1
|
Ceriani A, Chafik Y, Miali A, Bourgerie S, Dalle Fratte M, Cerabolini BEL, Morabito D, Montagnoli A. Remediating heavy metal-contaminated soil through invasive alien plant-derived biochar and stinging nettle powder. CHEMOSPHERE 2025; 380:144435. [PMID: 40319612 DOI: 10.1016/j.chemosphere.2025.144435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
Invasive alien plant species (IAPS) threaten ecosystem integrity worldwide. IAPS eradication is expensive, and their biomass is considered waste. Producing biochar from IAPS biomasses could turn waste into a resource. At the same time, this material could be used to remediate polluted soils. Also, using widespread native weeds, such as Urtica dioica (U), as an additional amendment could further improve soil remediation. In a phytoremediation experiment, we applied biochar produced from two widespread IAPS' biomass, i.e. Ailanthus altissima (Mill.) (BA) and Solidago gigantea Aiton (BS), at different rates (2 % and 5 % w/w) together with Urtica dioica L. powder (U) (2 % w/w) in an Arsenic (As) and Lead (Pb)-contaminated soil, using Phaseolus vulgaris L. as an indicator plant species. We measured the amendment's effects on soil pore water (SPW) properties, plant and fine root development, and soil enzymatic activities. When BS was added alone, and when BA was combined with U SPW's pH and electrical conductivity (EC) increased and [Pb] diminished, which augmented plant growth and reduced Pb uptake. Combining the biochar types and U increased the soil's enzymatic activities, fine root length, biomass, and specific root length. Finally, both biochar types with U increased As mobility in SPW, leading to higher plant uptake in roots, although without translocation to aboveground organs. Our findings contribute to developing cost-effective and environmentally sustainable practices for managing polluted soil. Simultaneously, they tackle the problem of IAPS, which can be used in the future to provide guidelines for policymakers.
Collapse
Affiliation(s)
- Alex Ceriani
- University of Insubria, Department of Biotechnology and Life Science, Via Dunant 3, 21100, Varese, Italy.
| | - Yassine Chafik
- University of Orléans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Orléans, 45067 Cedex 2, France
| | - Alessio Miali
- University of Insubria, Department of Biotechnology and Life Science, Via Dunant 3, 21100, Varese, Italy
| | - Sylvain Bourgerie
- University of Orléans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Orléans, 45067 Cedex 2, France
| | - Michele Dalle Fratte
- University of Insubria, Department of Biotechnology and Life Science, Via Dunant 3, 21100, Varese, Italy
| | - Bruno E L Cerabolini
- University of Insubria, Department of Biotechnology and Life Science, Via Dunant 3, 21100, Varese, Italy
| | - Domenico Morabito
- University of Orléans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Orléans, 45067 Cedex 2, France
| | - Antonio Montagnoli
- University of Insubria, Department of Biotechnology and Life Science, Via Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
2
|
Hasan AK, Islam SS, Jahan M, Kheya SA, Uddin MR, Islam MS, Khomphet T. Synergistic Effects of Vermicompost and Biochar Amendments on Soil Fertility and Wheat Productivity in Bangladesh Floodplain Soils. SCIENTIFICA 2024; 2024:6624984. [PMID: 39664756 PMCID: PMC11634403 DOI: 10.1155/sci5/6624984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Biochar is gaining importance due to its potential to enhance soil health, crop yield, and quality. It may also promote more sustainable farming methods. This study evaluated the combined effects of biochar, vermicompost, and inorganic fertilizers on soil characteristics, growth, and yield in wheat. Ten different treatments were applied to wheat (cultivar BARI Gom-33). The tallest plants, highest total dry weight, and largest leaf area index were observed in plots where chemical fertilizers, rice husk biochar, poultry manure, and vermicompost were applied together. At harvest, the treatment containing 1/4 recommended fertilizer dose (RFD) + 1/4 poultry manure biochar + 1/4 rice husk biochar + 1/4 vermicompost produced the best yield and yield-contributing factors. The combination of biochar, vermicompost, and inorganic fertilizers increased grain production by 43.23%-79.48% compared with the control. These treatments also improved soil health by increasing available phosphorus, organic matter, carbon-to-nitrogen ratio, and organic carbon. In conclusion, the combined application of 1/4 RFD, 1/4 poultry manure biochar, 1/4 rice husk biochar, and 1/4 vermicompost can replace the sole use of chemical fertilizers and serve as a key component for sustainable crop production.
Collapse
Affiliation(s)
- Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shams Shaila Islam
- Department of Agronomy, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh
| | - Marina Jahan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sinthia Afsana Kheya
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Shafiqul Islam
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Thanet Khomphet
- Department of Agricultural Technology, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Rehman H, Rehman Z, Das TK, Rehman M, Khan BA, Nandi S, Ahmad K, Mohanty SK, Ur Rehman W, Naeem R, Bajaj M, Tuka MB. Toxicity evaluation and degradation of cypermethrin-contaminated soil using biochar and Bacillus cereus amendments. Sci Rep 2024; 14:29892. [PMID: 39622973 PMCID: PMC11612141 DOI: 10.1038/s41598-024-81588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Cypermethrin (Cyp), a persistent synthetic pyrethroid insecticide widely used for insect control. The persistence of Cyp creates toxicity to both humans and the environment This study investigates biochar and Bacillus cereus distinct and collective effects on Cyp -contaminated soil during a 90-day incubation. This study also investigates the effects of different concentrations of Cyp (50, 100, ,500 to 1000 mg kg-1) on soil physicochemical and biological activities during a 90-day incubation period. Microbial biomass carbon and soil respiration rates decreased significantly across all cypermethrin concentrations, with the most substantial reductions observed at 1000 mg kg-1. However noticeable variations in soil enzymes and MBC over time during the entire incubation period. On 1st day, the GMean Enz and MBC rate for Cyp treatments (50, 100, ,500 to 1000 mg kg-1) ranged from 0.98 to 0.63, and 9.06, to 5.03, respectively. Under Cyp pollution, microbial biomass carbon exhibited significant decreases, with the highest inhibition (86.2%) at 1000 mg kg-1 on 1st day of incubation. Soil respiration rates dropped 77%, at 1000 mg kg-1, and Integrated biomarker response (IBR) values peaked on day 30, indicating environmental stress. Biochar and Bacillus cereus effectively facilitated the degradation of Cyp, achieving approximately 85% degradation within the first 45 days of the experiment. The combined application of biochar and Bacillus cereus increased soil pH to a neutral level from 5.9, to 7.1, reduced electrical conductivity from 1.41 µS cm- 1 to 1.20 µS cm-1, and elevated cation exchange capacity from 1.54 ± 0.04 to 6.18 C mol kg-1, while also improving organic carbon content to 3.135%. However, the dehydrogenase activity was decresed upto 47% in the combined application and all other enzymes including urasese catlayse and phostasese enzymes with Gmean enzymeatic activities were significantly improved. These findings suggest biochar and bacterial interaction for soil management to enhance soil resilience against pesticide stress.
Collapse
Affiliation(s)
- Hamid Rehman
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ziafat Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Hevelian Abbottabad, 22500, Pakistan
| | - Tonoy K Das
- Department of Environmental Engineering, Texas A&M University, Kingsville, USA
| | - Maha Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 2600, Pakistan
| | - Basit Ahmed Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Sunny Nandi
- Department of Physics, Tezpur University, Assam, 784028, India
- New Technologies - Research Centre (NTC), University of West Bohemia, Pilsen, 30100, Czech Republic
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Sciences and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong Province, People's Republic of China
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Wasif Ur Rehman
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Rehan Naeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 2600, Pakistan.
| | - Mohit Bajaj
- Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- College of Engineering, University of Business and Technology, Jeddah, 21448, Saudi Arabia
| | - Milkias Berhanu Tuka
- Department of Electrical and Computer Engineering, College of Engineering, Sustainable Energy Center of Excellency, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Rehman H, Khan AHA, Butt TA, Toqeer M, Bilal M, Ahmad M, Al-Naghi AAA, Latifee ER, Algassem OAS, Iqbal M. Synergistic biochar and Serratia marcescens tackle toxic metal contamination: A multifaceted machine learning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122575. [PMID: 39303596 DOI: 10.1016/j.jenvman.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Metal contamination in soil poses environmental and health risks requiring effective remediation strategies. This study introduces an innovative approach of synergistically employing biochar and bacterial inoculum of Serratia marcescens to address toxic metal (TM) contamination. Physicochemical, enzymatic, and microbial analyses were conducted, employing integrated biomarker response (IBR) and machine-learning approaches for toxicity estimation. The combined application significantly reduced the Cd, Cr, and Pb concentrations by 71.6, 31.2, and 57.1%, respectively, while the Cu concentration increased by 85% in the individual Serratia marcescens treatment. Biochar enhanced microbial biomass by 33-44% after 25 days. Noteworthy physicochemical improvements included a 44.7% increase in organic content and a decrease in pH and electrical conductivity. The K⁺ and Ca2⁺ concentrations increased by 196.9 and 21.6%, respectively, while the Mg2⁺ content decreased by 86.4%. Network analysis revealed intricate relationships, displaying direct and indirect negative correlations between metals and soil physicochemical parameters. The IBR index values indicated effective mitigation of TM toxicity in Serratia marcescens and biochar with individual and combined treatments. Binary classification demonstrated high sensitivity (80.1%) and specificity (80.5%) in identifying TM-contaminated soil. These findings indicate significant biochar- and Serratia marcescens-induced impacts on toxic metal availability, physicochemical properties, and enzymatic activities in metal-contaminated soil, suggesting that blending soil with biochar and microorganisms is an effective remediation strategy.
Collapse
Affiliation(s)
- Hamid Rehman
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Ha'il, 55425, Saudi Arabia
| | - Muhammad Toqeer
- Department of Earth Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22066 KP, Pakistan
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Enamur Rahim Latifee
- Department of Civil Engineering, College of Engineering, University of Hail, Ha'il, 55425, Saudi Arabia
| | - Omar Ali Saad Algassem
- Department of Civil Engineering, College of Engineering, University of Hail, Ha'il, 55425, Saudi Arabia
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
5
|
Deng Y, Zhao H, Zhang X, Li X, Chi G. The dissipation of organophosphate esters mediated by ryegrass root exudate oxalic acid in soil: Analysis of enzymes activities, microorganism. CHEMOSPHERE 2024; 356:141896. [PMID: 38579949 DOI: 10.1016/j.chemosphere.2024.141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Complex rhizoremediation is the main mechanism of phytoremediation in organic-contaminated soil. Low molecular weight organic acids (LMWOAs) in root exudates have been shown to increase the bioavailability of contaminants and are essential for promoting the dissipation of contaminants. The effects of root exudates on the dissipation of organophosphate esters (OPEs) in soil are unclear. Consequently, we studied the combined effects of root exudates, soil enzymes and microorganisms on OPEs (tri (1-chloro-2-propyl) phosphate (TCPP) and triphenyl phosphate (TPP)) dissipation through pot experiments. Oxalic acid (OA) was confirmed to be the main component of LMWOAs in root exudates of ryegrass. The existence of OA increased the dissipation rate of OPEs by 6.04%-25.50%. Catalase and dehydrogenase activities were firstly activated and then inhibited in soil. While, urease activity was activated and alkaline phosphatase activity was inhibited during the exposure period. More bacteria enrichment (e.g., Sphingomonas, Pseudomonas, Flavisolibacter, Pontibacter, Methylophilus and Massilia) improved the biodegradation of OPEs. In addition, the transformation paths of OPEs hydrolysis and methylation under the action of root exudates were observed. This study provided theoretical insights into reducing the pollution risk of OPEs in the soil.
Collapse
Affiliation(s)
- Yaxi Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Goujian Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
6
|
Jia X, Wang Y, Zhao M, Zhang F, Li C, Ma D. Migration and morphological transformation patterns of heavy metals on sludge cells and extracellular polymeric substances (EPS) under the influence of different treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21578-21590. [PMID: 38393566 DOI: 10.1007/s11356-024-32398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
The impediment of sludge resource utilization stems from the presence of heavy metals within the sludge matrix. To optimize heavy metal removal techniques from undried sludge, it is essential to study the distribution of heavy metals in the sludge flocs structure and the changes in morphology in the sludge cells after different treatments. In this study, the sludge was subjected to chemical treatments using citric acid (CA), EDTA, and saponin, as well as electrokinetic treatment at 2 V/cm. The distribution and migration of Cu, Ni, and Zn in sludge flocs after various treatment methods were analyzed. The heavy metals were found to migrate from intracellular to extracellular polymeric substances (EPS) without causing extensive sludge cell lysis. They gradually diffused outward with the dispersion of the EPS layer. The migration efficiency of the three heavy metals in the sludge flocs was Zn, Ni, and Cu. This was mainly related to the initial distribution and morphology of the heavy metals. Under the influence of chemicals and an electric field, the acid-soluble and reducible heavy metals in the cells partially migrated to the EPS, while the stable heavy metals transformed into an unstable state. Furthermore, the order of chemical reagents in terms of their effect on the migration efficiency of heavy metals was CA > EDTA > Saponin, owing to the varying binding strengths of heavy metals and their impact on the degree of loosening of the EPS. Especially after CA treatment a greater proportion of Cu, Ni, and Zn were transferred from the cells to the EPS. The acidification effect near the anode during electrokinetic treatment intensifies the migration of heavy metals. This study provides basic research for subsequent engineering optimization aimed at removing heavy metals from sludge.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuxin Wang
- Lianhe Equator Environmental Impact Assessment Co Ltd, Tianjin, 300350, People's Republic of China
| | - Miaomiao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Fan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Chen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Degang Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Zhang J, Liang M, Tong S, Qiao X, Li B, Yang Q, Chen T, Hu P, Yu S. Response of leaf functional traits to soil nutrients in the wet and dry seasons in a subtropical forest on an island. FRONTIERS IN PLANT SCIENCE 2023; 14:1236607. [PMID: 38143586 PMCID: PMC10748499 DOI: 10.3389/fpls.2023.1236607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Introduction Island ecosystems often have a disproportionate number of endemic species and unique and fragile functional characteristics. However, few examples of this type of ecosystem have been reported. Methods We conducted a comprehensive field study on Neilingding Island, southern China. The leaf samples of 79 subtropical forest tree species were obtained and their functional traits were studied in the dry and wet seasons to explain the relationships between plant functional traits and soil nutrients. Results We found a greater availability of soil moisture content (SMC) and nutrients in the wet season than in the dry season. The values of wet season soil available phosphorus (5.97 mg·kg-1), SMC (17.67%), and soil available potassium (SAK, 266.96 mg·kg-1) were significantly higher than those of the dry season. The leaf dry matter content, specific leaf weight, leaf density, leaf total carbon, leaf total nitrogen, leaf total calcium, and the N/P and C/P ratios of leaves were all significantly higher in the dry season than in the wet season, being 18.06%, 12.90%, 12.00%, 0.17%, 3.41%, 9.02%, 26.80%, and 24.14% higher, respectively. In contrast, the leaf area (51.01 cm2), specific leaf area (152.76 cm2·g-1), leaf water content (0.59%), leaf total nitrogen (1.31%), leaf total phosphorus (0.14%), and leaf total magnesium (0.33%) were much lower in the dry season than in the wet one. There were significant pairwise correlations between leaf functional traits, but the number and strength of correlations were significantly different in the dry and wet seasons. The SAK, soil total phosphorus (STP), and pH impacted plant leaf functional traits in the dry season, whereas in the wet season, they were affected by SAK, STP, pH, and NO3- (nitrate). Discussion Both soil nutrients and water availability varied seasonally and could cause variation in a number of leaf traits.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Minxia Liang
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Sen Tong
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Xueting Qiao
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Buhang Li
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Qiong Yang
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Ting Chen
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Ping Hu
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| |
Collapse
|
8
|
Sun Q, Zhang Q, Li H, Ming C, Gao J, Li Y, Zhang Y. Regulatory effects of different anionic surfactants on the transformation of heavy metal fractions and reduction of heavy metal resistance genes in chicken manure compost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122297. [PMID: 37543071 DOI: 10.1016/j.envpol.2023.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Surfactants are widely used as a passivating agent in heavy metal passivation process, but their effect on transformation of heavy metal fraction and reduction of heavy metal resistance genes (MRGs) in composting process is still unknown. The aim of this study was to compare the effects of two anionic surfactants (rhamnolipid and sodium dodecyl sulfate) on heavy metal passivation and resistance gene reduction in chicken manure composting. The results showed that the addition of surfactant can effectively enhance degradation of organic matter (OM). Both surfactants could effectively reduce the bioavailability of heavy metals (HMs) and the relative abundance of resistance genes, especially rhamnolipids. The potential functional bacteria affecting heavy metal passivation were identified by the changes of microbial community. Redundancy analysis (RDA) showed that protease (PRT) activity was the key factor affecting the fractions of the second group of HMs including ZnF1, CuF1, CuF2, PbF1 and PbF3. These findings indicate that addition of anionic surfactants can reduce the bioavailability of HMs and the abundance of resistance genes in compost products, which is of guiding significance for the reduction of health risks in the harmless utilization of livestock and poultry manure.
Collapse
Affiliation(s)
- Qinghong Sun
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Qiao Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Hanhao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Chenshu Ming
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianpeng Gao
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou 510640, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Zhou Z, Xia L, Wang X, Wu C, Liu J, Li J, Lu Z, Song S, Zhu J, Montes ML, Benzaazoua M. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109266-109282. [PMID: 37759064 DOI: 10.1007/s11356-023-30008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the solid wastes from the coal industry have been widely used as soil amendments. Nevertheless, the impact of utilizing coal slime for copper tailing restoration in terms of plant growth, physicochemical characteristics of the tailing soil, and microbial succession remains uncertain.Herein, the coal slime was employed as a modifier into copper tailings. Their effect on the growth and physiological response of Ryegrass, and the soil physicochemical properties as well as the bacterial community structure were investigated. The results indicated that after a 30-day of restoration, the addition of coal slime at a ratio of 40% enhanced plant growth, with a 21.69% rise in chlorophyll content, and a 62.44% increase in peroxidase activity. The addition of 40% coal slime also increased the content of nutrient elements in copper tailings. Following a 20-day period of restoration, the concentrations of available copper and available zinc in the modified tailings decreased by 39.6% and 48.51%, respectively, with 40% of coal slime added. In the meantime, there was an observed augmentation in the species diversity of the bacterial community in the modified tailings. The alterations in both community structure and function were primarily influenced by variations in pH value, available nitrogen, phosphorus, potassium, and available copper. The addition of 40% coal slime makes the physicochemical properties and microbial community evolution of copper tailings reach a balance point. The utilization of coal slime has the potential to enhance the physicochemical characteristics of tailings and promote the proliferation of microbial communities, hence facilitating the soil evolution of two distinct solid waste materials. Consequently, the application of coal slime in the restoration of heavy metal tailings is a viable approach, offering both cost-effectiveness and efficacy as an enhancer.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China.
| | - Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Chenyu Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiazhi Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
- Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Zijing Lu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- Hubei Sanxin Gold Copper Limited Company, Huangshi, Hubei, China
| | | | - Mostafa Benzaazoua
- Mohammed VI Polytechnic University (UM6P), Geology and Sustainable Mining, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
10
|
Jiao W, Li Z, Li R, Guo J, Hou X, Zhang X, Wang F. In Situ Toxicity Reduction and Food Safety Assessment of Pak Choi ( Brassica campestris L.) in Cadmium-Contaminated Soil by Jointly Using Alkaline Passivators and Organic Fertilizer. TOXICS 2023; 11:824. [PMID: 37888675 PMCID: PMC10610932 DOI: 10.3390/toxics11100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
An economical and effective method is still lacking for cadmium (Cd) toxicity reduction and food product safety improvement in soil-vegetable systems. Therefore, this study aimed to reduce the Cd toxicity to pak choi (Brassica campestris L.) by jointly using passivators and organic fertilizer, highlighting food products' safety based on pot experiments. The results showed that compared with the control, organic fertilizer decreased the Cd content in edible parts and the soil's available Cd by 48.4% and 20.9% on average, respectively, due to the 0.15-unit increases in soil pH. Once jointly applied with passivators, the decrements increased by 52.3-72.6% and 32.5-52.6% for the Cd content in edible parts and for the soil's available Cd, respectively, while the pH increment increased by 0.15-0.46 units. Compared with the control, the transport factor of Cd was reduced by 61.9% and 50.9-55.0% when applying organic fertilizer alone and together with the passivators, respectively. The combination treatment of biochar and organic fertilizer performed the best in decreasing the Cd content in the edible parts and the soil's available Cd. The combination treatment of fish bone meal and organic fertilizer induced the greatest increases in soil pH. The grey relational analysis results showed that the combination treatment of biochar and organic fertilizer performed the best in reducing the potential Cd pollution risk, thereby highlighting the vegetable food safety. This study provides a potential economical and effective technology for toxicity reduction and food safety in Cd-polluted soil.
Collapse
Affiliation(s)
- Wei Jiao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China;
| | - Zhi Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruiping Li
- School of Geography and Tourism, Qufu Normal University Rizhao Campus, Rizhao 276800, China
| | - Jiafeng Guo
- Qingdao Hairun Water Group Co., Ltd., Qingdao 266000, China
| | - Xiaoshu Hou
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Xi Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Fangli Wang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Martins GL, de Souza AJ, Mendes LW, Gontijo JB, Rodrigues MM, Coscione AR, Oliveira FC, Regitano JB. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. BIORESOURCE TECHNOLOGY 2023; 376:128842. [PMID: 36898559 DOI: 10.1016/j.biortech.2023.128842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study investigates the impact of different agro-industrial organic wastes (i.e., sugarcane filter cake, poultry litter, and chicken manure) on the bacterial community and their relationship with physicochemical attributes during composting. Integrative analysis was performed by combining high-throughput sequencing and environmental data to decipher changes in the waste microbiome. The results revealed that animal-derived compost stabilized more carbon and mineralized a more organic nitrogen than vegetable-derived compost. Composting enhanced bacterial diversity and turned the bacterial community structure similar among all wastes, reducing Firmicutes abundance in animal-derived wastes. Potential biomarkers indicating compost maturation were Proteobacteria and Bacteroidota phyla, Chryseolinea genus and Rhizobiales order. The waste source influenced the final physicochemical attributes, whereas composting enhanced the complexity of the microbial community in the order of poultry litter > filter cake > chicken manure. Therefore, composted wastes, mainly the animal-derived ones, seem to present more sustainable attributes for agricultural use, despite their losses of C, N, and S.
Collapse
Affiliation(s)
- Guilherme Lucio Martins
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Adijailton José de Souza
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Júlia Brandão Gontijo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Mayra Maniero Rodrigues
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Aline Renée Coscione
- Center of Soil and Agroenviromental Resources, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | - Jussara Borges Regitano
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.
| |
Collapse
|
12
|
Cheng Y, Bu X, Li J, Ji Z, Wang C, Xiao X, Li F, Wu ZH, Wu G, Jia P, Li JT. Application of biochar and compost improved soil properties and enhanced plant growth in a Pb-Zn mine tailings soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32337-32347. [PMID: 36460887 DOI: 10.1007/s11356-022-24488-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the effect of biochar and compost on physiochemical properties, heavy metal content, microbial biomass, enzyme activities, and plant growth in Pb-Zn mine tailings. In this study, a pot experiment was conducted to evaluate the effects of biochar, compost, and their combination on the availability of heavy metals, physicochemical features, and enzyme activities in mining soil. Compared to separate addition, the combined application of biochar and compost was more effective to improve soil pH, soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), and potassium (AK). All amendments significantly decreased CaCl2-extractable Pb, Zn, Cu, and Cd. Soil enzyme activities were activated by biochar and compost. Meanwhile, the addition of biochar and compost decreased heavy metal content in plant tissues and increased plant biomass. Pearson's correlation analysis showed that plant biomass was positively correlated with nutrient levels, microbial biomass, and enzyme activities, whereas it was negatively correlated with CaCl2-extractable heavy metals. These results enhance our understanding of the ecological functions of biochar and compost on the restoration of mining soil and reveal the potential benefit of organic amendments on the improvement of mining soil quality.
Collapse
Affiliation(s)
- Yizhi Cheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Hunan New World Science and Technology Company Limited, Zhuzhou, 412000, People's Republic of China
| | - Xuan Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410000, People's Republic of China
| | - Jing Li
- Hunan New World Science and Technology Company Limited, Zhuzhou, 412000, People's Republic of China
| | - Zhihui Ji
- Hunan New World Science and Technology Company Limited, Zhuzhou, 412000, People's Republic of China
| | - Chenggang Wang
- Hunan New World Science and Technology Company Limited, Zhuzhou, 412000, People's Republic of China
| | - Xiao Xiao
- Hunan New World Science and Technology Company Limited, Zhuzhou, 412000, People's Republic of China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Guanxiong Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| |
Collapse
|
13
|
Hong Y, Li D, Xie C, Zheng X, Yin J, Li Z, Zhang K, Jiao Y, Wang B, Hu Y, Zhu Z. Combined apatite, biochar, and organic fertilizer application for heavy metal co-contaminated soil remediation reduces heavy metal transport and alters soil microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158033. [PMID: 35973531 DOI: 10.1016/j.scitotenv.2022.158033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Soil amendments are used extensively to remediate soils contaminated with heavy metals. However, the effects of soil amendments on heavy metal bioavailability, plant yield, and bacterial community structure in tropical farmland soils remain largely unknown. In the present study, seaweed organic fertilizer (S), apatite (A), biochar (B), and seaweed organic fertilizer-apatite-biochar mixtures (SAB) were applied at different rates to assess their influence on cadmium (Cd), lead (Pb), and chromium (Cr) bioavailability in contaminated farmland soils, using different component ratios and doses in maize field plots, and maize yield. Effects on soil bacterial community structure were also evaluated based on high-throughput sequencing. Following addition of 2 % S + A + B combined amendment at a ratio of 1:0.5:1.5 (2%S1A0.5B1.5), soil pH and electrical conductivity (EC) were elevated, and bioavailable Cd, Pb, and Cr concentrations were reduced in potted soils, leading to higher heavy metal immobilization. Under field conditions, soil pH, EC, organic matter, ammonium‑nitrogen, available phosphorus, available potassium, and crop productivity were all increased considerably, whereas soil Cd and Cr bioavailability were lower in the combined amendment treatments than in the control treatments. Particularly, application of a 2.49 t·ha-1 combined amendment (0.83 t·ha-1 S + 0.41 t·ha-1A + 1.25 t·ha-1B,1:0.5:1.5) decreased Cd, Pb, and Cr concentrations in maize grain by 68.9 %, 68.9 %, and 65.7 %, respectively. Species abundance and evenness in bacterial communities increased in field soils subjected to combined amendments, with shifts in community structure and function mostly driven by changes in soil pH, organic matter content, and nutrient availability. Overall, the results suggest that 1.5%S1A0.5B1.5 is the optimal treatment for remediating heavy metal co-contaminated soil, and thereby, improving maize yield and quality. Combined organic and inorganic amendments achieve high remediation efficiency, mainly by improving chemical properties, reducing heavy metal bioavailability, and altering bacterial community structure and function in heavy metal contaminated farmland soils.
Collapse
Affiliation(s)
- Yi Hong
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Dong Li
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Can Xie
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaoxiao Zheng
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jing Yin
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhidong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yangqiu Jiao
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Baijie Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueming Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. ENERGIES 2022. [DOI: 10.3390/en15093445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The choice of optimal plant species for phytoremediation and organic fertilization plays an important role in stabilizing the functions of soils contaminated with heavy metals. The influence of nickel, cobalt and cadmium on the biomass yield and calorific value of Festuca rubra, heavy metal concentrations in soil and plants and the microbiological, biochemical and physicochemical proprieties of soil were analyzed in a pot experiment. The tolerance index (TI) describing Festuca rubra’s ability to tolerate heavy metals, as well as the translocation (TF), accumulation (AF) and bioaccumulation (BF) factors of heavy metals in Festuca rubra were calculated. The experiment was conducted in two series: In soil fertilized and not fertilized with compost. Nickel and cobalt significantly inhibited the growth and development of Festuca rubra. The experiment demonstrated that this plant species can be grown on soil contaminated with heavy metals. Festuca rubra contained on average 46.05% C, 34.59% O, 5.91% H, 3.49% N, 0.19% S and 9.76% ash. Festuca rubra has a stable calorific value which is not affected by heavy metals; therefore, biomass harvested from heavy metal-polluted soil can be used for energy generation. The calorific value of Festuca rubra ranged from 15.924 to 16.790 MJ kg−1 plant d.m., and the heat of combustion from 17.696 to 18.576 MJ kg−1. It has a stable calorific value which is not affected by heavy metals, therefore biomass harvested from heavy metal-polluted soil can be used for energy generation. Festuca rubra is particularly useful for the phytostabilization of soil contaminated with cadmium and cobalt. Compost minimizes the adverse effects of heavy metal pollution on the microbiological, biochemical and physicochemical properties of soil.
Collapse
|
15
|
Abstract
Recent research established a link between environmental alterations due to agriculture intensification, social damage and the loss of economic growth. Thus, the integration of environmental and social dimensions is key for economic development. In recent years, several frameworks have been proposed to assess the overall sustainability of farms. Nevertheless, the myriad of existing frameworks and the variety of indicators result in difficulties in selecting the most appropriate framework for study site application. This manuscript aims to: (i) understand the criteria to select appropriate frameworks and summarize the range of those being used to assess sustainability; (ii) identify the available frameworks to assess agricultural sustainability; and (iii) analyze the strengths, weaknesses and applicability of each framework. Six frameworks, namely SAFA, RISE, MASC, LADA, SMART and public goods (PG), were identified. Results show that SMART is the framework that considers, in a balanced way, the environmental, sociocultural and economic dimensions of sustainability, whereas others focused on the environmental (RISE), environmental and economic (PG) and sociocultural (SAFA) dimension. However, depending on the scale assessment, sector of application and the sustainability completeness intended, all frameworks are suitable for the assessment. We present a decision tree to help future users understand the best option for their objective.
Collapse
|
16
|
Yasmeen T, Arif MS, Shahzad SM, Riaz M, Tufail MA, Mubarik MS, Ahmad A, Ali S, Albasher G, Shakoor A. Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113385. [PMID: 35278995 DOI: 10.1016/j.ecoenv.2022.113385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In semi-arid regions, post-restoration vegetation recovery on abandoned agricultural lands often fails due to inherently low organic matter content and poor soil fertility conditions, including phosphorus (P). As such, amending these soils with controlled release P fertilizer, especially with suitable P solubilizing bacteria (PSB) may promote plant growth and productivity by stimulating biological P fertility. To this aim, a pot study was performed to evaluate the agronomic potential of maize and soil biological P pools, using encapsulated (ENRP) and non-encapsulated (NRP) nano-rock phosphate as the P fertilizer source, on reclaimed agricultural soil in the presence and absence of PSB inoculant. The experiment was setup following a 3 × 2 factorial arrangement with four replicates. Without PSB, NRP treatment showed marginal positive effects on plant growth, P nutrition and P use efficiency (PUE) compared to control treatment. Although larger gains with NRP treatment were more noticeable under PSB inoculation, ENRP was the most convenient slow-release P fertilizer, increasing plant growth, P nutrition and grain yield compared to all treatments. Importantly, PSB inoculation with ENRP resulted in significantly higher increase in soil CaCl2-P (8.91 mg P kg soil-1), citrate-P (26.98 mg P kg soil-1), enzyme-P (18.98 mg P kg soil-1), resin-P (11.41 mg P kg soil-1), and microbial-P (18.94 mg P kg soil-1), when compared to all treatment combinations. Although a decrease in soil HCl-P content was observed with both types of P fertilizer, significant differences were found only with PSB inoculation. A significant increase in soil biological P pools could be due to the higher specific area and crystalline structure of nano materials, providing increased number of active sites for PSB activity in the presence of biobased encapsulated shell. Furthermore, the increase in PSB abundance, higher root carboxylate secretions, and decreased rhizosphere pH in response to nano-structured P fertilizer, implies greater extension of rhizosphere promoting greater P mobilization and/or solubilization, particularly under PSB inoculated conditions. We conclude that cropping potential of abandoned agricultural lands can be enhanced by the use of nano-rock phosphate in combination with PSB inoculant, establishing a favorable micro-environment for higher plant growth and biochemical P fertility.
Collapse
Affiliation(s)
- Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | | | - Aqeel Ahmad
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Science, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
17
|
Microbial Activity during Composting and Plant Growth Impact: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacing harmful chemical pesticides with compost extracts is steadily gaining attention, offering an effective way for plant growth enhancement and disease management. Food waste has been a major issue globally due to its negative effects on the environment and human health. The methane and other harmful organisms released from the untreated waste have been identified as causes of this issue. Soil bacteria impart a very important role in biogeochemical cycles. The interactions between plants and bacteria in the rhizosphere are some of the factors that determine the health and fertility of the soil. Free-living soil bacteria are known to promote plant growth through colonizing the plant root. PGPR (Plant Growth Promoting Rhizobacteria) inoculants in compost are being commercialized as they help in the improvement of crop growth yield and provide safeguard and resistance to crops from disease. Our focus is to understand the mechanism of this natural, wet waste recycling process and implementation of a sustainable operative adaptation with microbial association to ameliorate the waste recycling system.
Collapse
|
18
|
Tan C, Luo Y, Fu T. Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13056-13070. [PMID: 34564816 DOI: 10.1007/s11356-021-16631-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Farmland soils that surround a historical zinc smelting area in northwestern Guizhou, China, are characterized by high levels of heavy metal accumulation. Previous studies have mainly focused on the potential risk evaluations of heavy metals in soil and crops. However, at present, the effects of amendment applications on the bioavailability of heavy metals and on microbial community in the heavily contaminated soils of the mining region are still unclear. A pot experiment was conducted to determine the effect of applying a combined amendment (e.g. lime, sepiolite, and vermicompost) on the diversity and composition of microbial community in the contaminated soil. The results showed that the contents of DTPA- and TCLP-extractable heavy metals (e.g. Cd, Pb, and Zn) decreased and that the pH, SWC, EC, and soil available nutrient (e.g. AN, AP, and AK) contents increased after the application of the combined amendment. Furthermore, application of the combined amendment decreased the diversity of soil bacterial and fungal communities and increased the relative abundances of the dominant bacterial and fungal communities such as Proteobacteria, Bacteroidetes, and Ascomycota; however, the relative abundances of Acidobacteria and Actinobacteria decreased. Redundancy analysis (RDA) and structural equation model (SEM) analysis showed that the bioavailability of heavy metals decreased and that soil physicochemical characteristics improved and had positive or negative effects on the diversity and composition of soil microbial community.
Collapse
Affiliation(s)
- Chuanjiang Tan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang, 550025, China.
- Guizhou Kast Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Tianling Fu
- Guizhou Kast Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China
- The New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
19
|
Bio-Based Waste’ Substrates for Degraded Soil Improvement—Advantages and Challenges in European Context. ENERGIES 2022. [DOI: 10.3390/en15010385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The area of degraded sites in the world is constantly expanding and has been a serious environmental problem for years. Such terrains are not only polluted, but also due to erosion, devoid of plant cover and organic matter. The degradation trends can be reversed by supporting remediation/reclamation processes. One of the possibilities is the introduction of biodegradable waste/biowaste substrates into the soil. The additives can be the waste itself or preformed substrates, such composts, mineral-organic fertilizers or biochar. In EU countries average value of compost used for land restoration and landfill cover was equal 4.9%. The transformation of waste in valuable products require the fulfillment of a number of conditions (waste quality, process conditions, law, local circumstances). Application on degraded land surface bio-based waste substrates has several advantages: increase soil organic matter (SOM) and nutrient content, biodiversity and activity of microbial soil communities and change of several others physical and chemical factors including degradation/immobilization of contaminants. The additives improve the water ratio and availability to plants and restore aboveground ecosystem. Due to organic additives degraded terrains are able to sequestrate carbon and climate mitigate. However, we identified some challenges. The application of waste to soil must comply with the legal requirements and meet the end of use criteria. Moreover, shorter or long-term use of bio-waste based substrate lead to even greater soil chemical or microbial contamination. Among pollutants, “emerging contaminants” appear more frequently, such microplastics, nanoparticles or active compounds of pharmaceuticals. That is why a holistic approach is necessary for use the bio-waste based substrate for rehabilitation of soil degraded ecosystems.
Collapse
|
20
|
Li Y, Wang Y, Shen C, Xu L, Yi S, Zhao Y, Zuo W, Gu C, Shan Y, Bai Y. Structural and Predicted Functional Diversities of Bacterial Microbiome in Response to Sewage Sludge Amendment in Coastal Mudflat Soil. BIOLOGY 2021; 10:biology10121302. [PMID: 34943217 PMCID: PMC8698727 DOI: 10.3390/biology10121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
The study investigated the influence of sewage sludge application at rates of 0 (CK), 30 (ST), 75 (MT), and 150 (HT) t ha−1 to mudflats on bacterial community diversity and predicted functions using amplicon-based sequencing. Soils under sewage sludge treatments, especially the HT treatment, exhibited lower pH, salinity and higher nutrient contents (C, N, and P). Moreover, restructured bacterial communities with significantly higher diversities and distinct core and unique microbiomes were observed in all sewage sludge-amended soils as compared to the control. Specifically, core bacterial families, such as Hyphomicrobiaceae, Cytophagaceae, Pirellulaceae Microbacteriaceae, and Phyllobacteriaceae, were significantly enriched in sewage sludge-amended soils. In addition, sewage sludge amendment significantly improved predicted functional diversities of core microbiomes, with significantly higher accumulative relative abundances of functions related to carbon and nitrogen cycling processes compared to the unamended treatment. Correlation analyses showed that modified soil physicochemical properties were conducive for the improvement of diversities of bacterial communities and predicted functionalities. These outcomes demonstrated that sewage sludge amendment not only alleviated saline–sodic and nutrient deficiency conditions, but also restructured bacterial communities with higher diversities and versatile functions, which may be particularly important for the fertility formation and development of mudflat soils.
Collapse
Affiliation(s)
- Yunlong Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Yimin Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Chao Shen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Lu Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Siqiang Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Yilin Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Wengang Zuo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Chuanhui Gu
- Environmental Research Center, Duke Kunshan University, Kunshan 215316, China;
| | - Yuhua Shan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
21
|
Du J, Hou F, Zhou Q. Response of soil enzyme activity and soil bacterial community to PCB dissipation across different soils. CHEMOSPHERE 2021; 283:131229. [PMID: 34146884 DOI: 10.1016/j.chemosphere.2021.131229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Soils are a repository for polychlorinated biphenyls (PCBs). A pot incubation experiment was performed with four soils (black soil, paddy soil, oasis soil, and fluvo-aquic soil) treated with Aroclor 1242 to achieve PCB concentrations of 5 mg kg-1. The soil enzyme activities of protease, phosphatase, catalase, dehydrogenase, and laccase were determined by spectrophotometry. The soil bacterial communities were investigated using Illumina sequencing analysis. The results showed that the characteristics of the test soils varied among the soil types. The fluvo-aquic soil had the greatest PCB dissipation rate (86.41%), followed by the oasis (79.31%), paddy (56.09%), and black (50.65%) soils. The soil pH, cation exchange capacity, soil organic matter content, and particle diameter played significant roles in PCB dissipation from soils. The soil type had a greater influence than PCB contamination on the soil enzyme activities and bacterial communities (alpha diversity, community structure, and composition). Among the four soils, the bacterial communities of the fluvo-aquic soil were the most susceptible to PCB contamination. However, the bacterial communities of the black soil were not changed by PCB contamination.
Collapse
Affiliation(s)
- Junjie Du
- College of Life Science, Shanxi Normal University, Linfen, 041004, China
| | - Fen Hou
- School of Public Administration, Shanxi University of Finance and Economics, Taiyuan, 030000, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
22
|
Li Y, Sun B, Deng T, Lian P, Chen J, Peng X. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112497. [PMID: 34273850 DOI: 10.1016/j.ecoenv.2021.112497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/09/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Sewage sludge (SS) and garden waste (GW) compost can be used as soil amendments to improve the soil environment. Studies done till date have been focused on the changes of harmful substances during sludge composting, but the safety and efficacy of SS and GW composting on woodland soil environment are still unclear. In the study, a field experiment was performed using to investigate the safety and efficacy of SS and GW compost as a soil amendment on woodland soil. Soil nutrients (such as nitrogen, phosphorus and potassium), organic matter and electrical conductivity were significantly increased after the addition of the SS and GW compost, while there were no significant changes in soil heavy metals content and soil enzyme activities. From these soil properties, it was found that SS and GW compost was safe and efficacious in improving the soil environment. The application of SS and GW compost had no significant effect on microbial diversity. Co-occurrence network analysis revealed that SS and GW compost efficaciously enhanced the interaction between bacterial communities, which proved that it was safe and efficacious. Furthermore, SS and GW compost enhanced ABC transporters and carbohydrate metabolism of bacterial community, while reduced the pathotroph action (such as the plant pathogen) and wood saprotrophs. Overall, these results proved the safety and efficacy of SS and GW compost as soil amendments after being added to the soil. This study contributes to the use of harmless treatments and reutilization processes of SS and GW.
Collapse
Affiliation(s)
- Yongshuang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyue Deng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peng Lian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juhong Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
23
|
Wu Y, Song Q, Wu J, Zhou J, Zhou L, Wu W. Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146282. [PMID: 33714815 DOI: 10.1016/j.scitotenv.2021.146282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The understanding of soil microbial associations to combined contamination would substantially benefit the restoration of damaged ecosystems, which is currently limited at the field scale. In this study, we investigated the soil bacterial associations to combined contamination with metals (Cd, Cu, Hg, Pb, and Zn), polyaromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs). Samples were collected from field sites under five land-use patterns with electronic waste recycling. Results showed that the contents of Cd (0.22-12.86 mg/kg), Cu (17-14,136 mg/kg), Pb (4.6-77,014 mg/kg), Hg (0.28-22 mg/kg), Zn (26-42,495 mg/kg), PAHs (4.6-1753 μg/kg), and PBDEs (1.9-1079 μg/kg) varied significantly across sites. We observed positive correlations between catalase activity and heavy metals, indicative of a resistance response to the oxidative stress induced by metals. Furthermore, the bacterial community diversity was found to be determined primarily by PBDEs, whereas acenaphthylene, available phosphorus, and 2,2',3,3',4,5,6-heptabrominated diphenyl ether (BDE-183) were the three major drivers affecting community composition. The co-occurrence network constructed for bacterial communities exposed to combined contamination was non-random with scale-free, small-world and modularity features. We further proposed functional roles of the modules including stress resistance, hydrocarbon degradation, and nutrient cycling. Overall, the findings of redundancy analysis, variation partition analysis and the co-occurrence network indicated that soil bacterial community under combined contamination cooperated to survive. Members including Rhodoplanes and Nitrospira were capable of degrading PAHs and PBDEs in various pathways, while others, including Acinetobacter, Citrobacter, and Pseudomonas, reduced the metal toxicity to the community. Our findings provide new insights into the responses of soil bacteria, particularly in terms of inter-specific relationships, under combined contamination at the field scale.
Collapse
Affiliation(s)
- Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
24
|
Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su13052652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biochar amendments are widely recognized to improve crop productivity and soil biogeochemical quality, however, their effects on vegetable crops are less studied. This pot study investigated the effects of cotton stick, corncob and rice straw biochars alone and with farmyard manure (FYM) on tomato growth, soil physico–chemical and biological characteristics, soil organic carbon (SOC) content and amount of soil nutrients under recommended mineral fertilizer conditions in a nutrient-depleted alkaline soil. Biochars were applied at 0, 1.5 and 3% (w/w, basis) rates and FYM was added at 0 and 30 t ha−1 rates. Biochars were developed at 450 °C pyrolysis temperature and varied in total organic C, nitrogen (N), phosphorus (P) and potassium (K) contents. The results showed that biochars, their amounts and FYM significantly improved tomato growth which varied strongly among the biochar types, amounts and FYM. With FYM, the addition of 3% corncob biochar resulted in the highest total chlorophyll contents (9.55 ug g−1), shoot (76.1 cm) and root lengths (44.7 cm), and biomass production. Biochars with and without FYM significantly increased soil pH, electrical conductivity (EC) and cation exchange capacity (CEC). The soil basal respiration increased with biochar for all biochars but not consistently after FYM addition. The water-extractable organic C (WEOC) and soil organic C (SOC) contents increased significantly with biochar amount and FYM, with the highest SOC found in the soil that received 3% corncob biochar with FYM. Microbial biomass C (MBC), N (MBN) and P (MBP) were the highest in corncob biochar treated soils followed by cotton stick and rice straw biochars. The addition of 3% biochars along with FYM also showed significant positive effects on soil mineral N, P and K contents. The addition of 3% corncob biochar with and without FYM always resulted in higher soil N, P and K contents at the 3% rate. The results further revealed that the positive effects of biochars on above-ground plant responses were primarily due to the improvements in below-ground soil properties, nutrients’ availability and SOC; however, these effects varied strongly between biochar types. Our study concludes that various biochars can enhance tomato production, soil biochemical quality and SOC in nutrient poor soil under greenhouse conditions. However, we emphasize that these findings need further investigations using long-term studies before adopting biochar for sustainable vegetable production systems.
Collapse
|
25
|
Soil Biochemical Indicators and Biological Fertility in Agricultural Soils: A Case Study from Northern Italy. MINERALS 2021. [DOI: 10.3390/min11020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Industrial farming without considering soil biological features could lead to soil degradation. We aimed to evaluate the biochemical properties (BPs) and biological fertility (BF) of different soils under processing tomato cultivation; estimate the BF through the calculation of a simplified BF index (BFIs); determine if the crop was affected by BP and BF. Three farms were individuated in Modena (MO), Ferrara (MEZ) and Ravenna (RA) provinces, Italy. Soil analysis included total and labile organic C, microbial biomass-C (Cmic) and microbial respiration measurements. The metabolic (qCO2), mineralization (qM) and microbial (qMIC) quotients, and BFIs were calculated. Furthermore, plant nutrient contents were determined. The low Cmic content and qMIC, and high qCO2 found in MEZ soils indicate the occurrence of stressful conditions. The high qMIC and qM, and the low qCO2 demonstrated an efficient organic carbon incorporation as Cmic in MO soils. In RA soils, the low total and labile organic C contents limited the Cmic and microbial respiration. Therefore, as confirmed by the BFIs, while MO showed the healthiest soils, RA soils had an inefficient ecophysiological energy state. However, no effects on plant nutrient contents were observed, likely because of masked by fertigation. Finally, BP monitoring is needed in order to avoid soil degradation and, in turn, crop production decline.
Collapse
|
26
|
Markowicz A, Bondarczuk K, Cycoń M, Sułowicz S. Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116317. [PMID: 33383416 DOI: 10.1016/j.envpol.2020.116317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The effect of land application of sewage sludge on soil microbial communities and the possible spread of antibiotic- and metal-resistant strains and resistance determinants were evaluated during a 720-day field experiment. Enzyme activities, the number of oligotrophic bacteria, the total number of bacteria (qPCR), functional diversity (BIOLOG) and genetic diversity (DGGE) were established. Antibiotic and metal resistance genes (ARGs, MRGs) were assessed, and the number of cultivable antibiotic- (ampicillin, tetracycline) and heavy metal- (Cd, Zn, Cu, Ni) resistant bacteria were monitored during the experiment. The application of 10 t ha-1 of sewage sludge to soil did not increase the organic matter content and caused only a temporary increase in the number of bacteria, as well as in the functional and structural biodiversity. In contrast to expectations, a general adverse effect on the tested microbial parameters was observed in the fertilized soil. The field experiment revealed a significant reduction in the activities of alkaline and acid phosphatases, urease and nitrification potential. Although sewage sludge was identified as the source of several ARGs and MRGs, these genes were not detected in the fertilized soil. The obtained results indicate that the effect of fertilization based on the recommended dose of sewage sludge was not achieved.
Collapse
Affiliation(s)
- Anna Markowicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Białystok, Białystok, Poland.
| | - Mariusz Cycoń
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Sosnowiec, Poland.
| | - Sławomir Sułowicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| |
Collapse
|
27
|
El-Bassi L, Azzaz AA, Jellali S, Akrout H, Marks EAN, Ghimbeu CM, Jeguirim M. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142531. [PMID: 33035975 DOI: 10.1016/j.scitotenv.2020.142531] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The olive oil industry is an important economic sector in Mediterranean countries. However, oil production is unfortunately accompanied by the generation of huge amounts of olive mill solid wastes (OMSW) and olive mill wastewater (OMWW). In the present study, a strategy is proposed for converting these olive mill wastes into biochar through pyrolysis, for their later use as an organic amendment in agriculture. Specifically, two biochars were prepared from the pyrolysis of OMSW at 500 °C, either alone or impregnated with OMWW (OMSW-B and I-OMSW-B). The characterization of the OMSW and I-OMSW samples and their derived biochars showed that the fixed carbon and ash contents in the feedstocks increased by 38% and 11% respectively for OMSW-B, and by 37% and 12% respectively for I-OMSW-B. Interestingly, the impregnation process significantly increased Na, P, K, Ca and Fe contents in the produced biochars. The effect of OMSW-B and I-OMSW-B amendments at different application dose (1%, 2.5% and 5% wt/wt) on the enzymatic activity of an agricultural soil was performed at laboratory scale with a pot test. The experimental results showed that phosphatase and urease activity increased with biochar application rate; amendment with I-OMSW-B at 1%, 2.5% and 5% enhanced the phosphatase activity by 63%, 142% and 285% and urease activity by 50%, 116% and 149%, respectively. On the other hand, dehydrogenase and protease activities were higher for the application rate of 2.5% biochar. Biochar amendment promoted tomatoes seedling growth after 10 weeks, which was highest in the application rates of 2.5% and 5% for both OMSW-B and I-OSMW-B. Thus, the produced biochars had great potential to be used as biofertilizers in agriculture.
Collapse
Affiliation(s)
- Leila El-Bassi
- Laboratory of Wastewater and Environment, Center of Water Research and Technologies (CERTE), Borj Cedria Ecopark, P.B. 273, 8020 Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, F-67081 Strasbourg, France
| | - Salah Jellali
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research (CESAR), Sultan Qaboos University, Al-Khoud, 123, Oman
| | - Hanene Akrout
- Laboratory of Wastewater and Environment, Center of Water Research and Technologies (CERTE), Borj Cedria Ecopark, P.B. 273, 8020 Soliman, Tunisia
| | - Evan A N Marks
- CT BETA, Universitat de Vic - Universitat Central de Catalunya, Carrer de la Laura 13, 08500 Vic, Spain
| | - Camélia Matei Ghimbeu
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, F-67081 Strasbourg, France
| | - Mejdi Jeguirim
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, F-67081 Strasbourg, France.
| |
Collapse
|
28
|
Guo X, Ji Q, Rizwan M, Li H, Li D, Chen G. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111184. [PMID: 32861009 DOI: 10.1016/j.ecoenv.2020.111184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.
Collapse
Affiliation(s)
- Xiongfei Guo
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Ji
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Rizwan
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongqin Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guikui Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Skic K, Sokołowska Z, Boguta P, Skic A. The effect of application of digestate and agro-food industry sludges on Dystric Cambisol porosity. PLoS One 2020; 15:e0238469. [PMID: 32877469 PMCID: PMC7467315 DOI: 10.1371/journal.pone.0238469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/16/2020] [Indexed: 11/24/2022] Open
Abstract
The spatial arrangement and pore size distribution play an important role in accumulation and protection of exogenous organic matter (EOM) in the soil, but how different organic materials contribute to modify pore structure is poorly understood. We aimed at exploring possible changes in the complexity of the soil phase during fertilization with different doses of digestate and sludges sourced from the agro-food industry. For this purpose, the short-term effects—one year, of soil fertilization, were investigated in several sampling periods and within two depths (0–25 cm and 25–40 cm). Changes in the specific surface area (SSA), total pore volume (VMIP), total pore area (SMIP), average pore radius (RMIP) and pore size distribution (PSD) were monitored using N2 adsorption/desorption (NAD) and mercury porosimetry (MIP) methods. Our results showed that the intensity of observed changes depended on the type and dose of organic material, soil depth and sampling date. Accumulation of EOM increased with soil depth, masking a large proportion of SSA. Deeper soil layer was more susceptible to changes in the pore size distributions due to the formation of new elongated pores. We concluded that this specific structural porosity was related to the decomposition of organic matter during the formation of soil aggregates.
Collapse
Affiliation(s)
- Kamil Skic
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
- * E-mail:
| | - Zofia Sokołowska
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Patrycja Boguta
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Anna Skic
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences, Lublin, Poland
| |
Collapse
|
30
|
Wang Y, Gong J, Li J, Xin Y, Hao Z, Chen C, Li H, Wang B, Ding M, Li W, Zhang Z, Xu P, Xu T, Ding GC, Li J. Insights into bacterial diversity in compost: Core microbiome and prevalence of potential pathogenic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137304. [PMID: 32087588 DOI: 10.1016/j.scitotenv.2020.137304] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Fertilizer-replacement programs by the ministry of agriculture and rural affairs are extraordinary actions for environment protection and sustainable agriculture in China. A national-level survey was performed to acquire consensuses of bio-physiochemical properties for composts. A total of 116 compost samples collected from 16 provinces in China were analyzed by high throughput sequencing of bacterial 16S rRNA gene amplicons. The germination index and bacterial alpha-diversity were lower in composts from poultry manure than others. This large-scale survey revealed that bacterial communities were distinct among different composts and slightly explained by pH, moisture and total nitrogen, but not by raw material or composting process. Nevertheless, 26 OTUs affiliated with Firmicutes (Cerasibacillus, Atopostipes and Bacillus) and Actinobacteria (Thermobifida, Actinomadura and Nocardiopsis) were present in most (>90%) composts and majority of these bacterial species were possibly associated with the biodegradation of organic materials. Surprisingly, 629 potential human or animal bacterial pathogens accounting an average of 1.21% of total 16S rRNA gene were detected and these bacteria were mainly affiliated with Helicobacter, Staphylococcus, Acinotobacter, Streptococcus, Mycobacterium and Enterococcus. In summary, this study provides baseline data for the diversity and abundance of core microbiome and potential pathogens in composts.
Collapse
Affiliation(s)
- Yue Wang
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Jingyang Gong
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Jiaxin Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Yuanyuan Xin
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Ziyi Hao
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Chen Chen
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Huixiu Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Bo Wang
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Min Ding
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Wanwan Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Zeyu Zhang
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Pengxiang Xu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China
| | - Ting Xu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128, Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128, Jiangsu Province, China.
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128, Jiangsu Province, China.
| |
Collapse
|
31
|
Muhammad N, Nafees M, Khan MH, Ge L, Lisak G. Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113887. [PMID: 31982801 DOI: 10.1016/j.envpol.2019.113887] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
In the present study, biochars (BCs) derived from naturally grown green waste (Cynodon dactylon L.) were investigated regarding their impacts on bioaccumulation of potentially toxic elements (PTEs), agronomic properties and human health risks of wheat crop cultivated on long-term industrially contaminated soil. Typically, three types of BCs were pyrolyzed at different highest temperature of treatment (HTT), i.e. 400 °C, 600 °C and 800 °C, in a horizontal reactor and applied to the contaminated soil with 2% and 5% (w/w) ratio. The characterization results of the BCs showed that significant positive changes in fundamental characteristics such as porosity, surface area, cation exchange capacity, dissolved organic carbon, phosphorus and potassium have occurred with increased HTT. The analytical results of wheat crop indicated that the BCs applications significantly (p ≤ 0.05) reduced concentration of PTEs in roots (48-95%), shoots (38-91%), leaves (30-91%) and grains (38-93%) of wheat plants. After the BCs application, the agronomic properties were enhanced up to 6-18%, 18-38%, 17-46%, 13-45%, 15-42%, 22-55% and 34-57% for germination rate, shoot length, shoot biomass, spike length, spike biomass, grain biomass and root biomass respectively. The human health risks of PTEs were significantly (p ≤ 0.05) decreased (31-93%) from toxicity level to safe level (except for Mn and Cu), after the BCs application. Based on the current study, the BCs (especially 800BC5) were recommended for reducing bioaccumulation of PTEs in different parts of the wheat plant, increasing growth and yield of wheat crop and decreasing human health risks via consumption of wheat grains.
Collapse
Affiliation(s)
- Nisar Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Haya Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
32
|
Sikdar A, Wang J, Hasanuzzaman M, Liu X, Feng S, Roy R, Sial TA, Lahori AH, Arockiam Jeyasundar PGS, Wang X. Phytostabilization of Pb-Zn Mine Tailings with Amorpha fruticosa Aided by Organic Amendments and Triple Superphosphate. Molecules 2020; 25:molecules25071617. [PMID: 32244753 PMCID: PMC7181007 DOI: 10.3390/molecules25071617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A greenhouse pot trial was conducted to investigate the effect of organic amendments combined with triple superphosphate on the bioavailability of heavy metals (HMs), Amorpha fruticosa growth and metal uptake from Pb-Zn mine tailings. Cattle manure compost (CMC), spent mushroom compost (SMC) and agricultural field soil (AFS) were applied to tailings at 5%, 10%, 20% and 30% w/w ratio, whereas sewage sludge (SS) and wood biochar (WB) were mixed at 2.5%, 5%, 10% and 20% w/w ratio. Triple superphosphate (TSP) was added to all the treatments at 4:1 (molar ratio). Amendments efficiently decreased DTPA-extracted Pb, Zn, Cd and Cu in treatments. Chlorophyll contents and shoot and root dry biomass significantly (p < 0.05) increased in the treatments of CMC (except T4 for chlorophyll b) and SMC, whereas treatments of SS (except T1 for chlorophyll a and b), WB and AFS (except T4 for chlorophyll a and b) did not show positive effects as compared to CK1. Bioconcentration factor (BCF) and translocation factor (TF) values in plant tissues were below 1 for most treatments. In amended treatments, soluble protein content increased, phenylalanine ammonialyase (PAL) and polyphenol oxidase (PPO) decreased, and catalase (CAT) activity showed varied results as compared to CK1 and CK2. Results suggested that A. fruticosa can be a potential metal phytostabilizer and use of CMC or SMC in combination with TSP are more effective than other combinations for the in situ stabilization of Pb-Zn mine tailings.
Collapse
Affiliation(s)
- Ashim Sikdar
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
- Correspondence: or ; Tel.: +86-029-8708-0055
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Xiaoyang Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| | - Shulin Feng
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| | - Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; (A.S.); (R.R.); or (T.A.S.); (P.G.S.A.J.)
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan;
| | | | - Xiuqing Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; (X.L.); (S.F.); (X.W.)
| |
Collapse
|
33
|
Abril C, Santos JL, Martín J, Aparicio I, Alonso E. Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135048. [PMID: 31812383 DOI: 10.1016/j.scitotenv.2019.135048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, twenty-three endocrine disrupting compounds have been monitored in sludge from different stages of four sludge stabilization treatments (anaerobic digestion, aerobic digestion, composting and anaerobic stabilization ponds). Their occurrence and fate in sludge stabilization plants and their potential environmental risk in treated sludge and in treated sludge-amended soils have been evaluated. Monitored compounds were six perfluoroalkyl compounds (PFC), four anionic surfactants (sodium alkylsulfates), a plasticiser (bisphenol A (BPA)), four preservatives (parabens), six UV-filters (benzophenones) and two biocides (triclosan and triclocarban). Only two of the UV-filters were not detected in any of the 141 analysed samples. Anionic surfactants (mean concentrations up to 1673 ng/g dry matter (dm) for the sum of surfactants) were the compounds at the highest concentration levels followed by biocides (up to 512 ng/g dm) and UV-filters (up to 662 ng/g dm). The concentrations of anionic surfactants, preservatives and UV-filters decreased 78, 25 and 80%, respectively, after anaerobic digestion. The concentration of perfluorinated carboxylic acids only decreased after composting (80% reduction) whereas biocides and BPA were not affected by any of the studied treatments. Environmental risks (risk quotients > 1) were obtained for all compounds, except for triclocarban and sodium octadecylsulfate, in treated sludge. In treated sludge-amended soils, risk quotients were lower than 1 for all compounds except for triclosan.
Collapse
Affiliation(s)
- Concepción Abril
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| |
Collapse
|
34
|
Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y, Luo L, Yang Y, Huang H, Chen A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134751. [PMID: 31710903 DOI: 10.1016/j.scitotenv.2019.134751] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 05/28/2023]
Abstract
Biochar and compost have been widely used for pollution remediation of heavy metals in soil. However, little research was conducted to explore the efficiency of biochar, compost and their combination to reduce heavy metals availability, and the effects of their additive on soil biological properties are often neglected. Therefore, this study investigated the effects of biochar, compost and their combination on availability of heavy metals, physicochemical features and enzyme activities in soil. Results showed that adding amendments to polluted soil significantly altered soil properties. Compared to the separate addition of biochar or compost, their combined application was more effective to improve soil pH, organic matter (OM), organic carbon (TOC) and available potassium (AK). All amendments significantly decreased the availability of Cd and Zn, but slightly activated As and Cu. In addition, soil enzyme activities were activated by compost and inhibited by biochar, but exhibited highly variable responses to their combinations. Pearson correlation analysis indicated that electrical conductivity (EC) and AK were the most important environmental factors affecting metal availability and soil enzyme activities including dehydrogenase, catalase, β-glucosidase, urease, acid and alkaline phosphatase, arylsulfatase except for protease and invertase. Availability of As, Cu, Cd and Zn affected dehydrogenase, catalase and urease activities. These results indicated that biochar, compost and their combination have significant effects on physicochemical features, metals availability and enzyme activities in heavy metal-polluted soil.
Collapse
Affiliation(s)
- Jiayi Tang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Yuanyuan Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
35
|
Ahmad A, Arif MS, Yasmeen T, Riaz M, Rizwan M, Shahzad SM, Ali S, Riaz MA, Sarosh M. Seasonal variations of soil phosphorus and associated fertility indicators in wastewater-irrigated urban aridisol. CHEMOSPHERE 2020; 239:124725. [PMID: 31499300 DOI: 10.1016/j.chemosphere.2019.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Use of wastewater is known to provide nutrients for crop plants, but its potential to improve phosphorus (P) availability in semi-arid regions is poorly understood. In this study, seasonal changes in soil P availability as well as associated phyiscochemical and biochemical indicators were investigated from the wastewater irrigated urban soils of Faisalabad, Pakistan. Soil sampling was carried out during summer and winter season from four wastewater irrigated sites of varied stream flow i.e. upstream wastewater (UWW), midstream wastewater (MWW), lowerstream wastewater (LWW) and downstream wastewater (DWW), and canal water irrigation (CWI) as a reference site. Across seasons, MWW site had significantly higher soil organic carbon (SOC), water extractable organic carbon (WEOC), microbial biomass carbon (MBC), microbial biomass phosphorus (MBP) as well as the availability of phosphorus i.e. NaHCO3-P and H2O-P compared to CWI site. In both sampling seasons, MWW site also recorded significantly higher soil enzyme activities compared to the rest of wastewater sites. Moreover, significantly higher total P and electrical conductivity (EC) of soil was noticed at DWW site across both summer and winter seasons. Biplot principle component analysis also indicated seasonally a stronger shift in soil total P and EC at DWW site. On the other hand, availability of P was closely related to soil active carbon pools at MWW site. However, buildup of soil salinity particularly at DWW site along with lower P availability and associated changes in other soil properties, call for careful assessment of wastewater use in these urban soils.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Asam Riaz
- Department of Entomology, University College of Agriculture, University of Sargodha, Pakistan
| | - Mudassir Sarosh
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
36
|
Guoqing X, Xiuqin C, Liping B, Hongtao Q, Haibo L. Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: A field trial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109360. [PMID: 31265970 DOI: 10.1016/j.ecoenv.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Interest in the application of sewage sludge as amendments to grow trees has continued to increase, especially for fast-growing trees such as poplars. In this study, two-year field trial was conducted to determine the effects of compost sewage sludge (CSS) soil application on the distributions of metal and nutrient elements in poplars (Populus × euramericana 'Guariento') and poplar growth. Soil was amended with one of four CSS treatments in both study years: control (2012, 2013: 0 t/ha), SS1 (2012: 7.5 t/ha, 2013: 15 t/ha), SS2 (2012: 15 t/ha, 2013: 30 t/ha), and SS3 (2012: 30 t/ha, 2013: 45 t/ha). During the two-year field trial period, CSS treatments significantly affected leaf K, Mg, Ni, Cr, and Pb contents and root P contents. The element contents in different plant parts responded differently to the different CSS application rates; microelement contents in roots and trace element contents in leaves were significantly affected by the high sludge treatment. The CSS application significantly influenced Ca, Na, Cu, Ni, and Pb accumulation in aerial parts of poplar and the distributions of N, S, Ni, Mg, and P between roots and leaves or stems, and significantly increased the diameter at breast height (DBH) of poplars by 2.4-18.6%. The CSS application of 15 t/ha per year resulted in the largest average increase in DBH of 11.1%; therefore, it could be considered as the most suitable application rate. In summary, CSS application can improve nutrition uptake in various parts of poplars and promote the growth of poplar. Poplar forest amendment is a good CSS disposal strategy.
Collapse
Affiliation(s)
- Xu Guoqing
- Key Laboratory of Urban Rainwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China
| | - Cao Xiuqin
- Key Laboratory of Urban Rainwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Bai Liping
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China.
| | - Qi Hongtao
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China
| | - Lu Haibo
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China
| |
Collapse
|
37
|
Effects of Different Biochars on Wheat Growth Parameters, Yield and Soil Fertility Status in a Silty Clay Loam Soil. Molecules 2019; 24:molecules24091798. [PMID: 31075937 PMCID: PMC6540089 DOI: 10.3390/molecules24091798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
The conversion of organic wastes into biochar via the pyrolysis technique could be used to produce soil amendments useful as a source of plant nutrients. In this study, we investigated the effects of fruit peels and milk tea waste-derived biochars on wheat growth, yield, root traits, soil enzyme activities and nutrient status. Eight amendment treatments were tested: no amendment (CK), chemical fertilizer (CF), banana peel biochar 1% (BB1 + CF), banana peel biochar 2% (BB2 + CF), orange peel biochar 1% (OB1 + CF), orange peel biochar 2% (OB2 + CF), milk tea waste biochar 1% (TB1 + CF) and milk tea waste biochar 2% (TB2 + CF). The results indicated that chlorophyll values, plant height, grain yield, dry weight of shoot and root were significantly (p < 0.05) increased for the TB2 + CF treatment as compared to other treatments. Similarly, higher contents of nutrients in grains, shoots and roots were observed for TB2 + CF: N (61.3, 23.3 and 7.6 g kg−1), P (9.2, 10.4 and 8.3 g kg−1) and K (9.1, 34.8 and 4.4 g kg−1). Compared to CK, the total root length (41.1%), surface area (56.5%), root volume (54.2%) and diameter (78.4%) were the greatest for TB2 + CF, followed by BB2 + CF, OB2 + CF, TB1 + CF, BB1 + CF, OB1 + CF and CF, respectively. However, BB + CF and OB + CF treatments increased β-glucosidase and dehydrogenase, but not urease activity, as compared to the TB + CF amendment, while all enzyme activity decreased with the increased biochar levels. We concluded that the conversion of fruit peels and milk tea waste into biochar products contribute the benefits of environmental and economic issues, and should be tested as soil amendments combined with chemical fertilizers for the improvement of wheat growth and grain yield as well as soil fertility status under field conditions.
Collapse
|
38
|
Sial TA, Liu J, Zhao Y, Khan MN, Lan Z, Zhang J, Kumbhar F, Akhtar K, Rajpar I. Co-Application of Milk Tea Waste and NPK Fertilizers to Improve Sandy Soil Biochemical Properties and Wheat Growth. Molecules 2019; 24:E423. [PMID: 30682802 PMCID: PMC6384766 DOI: 10.3390/molecules24030423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Desert soil is one of the most severe conditions which negatively affect the environment and crop growth production in arid land. The application of organic amendments with inorganic fertilizers is an economically viable and environmentally comprehensive method to develop sustainable agriculture. The aim of this study was to assess whether milk tea waste (TW) amendment combined with chemical fertilizer (F) application can be used to improve the biochemical properties of sandy soil and wheat growth. The treatments included control without amendment (T1), chemical fertilizers (T2), TW 2.5% + F (T3), TW 5% + F (T4) and TW 10% + F (T5). The results showed that the highest chlorophyll (a and b) and carotenoids, shoot and root dry biomass, and leaf area index (LAI) were significantly (p < 0.05) improved with all amendment treatments. However, the highest root total length, root surface area, root volume and diameter were recorded for T4 among all treatments. The greater uptake of N, P, and K contents for T4 increased for the shoot by 68.9, 58.3, and 57.1%, and for the root by 65.7, 34.3, and 47.4% compared to the control, respectively. Compared with the control, T5 treatment decreased the soil pH significantly (p < 0.05) and increased soil enzyme activities such as urease (95.2%), β-glucosidase (81.6%) and dehydrogenase (97.2%), followed by T4, T3, and T2. Our findings suggested that the integrated use of milk tea waste and chemical fertilizers is a suitable amendment method for improving the growth and soil fertility status of sandy soils.
Collapse
Affiliation(s)
- Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Pakistan.
| | - Jiao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Ying Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
- College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China.
| | - Muhammad Numan Khan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Zhilong Lan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Jianguo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Farhana Kumbhar
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Kashif Akhtar
- Department of Agronomy, The University of Agriculture, Peshawar 25000, Pakistan.
| | - Inayatullah Rajpar
- Department of Soil Science, Sindh Agriculture University, Tandojam 70060, Pakistan.
| |
Collapse
|
39
|
Ferreira CSS, Pereira P, Kalantari Z. Human impacts on soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:830-834. [PMID: 30743880 DOI: 10.1016/j.scitotenv.2018.06.391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Carla S S Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities g. 20, LT-8303 Vilnius, Lithuania.
| | - Zahra Kalantari
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|