changes of solar radiation have received wide attention in global change studies, but there are controversies about the influence of diffuse radiation on ecosystem carbon sequestration. Using eddy covariance measurements from 2010 to 2012, the effects of sky conditions extracted from adjacent sunny, cloudy, and overcast days on net ecosystem productivity (NEP) of a subtropical coniferous plantation were examined from half-hourly to daily scales. Half-hourly NEP responded to the changing radiation more efficiently on overcast days compared to sunny days, but such response did not differ obviously between cloudy and sunny days. Compared with sunny conditions, apparent quantum yield (α) under overcast (cloudy) conditions changed 282.4% (41.7%) in spring, 140.3% (-4.2%) in summer, 218.5% (38.9%) in autumn, and 146.2% (0.5%) in winter, respectively; annually, α under overcast (cloudy) conditions increased by 225.9% (19.8%) in 2010, 189.8% (6.0%) in 2011, and 159.5% (21.4%) in 2012, respectively. Moreover, the potential NEP at the light intensity of 150 and 750 W m-2 was improved due to increased diffuse fraction. However, both daytime NEP and daily NEP were significantly lower under overcast skies than under sunny and cloudy skies. Compared with sunny days, daily NEP on overcast days decreased by 127.7% in spring, 126.4% in summer, 121.8% in autumn, and 100.6% in winter, respectively; annually, daily NEP decreased by 122.5% in 2010, 141.7% in 2011, and 109.9% in 2012, respectively. Diurnal patterns of daily NEP were quite similar between sunny and cloudy days. Both path analysis and multiple regression showed that solar radiation, especially diffuse radiation, was responsible for the variations of NEP under different skies across seasons, but this effect may be weakened by seasonal droughts. This study implies that the effects of sky conditions on NEP are timescale dependent and should be paid more attention in ecosystem carbon cycle study.
Collapse
Affiliation(s)
- Jiayin Han
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Leiming Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuefa Wen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qingkang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Fang Q, Wang G, Xue B, Liu T, Kiem A. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1255-1266. [PMID: 29710579 DOI: 10.1016/j.scitotenv.2018.04.225] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange of CO2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, Reco, and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, Reco, and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland.
Collapse
Affiliation(s)
- Qingqing Fang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Guoqiang Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Baolin Xue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Tingxi Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Anthony Kiem
- School of Environmental and Life Sciences (Earth Sciences), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|