1
|
Huang Y, Deng M, Zhou S, Xue Y, Yeerken S, Wang Y, Li L, Song K. Microbial mechanisms underlying the reduction of N 2O emissions from submerged plant covered system. WATER RESEARCH X 2025; 28:100314. [PMID: 40007796 PMCID: PMC11849602 DOI: 10.1016/j.wroa.2025.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Submerged plant (SP) restoration is a crucial strategy for restoring aquatic ecosystem. However, the effect of SP on nitrous oxide (N2O) emissions remains controversial, and the impact of SP-attached biofilms on N2O emissions is often overlooked. In this study, SP and non-submerged plant (NSP) systems were set up and operated continuously for 189 days, revealing that SP reduced N2O flux by 42.4 %. By comparing the N2O net emission rates from water, sediment, and biofilms, we identified biofilms as the primary medium responsible for the reduction in N2O emissions in both SP and NSP systems. Further analysis of N2O metabolic rates from nitrification, denitrification, and abiotic processes under light and dark conditions confirmed that counter-diffusion of dissolved oxygen and nutrients in SP biofilms plays a key role in reducing denitrification-driven N2O emissions. Additionally, SP-attached biofilms increased nosZII-type denitrifiers (e.g., Bacillus) and reduced N2O production potential ((nirS+nirK)/(nosZI+nosZII)). Notably, the establishment of a SP restoration project in a typical eutrophic freshwater lake demonstrated that SP could reduce N2O fluxes by 61.5 %. This study provides significant insights for strategies aimed at mitigating N2O emissions.
Collapse
Affiliation(s)
- Yongxia Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shuni Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lu Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Kang Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| |
Collapse
|
2
|
Deng X, Xu T, Zhang F, Xue L, Yang L, Hou P. Effects of warming and fertilization on nirK-, nirS- and nosZ-type denitrifier communities in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177057. [PMID: 39442729 DOI: 10.1016/j.scitotenv.2024.177057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The effects of fertilization on soil denitrifying microorganisms are well-documented. However, the impact of global warming on these microorganisms, particularly regarding the interaction with fertilization, remains poorly understood. Here, a 4-year field warming experiment that included experimental warming (ET) and ambient temperature control (AC), with nitrogen (N) fertilizer applied (CF) or without N fertilizer (CK), was employed to assess the response of the abundance and community of nirK-, nirS- and nosZ- type denitrifiers to warming and fertilization in paddies, and to understand their relationship with potential denitrification rate (PDR). The results showed that warming amplified the positive effect of fertilization on abundance of nirK and nirS genes, while the abundance of nosZ remained unaffected. The copies of nirK and nirS under the ET-CF treatment were notably higher than in the other treatments. In the terms of biodiversity, warming diminished the effect of fertilization on the α-diversity of nirK and nirS, but it did not influence the α-diversity of nosZ. Besides, warming intensified the effect of fertilization on the β-diversity of nirK, while the β-diversity of nirS and nosZ remained unchanged in response to fertilization. Additionally, the community structure of denitrifiers varied with warming and/or fertilization. Specifically, Mesorhizobium (nirK), Proteobacteria (nirS) and Rhizobiales (nosZ) were dominant in AC-CK treatment. In the AC-CF treatment, Proteobacteria (nirK/S), Rhizobiales (nosZ) were the main taxa. For the ET treatments (ET-CF, ET-CK), Bradyrhizobiaceae (nirK), Proteobacteria (nirS) and Alphaproteobacteria (nosZ) were predominant. Correlation analysis revealed that soil pH, carbon and N content were the primary factors influencing nirK-, nirS-and nosZ- type denitrifiers. Moreover, PDR showed a positive relationship with nirK abundance, α-diversity of nosZ, and SOC. Overall, the results demonstrate that warming can modify the response of denitrifiers to fertilization, subsequently affecting denitrification rates, a phenomenon that merits attention.
Collapse
Affiliation(s)
- Xuzhe Deng
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tingting Xu
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangqi Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfu Hou
- Key Laboratory of Agro-Environment in Downstream of Yangzi Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Jiang X, Wang M, Yang S, He D, Fang F, Yang L. The response of structure and nitrogen removal function of the biofilm on submerged macrophytes to high ammonium in constructed wetlands. J Environ Sci (China) 2024; 142:129-141. [PMID: 38527879 DOI: 10.1016/j.jes.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 03/27/2024]
Abstract
The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.
Collapse
Affiliation(s)
- Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shunqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fei Fang
- School of Resources and Environment, Anqing Normal University, Anqing 246133, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Wang H, Chen K, Jin H, Hu R. Interspecific Differences in Carbon and Nitrogen Metabolism and Leaf Epiphytic Bacteria among Three Submerged Macrophytes in Response to Elevated Ammonia Nitrogen Concentrations. PLANTS (BASEL, SWITZERLAND) 2024; 13:1427. [PMID: 38891236 PMCID: PMC11174776 DOI: 10.3390/plants13111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Submerged macrophytes in eutrophic aquatic environments adapt to changes in ammonia nitrogen (NH4-N) levels by modifying their levels of free amino acids (FAAs) and soluble carbohydrates (SCs). As symbionts of submerged macrophytes, epiphytic bacteria have obvious host specificity. In the present study, the interspecific differences in the FAA and SC contents of Hydrilla verticillata (Linn. f.) Roylep, Vallisneria natans Hara and Chara braunii Gmelin and their leaf epiphytic bacterial communities were assessed in response to increased NH4-N concentrations. The results revealed that the response of the three submerged macrophytes to NH4-N stress involved the consumption of SCs and the production of FAAs. The NH4-N concentration had a greater impact on the variation in the FAA content, whereas the variation in the SC content was primarily influenced by the species. At the phylum level, the relative abundance of Nitrospirota on the leaves exhibited specific differences, with the order H. verticillata > V. natans > C. braunii. The dominant genera of epiphytic bacteria with denitrification effects on V. natans, H. verticillata and C. braunii leaves were Halomonas, Acinetobacter and Bacillus, respectively. When faced with NH4-N stress, the variation in epiphytic bacterial populations associated with ammonia oxidation and denitrification among submerged macrophytes could contribute to their divergent responses to heightened nitrogen levels.
Collapse
Affiliation(s)
- Heyun Wang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of River and Lake, Ministry of Education, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; (K.C.)
| | | | | | | |
Collapse
|
5
|
Jing Z, Tu S, Yuan P, Liu X, Wang S, Dong B, Li Q, Gao H. The ecological role of microbiome at community-, taxonomic - and genome-levels in black-odorous waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133673. [PMID: 38340561 DOI: 10.1016/j.jhazmat.2024.133673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/17/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Black-odorous waters (BOWs) are heavily polluted waters where microbial information remains elusive mechanistically. Based on gene amplicon and metagenomics sequencing, a comprehensive study was conducted to investigate the microbial communities in urban and rural BOWs. The results revealed that microbial communities' assembly in urban and rural BOWs was predominantly governed by stochastic factors at the community level. At the taxonomic level, there were 62 core species (58.48%) in water and 207 core species (44.56%) in sediment across urban and rural areas. Notably, significant differences were observed in the functional genetic composition of BOWs between urban and rural areas. Specifically, rural areas exhibited an enhanced abundance of genes involved in nitrogen fixation, Fe2+ transport, and sulfate reduction. Conversely, urban areas showed higher abundances of some genes associated with carbon fixation, nitrification and denitrification. A sulfur-centered ecological model of microbial communities was constructed by integrating data from the three levels of analysis, and 14 near-complete draft genomes were generated, representing a substantial portion of the microbial community (35.04% in rural BOWs and 29.97% in urban BOWs). This research provides significant insights into the sustainable management and preservation of aquatic ecosystems affected by BOWs.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Siyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| |
Collapse
|
6
|
Liu L, Wang H, Guo Y, Yan Q, Chen J. Human-induced homogenization of microbial taxa and function in a subtropical river and its impacts on community stability. WATER RESEARCH 2024; 252:121198. [PMID: 38295455 DOI: 10.1016/j.watres.2024.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Combination of taxa and function can provide a more comprehensive picture on human-induced microbial homogenization. Here, we obtained 2.58 billion high-throughput sequencing reads and 479 high-quality metagenome-assembled genomes (MAGs) of planktonic microbial communities in a subtropical river for 5 years. We found the microbial taxa homogenization and functional homogenization were uncoupled. Although human activities in downstream sites significantly decreased the taxonomic diversity of non-abundant ASV communities (16S rRNA gene amplicon sequence variants), they did not significantly decrease the taxonomic diversity of abundant ASV and total observed MAG communities. However, the total observed MAG communities in downstream sites tended to homogenize into some specific taxa which encode human-activity-related functional genes, such as nutrient cycles, greenhouse gas emission, antibiotic and arsenic resistance. Those specific MAGs with high taxonomic diversity caused the weak heterogenization of total observed MAG communities in downstream sites. Moreover, functional homogenization promoted the synchrony among downstream MAGs, and these MAGs constructed some specific network modules might to synergistically execute or resist the human-activity-related functions. High synchrony also led to the tandem effects among MAGs and thus decreased community stability. Overall, our findings revealed the links of microbial taxa, functions and stability under human activity impacts, and provided a strong evidence to encourage us re-thinking biotic homogenization based on microbial taxa and their functional attributes.
Collapse
Affiliation(s)
- Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| | - Hongwei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China
| | - Yisong Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China
| | - Qi Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Institute of Natural Products and Traditional Chinese Medicine Modernization, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Jiang X, Wang M, He D, Zhu J, Yang S, Fang F, Yang L. Submerged macrophyte promoted nitrogen removal function of biofilms in constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169666. [PMID: 38184255 DOI: 10.1016/j.scitotenv.2023.169666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/23/2023] [Indexed: 01/08/2024]
Abstract
Biofilm is one of the important factors affecting nitrogen removal in constructed wetlands (CWs). However, the impact of submerged macrophyte on nitrogen conversion of biofilms on leaf of submerged macrophyte and matrix remains poorly understood. In this study, the CWs with Vallisneria natans and with artificial plant were established to investigate the effects of submerged macrophyte on nitrogen conversion and the composition of nitrogen-converting bacteria in leaf and matrix biofilms under high ammonium nitrogen (NH4+-N) loading. The 16S rRNA sequencing method was employed to explore the changes in bacterial communities in biofilms in CWs. The results showed that average removal rates of total nitrogen and NH4+-N in CW with V. natans reached 71.38% and 82.08%, respectively, representing increases of 24.19% and 28.79% compared with the control with artificial plant. Scanning electron microscope images indicated that high NH4+-N damaged the leaf cells of V. natans, leading to the cellular content release and subsequent increases of aqueous total organic carbon. However, the specific surface area and carrier function of V. natans were unaffected within 25 days. As a natural source of organic matters, submerged macrophyte provided organic matters for bacterial growth in biofilms. Bacterial composition analysis revealed the predominance of phylum Proteobacteria in CW with V. natans. The numbers of nitrifiers and denitrifiers in leaf biofilms reached 1.66 × 105 cells/g and 1.05 × 107 cells/g, as well as 2.79 × 105 cells/g and 7.41 × 107 cells/g in matrix biofilms, respectively. Submerged macrophyte significantly increased the population of nitrogen-converting bacteria and enhanced the expressions of nitrification genes (amoA and hao) and denitrification genes (napA, nirS and nosZ) in both leaf and matrix biofilms. Therefore, our study emphasized the influence of submerged macrophyte on biofilm functions and provided a scientific basis for nitrogen removal of biofilms in CWs.
Collapse
Affiliation(s)
- Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Di He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shunqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Fei Fang
- School of Resources and Environment, Anqing Normal University, Anqing 246133, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Dey Chowdhury S, Bhunia P, Surampalli RY, Zhang TC. Effects of bed depths and the ratio of aerobic to anaerobic zone on the performance of horizontal subsurface flow macrophyte-assisted high-rate vermifilters treating synthetic brewery wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10993. [PMID: 38348629 DOI: 10.1002/wer.10993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Effects of total vermibed depth, as well as the ratio of aerobic (the unsubmerged) to anaerobic (the submerged) zone on the performance of the horizontal subsurface flow macrophyte-assisted vermifilters (HSSF-MAVFs) treating synthetic brewery wastewater at a higher hydraulic loading rate (HLR), were investigated for the first time. Results showed that the HSSF-MAVF with a 50 cm total and 18 cm submerged vermibed depth yielded the optimum removal of the pollutants, ensuring a (91.2 ± 1.7)%, (81.8 ± 1.9)%, (67.4 ± 3.9)%, and (63.1 ± 2.3)% removal of chemical oxygen demand (COD), ammonium N (NH4 + -N), total N (TN), and organic N, respectively, whereas there was an increase of (142 ± 6.3)% in the effluent nitrate-N (NO3 - -N) than that in the influent. At the optimum condition, the effluent concentrations of all the pollutants including COD, NH4 + -N, NO3 - -N, TN, and organic N were well below the surface water discharge standards specified by the Central Pollution Control Board (CPCB), and thus, the effluent of the HSSF-MAVF could be safely discharged into the surface water bodies. PRACTITIONER POINTS: Total vermibed depth of HSSF-MAVFs was optimized for organic and nitrogen removal. HSSF-MAVFs were subjected to the higher HLR of synthetic brewery wastewater. Removal of COD and NH4 + -N was decreased with the increase in submerged bed depth. Removal of organic N and TN was increased with the increase in submerged bed depth. Total/unsubmerged bed depth had a positive impact on the organic and N removal.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Puspendu Bhunia
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Rao Y Surampalli
- Global Institute for Energy, Environment, and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, Scott Campus (Omaha), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
9
|
Deng H, Li Q, Li M, Sun L, Li B, Wang Y, Wu QL, Zeng J. Epiphytic microorganisms of submerged macrophytes effectively contribute to nitrogen removal. ENVIRONMENTAL RESEARCH 2024; 242:117754. [PMID: 38016497 DOI: 10.1016/j.envres.2023.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Submerged macrophytes play important roles in nutrient cycling and are widely used in ecological restoration to alleviate eutrophication and improve water quality in lakes. Epiphytic microbial communities on leaves of submerged macrophytes might promote nitrogen cycling, but the mechanisms and quantification of their contributions remain unclear. Here, four types of field zones with different nutrient levels and submerged macrophytes, eutrophic + Vallisneria natans (EV), eutrophic + V. natans + Hydrilla verticillata, mesotrophic + V. natans + H. verticillata, and eutrophic without macrophytes were selected to investigate the microbial communities that involved in nitrification and denitrification. The alpha diversity of bacterial community was higher in the phyllosphere than in the water, and that of H. verticillata was higher compared to V. natans. Bacterial community structures differed significantly between the four zones. The highest relative abundance of dominant bacterioplankton genera involved in nitrification and denitrification was observed in the EV zone. Similarly, the alpha diversity of the epiphytic ammonia-oxidizing archaea and nosZI-type denitrifiers were highest in the EV zone. Consist with the diversity patterns, the potential denitrification rates were higher in the phyllosphere than those in the water. Higher potential denitrification rates in the phyllosphere were also found in H. verticillata than those in V. natans. Anammox was not detected in all samples. Nutrient loads, especially nitrogen concentrations were important factors influencing potential nitrification, denitrification rates, and bacterial communities, especially for the epiphytic nosZI-type taxa. Overall, we observed that the phyllosphere harbors more microbes and promotes higher denitrification rates compared to water, and epiphytic bacterial communities are shaped by nitrogen nutrients and macrophyte species, indicating that epiphytic microorganisms of submerged macrophytes can effectively contribute to the N removal in shallow lakes.
Collapse
Affiliation(s)
- Hongyang Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Lijie Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yujing Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China.
| |
Collapse
|
10
|
Wang X, Liu Y, Qing C, Zeng J, Dong J, Xia P. Analysis of diversity and function of epiphytic bacterial communities associated with macrophytes using a metagenomic approach. MICROBIAL ECOLOGY 2024; 87:37. [PMID: 38286834 PMCID: PMC10824801 DOI: 10.1007/s00248-024-02346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Epiphytic bacteria constitute a vital component of aquatic ecosystems, pivotal in regulating elemental cycling. Despite their significance, the diversity and functions of epiphytic bacterial communities adhering to various submerged macrophytes remain largely unexplored. In this study, we employed a metagenomic approach to investigate the diversity and function of epiphytic bacterial communities associated with six submerged macrophytes: Ceratophyllum demersum, Hydrilla verticillata, Myriophyllum verticillatum, Potamogeton lucens, Stuckenia pectinata, and Najas marina. The results revealed that the predominant epiphytic bacterial species for each plant type included Pseudomonas spp., Microbacterium spp., and Stenotrophomonas rhizophila. Multiple comparisons and linear discriminant analysis effect size indicated a significant divergence in the community composition of epiphytic bacteria among the six submerged macrophytes, with 0.3-1% of species uniquely identified. Epiphytic bacterial richness associated with S. pectinata significantly differed from that of both C. demersum and H. verticillata, although no significant differences were observed in diversity and evenness. Functionally, notable variations were observed in the relative abundances of genes associated with carbon, nitrogen, and phosphorus cycling within epiphytic bacterial communities on the submerged macrophyte hosts. Among these communities, H. verticillata exhibited enrichment in genes related to the 3-hydroxypropionate bicycle and nitrogen assimilation, translocation, and denitrification. Conversely, M. verticillatum showcased enrichment in genes linked to the reductive citric acid cycle (Arnon-Buchanan cycle), reductive pentose phosphate cycle (Calvin cycle), polyphosphate degradation, and organic nitrogen metabolism. In summary, our findings offer valuable insights into the diversity and function of epiphytic bacteria on submerged macrophyte leaves, shedding light on their roles in lake ecosystems.
Collapse
Affiliation(s)
- Xin Wang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Yi Liu
- Guizhou Caohai National Nature Reserve Management Committee, Weining, 55310, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institutie of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Jixing Dong
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Wang JF, Cai ZX, Li YH, Sun YY, Wu HM, Song XS, Zhu H. Microbiota and genetic potential for reducing nitrous oxide emissions by biochar in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166489. [PMID: 37611707 DOI: 10.1016/j.scitotenv.2023.166489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The denitrification process in constructed wetlands (CWs) is responsible for most of the nitrous oxide (N2O) emissions, which is an undesired impact on the ecology of sewage treatment systems. This study compared three types of CWs filled with gravel (CW-B), gravel mixed with natural pyrite (CW-BF), or biochar (CW-BC) to investigate their impact on microbiota and genetic potential for N2O generation during denitrification under varying chemical oxygen demand (COD) to nitrate (NO3--N) ratios. The results showed that natural pyrite and biochar were superior in enhancing COD (90.6-91.2 %) and NO3--N removal (90.0-93.5 %) in CWs with a COD/NO3--N ratio of 9. The accumulation of NO2--N during the denitrification process was the primary cause of N2O emission, with the fluxes ranging from 95.6-472.0 μg/(m2·h) in CW-B, 92.9-400 μg/(m2·h) in CW-BF, and 54.0-293.3 μg/(m2·h) in CW-BC. The addition of biochar significantly reduced N2O emissions during denitrification, while natural pyrite had a lesser inhibitory effect on N2O emissions. The three types of substrates also influenced the structure of microbiota in the biofilm, with natural pyrite enriched nitrogen transformation microorganisms, especially for denitrifiers. Notably, biochar significantly enhanced the abundance of nosZ and the ratio of nosZ/(norB + norC), which are critical factors in reducing N2O emissions from CWs. Overall, the results suggest that the biochar-induced changes in microbiota and genetic potential during denitrification play a significant role in preventing N2O production in CWs, especially when treating sewage with a relatively high COD/NO3--N ratio.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Yi-Hao Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
12
|
Xiao C, Chen J, Chen D, Chen R, Song X. Mechanism of sinuosity effect on self-purification capacity of rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112184-112193. [PMID: 37831257 DOI: 10.1007/s11356-023-30285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
As one of the important characteristics of river morphology, river sinuosity has a direct impact on the river water quality and self-purification capacity. In the present study, 4 physical river channel simulation models using circulating water with a sinuosity of 2.2, 1.8, 1.4, and 1.0, respectively, were established in our laboratory. Related hydraulic tests and detection were performed, including the detection of microbial communities in overlying water, monitoring of the river flow velocity and depth, and observation of the river flow line and bank scouring. The results show that the TN reduction rate at a sinuosity of 2.2 was 1.09, 1.20, and 1.75 times that at a sinuosity of 1.8, 1.4, and 1.0, respectively. And the total plate count for the set of tests with a sinuosity of 2.2 was 3.32 times that for the set of tests with a straight channel. The sinuous rivers have more complex flow regimes, more suitable hydraulic conditions, larger hyporheic zone areas, better microbial environments, and longer river flow paths, giving them a higher purification capacity against pollution. These findings can provide a theoretical basis for the optimization of water system layout and the restoration of river environments in the process of urbanization in China.
Collapse
Affiliation(s)
- Chenguang Xiao
- Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huaihe River Commission, Ministry of Water Resources of the People's Republic of China, Hefei, 230088, China.
| | - Jing Chen
- Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Dan Chen
- Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Ruidong Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Xia Song
- Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huaihe River Commission, Ministry of Water Resources of the People's Republic of China, Hefei, 230088, China
| |
Collapse
|
13
|
Li X, Li Y, Wu J. Different in root exudates and rhizosphere microorganisms effect on nitrogen removal between three emergent aquatic plants in surface flow constructed wetlands. CHEMOSPHERE 2023; 337:139422. [PMID: 37422212 DOI: 10.1016/j.chemosphere.2023.139422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Swine wastewater contains high concentration of nitrogen (N), causing pollution of surrounding water bodies. Constructed wetlands (CWs) are considered as an effective ecological treatment measure to remove nitrogen. Some emergent aquatic plants could tolerate high ammonia, and play a crucial part in CWs to treat high concentration N wastewater. However, the mechanism of root exudates and rhizosphere microorganisms of emergent plants on nitrogen removal is still unclear. Effects of organic and amino acids on rhizosphere N cycle microorganisms and environmental factors across three emergent plants were investigated in this study. The highest TN removal efficiency were 81.20% in surface flow constructed wetlands (SFCWs) plant with Pontederia cordata. The root exudation rates results showed that organic and amino acids were higher in 56 d than that in 0 d in SFCWs plants with Iris pseudacorus and P. cordata. The highest ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) gene copy numbers were found in I. pseudacorus rhizosphere soil, while the highest nirS, nirK, hzsB and 16S rRNA gene copy numbers were detected in P. cordata rhizosphere soil. Regression analysis results demonstrated that organic and amino acids exudation rates were positive related to rhizosphere microorganisms. These results indicated that organic and amino acids secretion could stimulate growth of emergent plants rhizosphere microorganisms in SFCWs for swine wastewater treatment. In addition, the EC, TN, NH4+-N and NO3--N were negatively correlated with organic and amino acids exudation rates, and abundances of rhizosphere microorganisms via Pearson correlation analysis. These results imply that organic and amino acids, and rhizosphere microorganisms synergically affected on the nitrogen removal in SFCWs.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Hu S, He R, He X, Zeng J, Zhao D. Niche-Specific Restructuring of Bacterial Communities Associated with Submerged Macrophyte under Ammonium Stress. Appl Environ Microbiol 2023; 89:e0071723. [PMID: 37404156 PMCID: PMC10370296 DOI: 10.1128/aem.00717-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Submerged macrophytes and their epiphytic microbes form a "holobiont" that plays crucial roles in regulating the biogeochemical cycles of aquatic ecosystems but is sensitive to environmental disturbances such as ammonium loadings. Increasingly more studies suggest that plants may actively seek help from surrounding microbial communities whereby conferring benefits in responding to particular abiotic stresses. However, empirical evidence is scarce regarding how aquatic plants reconstruct their microbiomes as a "cry-for-help" against acute ammonium stress. Here, we investigated the temporal dynamics of the phyllosphere and rhizosphere bacterial communities of Vallisneria natans following ammonium stress and recovery periods. The bacterial community diversity of different plant niches exhibited opposite patterns with ammonium stress, that is, decreasing in the phyllosphere while increasing in the rhizosphere. Furthermore, both phyllosphere and rhizosphere bacterial communities underwent large compositional changes at the end of ammonium stress, significantly enriching of several nitrifiers and denitrifiers. Meanwhile, bacterial legacies wrought by ammonium stress were detected for weeks; some plant growth-promoting and stress-relieving bacteria remained enriched even after stress disappeared. Structural equation model analysis showed that the reshaped bacterial communities in plant niches collectively had a positive effect on maintaining plant biomass. Additionally, we applied an age-prediction model to predict the bacterial community's successional trajectory, and the results revealed a persistent change in bacterial community development under ammonium treatment. Our findings highlight the importance of plant-microbe interactions in mitigating plant stress and fostering a better understanding of the assembly of plant-beneficial microbes under ammonium stress in aquatic ecosystems. IMPORTANCE Increasing anthropogenic input of ammonium is accelerating the decline of submerged macrophytes in aquatic ecosystems. Finding efficient ways to release submerged macrophytes from ammonium stress is crucial to maintain their ecological benefits. Microbial symbioses can alleviate abiotic stress in plants, but harnessing these beneficial interactions requires a detailed understanding of plant microbiome responses to ammonium stress, especially over a continuous time course. Here, we tracked the temporal changes in bacterial communities associated with the phyllosphere and rhizosphere of Vallisneria natans during ammonium stress and recovery periods. Our results showed that severe ammonium stress triggers a plant-driven timely reshaping of the associated bacterial community in a niche-specific strategy. The reassembled bacterial communities could potentially benefit the plant by positively contributing to nitrogen transformation and plant growth promotion. These findings provide empirical evidence regarding the adaptive strategy of aquatic plants whereby they recruit beneficial microbes against ammonium stress.
Collapse
Affiliation(s)
- Siwen Hu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiaowei He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| |
Collapse
|
15
|
Chen D, Samwini AMN, Manirakiza B, Addo FG, Numafo-Brempong L, Baah WA. Effect of erythromycin on epiphytic bacterial communities and water quality in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159008. [PMID: 36162586 DOI: 10.1016/j.scitotenv.2022.159008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of antibiotics such as erythromycin (ERY) under macrolide group, has long been acknowledged for negatively affecting ecosystems in freshwater environments. However, the effects of ERY on water quality and microbial communities in epiphytic biofilms are poorly understood. Here, Scanning Electron Microscopy (SEM), High-throughput sequencing, and physicochemical analytical methods were employed to unravel the impact of ERY on the water quality and bacterial morphology, biodiversity, composition, interaction, and ecological function in epiphytic biofilms attached to Vallisneria natans and artificial plants in mesocosmic wetlands. The study showed that ERY exposure significantly impaired the nutrient removal capacity (TN, TP, and COD) and altered the epiphytic bacterial morphology of V. natans and artificial plants. ERY did not affect the bacterial α-diversity. Notwithstanding ERY decreased the bacterial composition, but the relative abundance of Proteobacteria and Patescibacteria spiked by 62.2 % and 54 %, respectively, in V. natans, while Desulfobacteria and Chloroflexi increased by 8.9 % and 11.2 %, respectively, in artificial plants. Notably, ERY disturbed the food web structure and metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, cofactor and vitamin metabolism, membrane transport, and signal transduction. This study revealed that ERY exposure disrupted the bacterial morphology, composition, interaction or food web structure, and metabolic functions in epiphytic biofilm. These data underlined that ERY negatively impacts epiphytic bacterial communities and nutrient removal in wetlands.
Collapse
Affiliation(s)
- Deqiang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Abigail Mwin-Nea Samwini
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lydia Numafo-Brempong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Wambley Adomako Baah
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
16
|
Liu F, Li K. Comparison of epiphytic and intestinal bacterial communities in freshwater snails ( Bellamya aeruginosa) living on submerged plants. PeerJ 2022; 10:e14318. [PMID: 36348666 PMCID: PMC9637354 DOI: 10.7717/peerj.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
The combination of submerged plants and snails can combat eutrophication of freshwater systems by suppressing algal growth and assimilating nutrients. By consuming epiphytes, snails can benefit the growth of submerged plants. However, the efficiency of this phytoremediation strategy may depend on the microbes associated with the plants and snails. In this study, we compared the epiphytic bacterial communities on submerged plants (Vallisneria natans and Cabomba caroliniana) and intestinal bacterial communities of a snail, Bellamya aeruginosa, found on these plants using 16S rRNA gene sequencing. Epiphytic bacterial communities were similar between the two plant species and snails shared a high proportion of snail intestinal bacterial OTUs (75%) and genera (85%) with plants they grazed on. However, significant variations of Bray-Curtis distances differentiated epiphytic and intestinal bacterial communities. In addition, between the top 50 genera shared by intestinal and epiphytic bacterial communities, more Spearman correlations were detected within bacterial communities associated with snails than between communities associated with plants (190 vs. 143), and the correlations in epiphytic bacterial networks were more concentrated on certain genera, indicating they possessed distinct bacterial networks. This suggests the bacterial communities associated with snails do not depend strongly on the plant they graze on, which may be important for better understanding the role of snails in aquatic eco-restoration.
Collapse
Affiliation(s)
- Fucai Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
Chen Z, Dolfing J, Zhuang S, Wu Y. Periphytic biofilms-mediated microbial interactions and their impact on the nitrogen cycle in rice paddies. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:172-180. [PMID: 38075597 PMCID: PMC10702904 DOI: 10.1016/j.eehl.2022.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 01/03/2024]
Abstract
Rice paddies are unique waterlogged wetlands artificially constructed for agricultural production. Periphytic biofilms (PBs) at the soil-water interface play an important role in rice paddies characterized by high nutrient input but low utilization efficiency. PBs are composed of microbial aggregates, including a wide variety of microorganisms (algae, bacteria, fungi, protozoa, and metazoa), extracellular polymeric substances and minerals (iron, aluminum, and calcium), which form an integrated food web and energy flux within a relatively stable micro-ecosystem. PBs are crucial to regulate and streamline the nitrogen cycle by neutralizing nitrogen losses and improving rice production since PBs can serve as both a sink by capturing surplus nitrogen and a source by slowly re-releasing this nitrogen for reutilization. Here the ecological advantages of PBs in regulating the nitrogen cycle in rice paddies are illustrated. We summarize the key functional importance of PBs, including the intricate and delicate community structure, microbial interactions among individual phylotypes, a wide diversity of self-produced organics, the active adaptation of PBs to constantly changing environments, and the intricate mechanisms by which PBs regulate the nitrogen cycle. We also identify the future challenges of microbial interspecific cooperation in PBs and their quantitative contributions to agricultural sustainability, optimizing nitrogen utilization and crop yields in rice paddies.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle Upon Tyne NE1 8QH, UK
| | - Shunyao Zhuang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China
| |
Collapse
|
18
|
Yu W, Li J, Ma X, Lv T, Wang L, Li J, Liu C. Community structure and function of epiphytic bacteria attached to three submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155546. [PMID: 35489510 DOI: 10.1016/j.scitotenv.2022.155546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
In aquatic ecosystems, large amounts of epiphytic bacteria living on the leaf surfaces of submerged macrophytes play important roles in affecting plant growth and biogeochemical cycling. The restoration of different submerged macrophytes has been considered an effective measure to improve eutrophic lakes. However, the community ecology of epiphytic bacteria is far from well understood for different submerged macrophytes. In this study, we used quantitative PCR, 16S rRNA gene high-throughput sequencing and functional prediction analysis to explore the structure and function of epiphytic bacteria in an aquatic ecosystem recovered by three submerged macrophytes (Hydrilla verticillata, Vallisneria natans and Potamogeton maackianus) during two growth periods. The results showed that the community compositions and functions of epiphytic bacterial communities on the submerged macrophyte hosts were different from those of the planktonic bacterial communities in the surrounding water. The alpha diversity of the epiphytic bacterial community was significantly higher in October than in July, and the community compositions and functions differed significantly in July and October. Among the three submerged macrophytes, the structures and functions of the epiphytic bacterial community exhibited obvious differences, and some specific taxa were enriched on the biofilms of the three plants. The alpha diversity and the abundance of functions related to nitrogen and phosphorus transformation were higher in the epiphytic bacteria of P. maackianus. In summary, these results provide clues for understanding the distribution and formation mechanisms of epiphytic bacteria on submerged macrophyte leaves and their roles in freshwater ecosystems.
Collapse
Affiliation(s)
- Weicheng Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Jiahe Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Xiaowen Ma
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Jiaru Li
- College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
19
|
Chen H, Zhang S, Lv X, Guo S, Ma Y, Han B, Hu X. Interactions between suspended sediments and submerged macrophytes-epiphytic biofilms under water flow in shallow lakes. WATER RESEARCH 2022; 222:118911. [PMID: 35932704 DOI: 10.1016/j.watres.2022.118911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Suspended sediments (SS) pollution is one of the factors affecting the transfer from turbid water state to clear water state in shallow lakes. However, the interactions between suspended sediments and submerged plants are far from clear. In this study, we investigated the settlement laws of SS in overlying water and its impact on the epiphytic biofilm of Myriophyllum verticillatum and Vallisneria natans under water flow. At least 90% of turbidity can be removed from overlying water, and the decreasing trend of water turbidity fitted the logarithmic decay model in all treatments. The size distribution of SS fit the log-normal distribution model in the first 240 min after SS addition. It should be noted that the main peak particle sizes were lower in treatments with submerged macrophytes (8.71-13.18 μm) than without plants (15.14-19.95 μm). Water flow and SS addition significantly increased the thickness of biofilms attached to M. verticillatum (p < 0.05), but they together significantly reduced the biofilm thickness on V. natans (p < 0.05). SS increased the bacterial α-diversity but decreased eukaryotic one in epiphytic biofilms. However, water flow had a more significant impact on microbial communities (especially eukaryotes) than SS and plant species. The relative abundances of dominant phylum Proteobacteria, class Alphaproteobacteria and Betaproteobacteria, and class Verrucomicrobiae increased in epiphytic biofilms after SS addition. Co-occurrence networks reveal that photosynthetic microbes in epiphytic biofilms played an important role in microbial communities under water flow and SS, and many hub microbes were increased by SS addition but reduced by water flow. These data highlight that SS decline can be predicted by the logarithmic decay model and, SS and water flow can affect the epiphytic-biofilm on submerged macrophytes.
Collapse
Affiliation(s)
- Hezhou Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Xin Lv
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Yu Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Bing Han
- College of Environment, Hohai University, Nanjing 210098, P. R. China; Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
| | - Xiuren Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, P. R. China
| |
Collapse
|
20
|
Lu Y, Chow AT, Liu L, Wang Y, Zhang X, Huang S, Zhang Y. Effects of Vallisneria natans on H 2S and S 2- releases in black-odorous waterbody under additional nitrate: Comprehensive performance and microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115226. [PMID: 35550963 DOI: 10.1016/j.jenvman.2022.115226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Releases of hydrogen sulphide (H2S) and sulphur ions (S2-) through sulphate reduction in black-odorous waterbody is a great environmental health concern. Aquatic planting for blackening and odour controls has received great attention in research and practice. Nitrate concentration in black-odorous waterbody can vary significantly but little is known about the responses of aquatic plants on H2S and S2- releases under different nitrate levels. This controlled laboratory study explored the changes of H2S and S2- releases in simulated black-odorous waterbody planted with Vallisneria natans and artificial plants (control). V. natans growth was stimulated by additional nitrate (6.6 mg/L NO3--N), resulting in an increase of dissolved oxygen (DO) and pH in overlying water and an 11.0% decrease in removal efficiency of chemical oxygen demand (COD). At relatively low nitrate level (i.e., 2.0 mg/L NO3--N in the absence of additional nitrate), V. natans after the 48th day inhibited H2S and S2- releases by 81.5% and 66.8%, respectively, and their inhibition efficiencies were improved to 95.7% and 98.8% by the presence of additional nitrate. Additional nitrate reduced the relative abundance of sulphate-reducing bacteria (SRB) in the sediments while increased the relative abundance of sulphur-oxidizing bacteria (SOB) and nitrate-reducing sulphur-oxidizing bacteria (NR-SOB) in the leaf biofilms of V. natans and artificial plants. Genus compositions in leaf biofilms showed host specificity. Pearson correlation analysis showed that DO, pH, and nitrate concentration had a positive correlation with the relative abundance of SOB (Aeromonas) and NR-SOB (Hydrogenophaga), while were negatively correlated with the relative abundance of SRB (MSBL7). These results indicated that V. natans under additional nitrate altered microbial community to be unfavourable for H2S and S2- releases. This study clarified the inhibition of H2S and S2- releases by aquatic planting under additional nitrate and provided theoretical basis for improving black-odorous waterbody restoration technology.
Collapse
Affiliation(s)
- Yao Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Georgetown, SC, 29442, USA.
| | - Lijie Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Xiaoqian Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, Guangzhou, 510006, PR China.
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
21
|
Xuan Y, Mai Y, Xu Y, Zheng J, He Z, Shu L, Cao Y. Enhanced microbial nitrification-denitrification processes in a subtropical metropolitan river network. WATER RESEARCH 2022; 222:118857. [PMID: 35868099 DOI: 10.1016/j.watres.2022.118857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Urban rivers are hotspots of regional nitrogen (N) pollution and N transformations. Previous studies have reported that the microbial community of urban rivers was different from that of natural rivers. However, how microbial community affects N transformations in the urban rivers is still unclear. In this study, we employed N nutrients-related isotope technology (includes natural-abundance isotopes survey and isotope-labeling method) and bioinformatics methods (includes 16S rRNA high-throughput sequencing and quantitative PCR analysis) to investigate the major N transformations, microbial communities as well as functional gene abundances in a metropolitan river network. Our results suggested that the bacterial community structure in the highly urbanized rivers was characterized by higher richness, less complexity and increased abundances of nitrification and denitrifying bacterium compared to those in the suburban rivers. These differences were mainly caused by high sewage discharge and N loadings. In addition, the abundances of nitrifier gene (amoA) and denitrifier genes (nirK and nirS) were significantly higher in the highly urbanized rivers (2.36 × 103, 7.43 × 107 and 2.28 × 107 copies·mL-1) than that in the suburban rivers (0.43 × 103, 2.18 × 107 and 0.99 × 107 copies·mL-1). These changes in microbes have accelerated nitrification-denitrification processes in the highly urbanized rivers as compared to those in the suburban rivers, which was evidenced by environmental isotopes and the rates of nitrification (10.52 vs. 0.03 nmol·L-1·h-1) and denitrification (83.31 vs. 22.49 nmol·g-1·h-1). Overall, this study concluded that the excess exogenous N has significantly shaped the specific aquatic bacterial communities, which had a potential for enhancing nitrification-denitrification processes in the highly urbanized river network. This study provides a further understanding of microbial N cycling in urban river ecosystems and expands the combined application of isotopic technology and bioinformatics methods in studying biogeochemical cycling.
Collapse
Affiliation(s)
- Yingxue Xuan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingwen Mai
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yunqiu Xu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Jianyi Zheng
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yingjie Cao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Zhang N, Wu M, Che Y, Kong Y, Shu F, Wang Q, Sha W, Gong Z, Zhou J. Effects of shining pondweed (Potamogeton lucens) on bacterial communities in water and rhizosphere sediments in Nansi Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51665-51673. [PMID: 35249194 DOI: 10.1007/s11356-022-19516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Submerged macrophytes and microbial communities are important parts of lake ecosystems. In this study, the bacterial community composition in rhizosphere sediments and water from areas cultivated with (PL) and without (CK) shining pondweed (Potamogeton lucens Linn.) was investigated to determine the effects of P. lucens Linn. on the structure of the bacterial communities in Nansi Lake, China. Molecular techniques, including Illumina MiSeq and qPCR targeting of the 16S rRNA gene, were used to analyze the composition and abundance of the bacterial community. We found that bacterial alpha diversity was higher in PL water than in CK water, and the opposite trend was observed in sediment. In addition, 16S rRNA gene copy number in sediment was lower in PL than in CK. We found 30 (e.g., Desulfatiglans) and 29 (e.g., Limnohabitans) significantly different genera in sediment and water, respectively. P. lucens Linn. can change chemical properties in sediment and water and thereby affect the bacterial community. At the genus level, members of bacterial community clustered according to source (water/sediment) and area (PL/CK). Our study demonstrated that submerged macrophytes can affect the bacterial community composition in both sediment and water, suggesting that submerged macrophytes affect the transportation and cycling of nutrients in lake ecosystems.
Collapse
Affiliation(s)
- Nianxin Zhang
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China
| | - Yuying Che
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Yong Kong
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Fengyue Shu
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Qingfeng Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Weilai Sha
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Zhijin Gong
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China
| | - Jing Zhou
- School of Life Sciences, Qufu Normal University, Jining, 273 165, China.
| |
Collapse
|
23
|
Ni M, Liang X, Hou L, Li W, He C. Submerged macrophytes regulate diurnal nitrous oxide emissions from a shallow eutrophic lake: A case study of Lake Wuliangsuhai in the temperate arid region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152451. [PMID: 34933046 DOI: 10.1016/j.scitotenv.2021.152451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Submerged macrophytes can increase oxygen concentrations of water and promote diel oxygen fluctuations, and this phenomenon is hypothesized to play a vital role in regulating nitrous oxide (N2O) emissions from eutrophic lakes. However, the effects of submerged macrophytes on N2O emissions in shallow eutrophic lakes remain poorly investigated. In this study, Lake Wuliangsuhai, a typical shallow eutrophic lake, was investigated to study the role of submerged macrophytes in regulating N2O emissions. We measured the N2O fluxes and related parameters through continual 72-h in situ diel monitoring in two sampling sections that covered dense submerged macrophyte areas and open water. In this study, the dissolved oxygen (DO) concentration of the water in the submerged macrophyte area exhibited significant diurnal variations, with significantly higher water oxygen concentrations than the open water area during the daytime. The N2O fluxes of Lake Wuliangsuhai ranged from 0.01 to 0.24 μmol m-2 h-1, with an average value of 0.11 μmol m-2 h-1. Moreover, significant diel variations in the N2O flux and net N2O production were observed in the submerged macrophyte areas, where the maximum N2O flux occurred at midday. The molar ratios of NH4+-N to oxygen (N/O ratio) of the water were responsible for the diel variations in the N2O production in the lake. However, the high oxygen concentration of the water was the major regulator of the N2O flux of Lake Wuliangsuhai. Therefore, submerged macrophyte restoration is significant not only for water quality improvement in shallow eutrophic lakes but also for N2O emission mitigation by increasing the DO concentration of the water.
Collapse
Affiliation(s)
- Ming Ni
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200244, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200244, China
| | - Weiping Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Hua ZL, Li XQ, Zhang JY, Gu L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127695. [PMID: 34775308 DOI: 10.1016/j.jhazmat.2021.127695] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out. Results showed that although PFAAs could induce the accumulation of hydrogen peroxide and malondialdehyde, V. natans was overall resistant to multiple PFAAs with natural concentrations. Catalase is one of the main strategies of V. natans to alleviate PFAA stress. Microbiota can remove 18.10-30.84% of the PFAAs from the water column. 24.35-73.45% of PFAAs were removed from water in V. natans-microbiota systems. The uptake of plant tissues and the bioaccumulation of microbiota were proposed as the main removal processes. The removal rates were significantly correlated with the perfluorinated carbon atoms numbers (p < 0.05). PFAAs and V. natans increased the relative abundance of Betaproteobacteria, Nostocales, Microscillaceae, Sphingobacteriales, SBR1031, Chlamydiales, Phycisphaerae, Caldilineales, Rhodobacterales, and Verrucomicrobiales. The present study suggested that V. natans can be a potential species to remove multiple PFAAs in aquatic environments, and further providing insights into the PFAAs' remediation.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
25
|
Xu J, Liu J, Hu J, Wang H, Sheng L, Dong X, Jiang X. Nitrogen and phosphorus removal in simulated wastewater by two aquatic plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63237-63249. [PMID: 34227002 DOI: 10.1007/s11356-021-15206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Water pollution control is the focus of environmental pollution control. Ecological water treatment is widely used because of its low cost and landscape effect, and has no pollution. Aquatic plants have attracted wide attention because of their low cost and high level of resource utilization. In order to study the effects of emergent and submerged plants on the removal of different concentrations of wastewater, and the effect of pollutants on plant growth, two common aquatic plants found in Northeast China (Iris ensata Thunb. and Potamogeton malaianus Miq.) were selected. Under static conditions, the removal efficiency of nitrogen and phosphorus in wastewater with different concentrations by two kinds of plants was studied. The results showed that the removal rate of total nitrogen (TN) in medium- and high-pollutant concentration water samples and total phosphorus (TP) in medium- and low-pollutant concentration water with I. ensata reached more than 75%. The removal rate of TN in the medium-pollutant concentration water with P. malaianus reached 71.4%, while the removal efficiency of TN and TP in the low-pollutant concentration water was higher than 80%. In the Nanhu Park Lake samples, I. ensata had the highest removal rates of TN (80.38%) and TP (85.62%). This study shows that both I. ensata and P. malaianus can be used as aquatic plants to restore the water quality of urban lakes. This research provides an important basis for the phytoremediation and treatment of urban domestic wastewater and urban surface water bodies in Northern China.
Collapse
Affiliation(s)
- Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Jiao Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jiaqi Hu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Xiaoliang Dong
- , Nanhu Park, Gongnong Road 2715, Changchun, 130021, China
| | - Xiaodan Jiang
- , Nanhu Park, Gongnong Road 2715, Changchun, 130021, China
| |
Collapse
|
26
|
Sun L, Wang J, Wu Y, Gao T, Liu C. Community Structure and Function of Epiphytic Bacteria Associated With Myriophyllum spicatum in Baiyangdian Lake, China. Front Microbiol 2021; 12:705509. [PMID: 34603230 PMCID: PMC8484960 DOI: 10.3389/fmicb.2021.705509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Epiphytic bacteria on the surfaces of submerged macrophytes play important roles in the growth of the host plant, nutrient cycling, and the conversion of pollutants in aquatic systems. A knowledge of the epiphytic bacterial community structure could help us to understand these roles. In this study, the abundance, diversity, and functions of the epiphytic bacterial community of Myriophyllum spicatum collected from Baiyangdian Lake in June, August, and October 2019 were studied using quantitative PCR (qPCR), high-throughput sequencing, and the prediction of functions. An analysis using qPCR showed that the epiphytic bacteria were the most abundant in October and the least abundant in August. High-throughput sequencing revealed that Proteobacteria, Gammaproteobacteria, and Aeromonas were the dominant phylum, class, and genus in all the samples. The common analyses of operational taxonomic units (OTUs), NMDS, and LDA showed that the epiphytic bacterial communities were clustered together based on the seasons. The results of a canonical correlation analysis (CCA) showed that the key water quality index that affected the changes of epiphytic bacterial community of M. spicatum was the total phosphorus (TP). The changes in abundance of Gammaproteobacteria negatively correlated with the TP. Predictive results from FAPROTAX showed that the predominant biogeochemical cycle functions of the epiphytic bacterial community were chemoheterotrophy, nitrate reduction, and fermentation. These results suggest that the epiphytic bacterial community of M. spicatum from Baiyangdian Lake varies substantially with the seasons and environmental conditions.
Collapse
Affiliation(s)
- Lei Sun
- School of Life Sciences, Hebei University, Baoding, China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China.,Institute of Life Science and Green Development, Hebei University, Baoding, China.,Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, China
| | - Jiashuo Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Yangyang Wu
- School of Life Sciences, Hebei University, Baoding, China
| | - Tianyu Gao
- School of Life Sciences, Hebei University, Baoding, China
| | - Cunqi Liu
- School of Life Sciences, Hebei University, Baoding, China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China.,Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
27
|
Zhang C, Li Q, Zhang L, Zhang J. Responses of submerged macrophytes Vallisneria natans and epiphytic biofilm to floating plants Eichhornia crassipes in eutrophic water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2237-2249. [PMID: 34091983 DOI: 10.1002/wer.1596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The degeneration of submerged macrophytes and the invasion of Eichhornia crassipes (E. crassipes) destroyed the balance of aquatic ecosystems environments. In this study, responses of Vallisneria natans (V. natans) and the leaf-epiphytic biofilms to E. crassipes were analyzed to provide a technical scheme for V. natans restoration and E. crassipes control in eutrophic water. The results showed that a significant improvement of water quality achieved in 1100 ind·m-2 E. crassipes density group and TN removal rate reached 63.53%. The presence of E. crassipes changed the morphological characteristics of V. natans, which stimulated the adaptive mechanisms via promotion of shoot height and root length. Concentrations of the antioxidant enzymes, peroxidase, superoxide dismutase, and catalase in the V. natans leaves remained stable. But E. crassipes greatly increased the microbial diversity on V. natans leave biofilms. Furthermore, the greatest richness in bacterial community diversity was observed at 700, 1100, and 1200 ind·m-2 E. crassipes densities in heatmap, which was beneficial to the stability of the water ecological environment. These results showed that the combination of V. natans with E. crassipes of 1100 ind m-2 providing more favorable conditions for the growth and restoration of submerged macrophytes and improve the water quality. PRACTITIONER POINTS: The responses of submerged macrophytes to floating plants were studied. The optimal density of Eichhornia crassipes was 1100 ind m-2 . The biofilm microbial community changed in response to Eichhornia crassipes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Liu Zhang
- Anhui Academy of Environmental Science and Research, Hefei, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Lu S, He R, Zhao D, Zeng J, Huang X, Li K, Yu Z, Wu QL. Effects of shading levels on the composition and co-occurrence patterns of bacterioplankton and epibiotic bacterial communities of Cabomba caroliniana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147286. [PMID: 33932676 DOI: 10.1016/j.scitotenv.2021.147286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Epibiotic bacterial community colonized on the plant leaf plays important roles in promoting plant growth and nutrient absorption, but is sensitive to environmental changes. As one of the most important environmental factors affecting the growth of plants and photosynthetic microorganisms, light may affect the diversity, composition, and interactions of the epibiotic bacterial community. Submerged plants in the aquatic ecosystem may be more sensitive to light intensity variations compared to the terrestrial plants since they usually receive less light. However, the effects of light on the interactions between the submerged plants and their epibiotic microbial communities remain uncertain. Here we used the 16S rRNA gene high-throughput sequencing to investigate the diversity and composition of the bacterioplankton and epibiotic bacterial communities of the Cabomba caroliniana under four different shading levels. A total of 24 water and leaf samples were collected from the experimental microcosms near Lake Taihu. We found the epibiotic bacterial community possessed a higher diversity than that of the bacterioplankton community, although the alpha diversity of the bacterioplankton community was more susceptible to different levels of shading. SourceTracker analysis revealed that with the increase of shading, the colonization of bacterioplankton to epibiotic bacteria decreased. Network analysis showed that the bacterial community network at 50% shading level had the lowest modularity and highest clustering coefficient compared to the bacterial community networks of other shading levels. Our findings provided new understandings of the effects of different light intensities on the epibiotic bacterial communities of submerged macrophytes.
Collapse
Affiliation(s)
- Shijie Lu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China.
| | - Xiaolong Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111986. [PMID: 33486195 DOI: 10.1016/j.jenvman.2021.111986] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change (MoEFCC), Indira Paryavaran Bhavan, New Delhi, India
| |
Collapse
|
30
|
Addo FG, Zhang S, Manirakiza B, Ohore OE, Shudong Y. The impacts of straw substrate on biofloc formation, bacterial community and nutrient removal in shrimp ponds. BIORESOURCE TECHNOLOGY 2021; 326:124727. [PMID: 33548819 DOI: 10.1016/j.biortech.2021.124727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
This study explored biofloc technology for shrimp culture based on straw substrates with a size of 40 mu, 80 mu, and 120 mu. Straw substrates utilization stimulated shrimp growth compared to control. Treatment with 40 mu had the best ammonium (71.60%) and nitrite nitrogen (77.78%) removal rates generally. In all biofloc treatments, Proteobacteria (4.10-56.1%) was the most dominant phylum, followed by Bacteroidetes (2.44-38.21%), Planctomycetes (0.45-21.41%), and Verrucomicrobia (1.2-10.30%). Redundancy analysis showed that salinity was a significant factor closely related to the microbial community in biofloc. The environmental parameters (DO > pH > TN > NH4+-N > COD > Salinity > EC), nitrification, and denitrification genes (amoA > napA > nirK) were significant factors that interrelated with the bacterial genus in the network analysis. This study highlighted a novel technology of reusing agricultural waste that transformed inorganic nitrogen using nutrient recycling to control water quality in the culture system and produced microbial proteins that served as a natural nutritional supplement to enhance shrimp growth.
Collapse
Affiliation(s)
- Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda
| | - Okugbe Ebiotubo Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuan Shudong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Anhui Transport Consulting & Design Institute Co., Ltd, Hefei, PR China
| |
Collapse
|
31
|
Dan Z, Chuan W, Qiaohong Z, Xingzhong Y. Sediments nitrogen cycling influenced by submerged macrophytes growing in winter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1728-1738. [PMID: 33843755 DOI: 10.2166/wst.2021.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Restoration of submerged macrophytes is one of the important measures for ecological treatment of eutrophic lakes. The changes in physical and chemical conditions caused by submerged macrophytes also affect the process of benthic nitrogen cycling. The growth period of Potamogeton crispus is mainly in winter. In order to understand the effect of submerged macrophytes growing in winter on nitrification rate and denitrification rate in the process of nitrogen cycling, experiments were carried out from winter to summer with vegetated and non-vegetated treatments. The results showed that the effect of submerged macrophytes on water temperature was not significant in winter. The nitrogen cycling was mainly affected by variables, which were inorganic nitrogen and dissolved oxygen. Submerged macrophytes had little effect on nitrification rate, but had a certain inhibition on denitrification rate by providing oxygen from photosynthesis. In total, submerged macrophytes growing in winter have little effect on nitrogen cycling in sediment. However, submerged macrophytes growing in winter can increase the attachment surface of microbes and inhibit resuspension of sediment, which play a complementary role to submerged macrophytes growing in summer for maintaining stability of eutrophic lakes.
Collapse
Affiliation(s)
- Zhang Dan
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400030, China; Key Laboratory of Eco-environment in the Three Gorges Reservoir Region of the Ministry of Education, Chongqing 400715, China and Chongqing Key Laboratory of Wetland Science Research Center of the Upper Reaches of the Yangtze River, Chongqing 401331, China
| | - Wang Chuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,, Wuhan, Hubei 430072, China
| | - Zhou Qiaohong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences,, Wuhan, Hubei 430072, China
| | - Yuan Xingzhong
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400030, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing 400030, China and Chongqing Key Laboratory of Wetland Science Research Center of the Upper Reaches of the Yangtze River, Chongqing 401331, China E-mail:
| |
Collapse
|
32
|
Qiu Z, Zhang S, Ding Y, Zhang W, Gong L, Yuan Q, Mu X, Fu D. Comparison of Myriophyllum Spicatum and artificial plants on nutrients removal and microbial community in constructed wetlands receiving WWTPs effluents. BIORESOURCE TECHNOLOGY 2021; 321:124469. [PMID: 33296776 DOI: 10.1016/j.biortech.2020.124469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The impacts of WWTPs effluents on nutrients removal and epiphytic microbial community in constructed wetlands dominated by submersed macrophytes remain to be fully illustrated. In this study, compared to M. Spicatum, artificial submersed macrophytes (control) generally had higher NH4+-N (78.35% vs 80.52%) and TN (73.35% vs 90.25%) removal rates and similar COD (70.64% vs 70.80%) and TP (59.86% vs 60.82%) removal rates in wetlands receiving simulated effluents of WWTPs (GB18918-2002). Microbial population richness was higher in epiphytic biofilms on M. Spicatum than artificial ones, and substrates played the most decisive role in determining the microbial diversities. Network analysis revealed that there were more complex interactions among environmental parameters, bacteria and eukaryotes in M. Spicatum systems than in artificial ones. Nutrients in effluents could cause damage to M. Spicatum. The results highlight that artificial plants have better performance on effluents deep treatments than submerged plants.
Collapse
Affiliation(s)
- Zheng Qiu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Ding
- Kunshan Water Affairs Bureau, Kunshan 215300, China
| | - Wenjun Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lixue Gong
- Jiangsu Environmental Science Consulting Co., Ltd, Nanjing 210036, China
| | - Qiang Yuan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Dongwang Fu
- Nanjing Water Planning and Designing Institute. Corp. Ltd, China
| |
Collapse
|
33
|
Wu JY, Gu L, Hua ZL, Li XQ, Lu Y, Chu KJ. Effects of Escherichia coli pollution on decomposition of aquatic plants: Variation due to microbial community composition and the release and cycling of nutrients. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123252. [PMID: 32634663 DOI: 10.1016/j.jhazmat.2020.123252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Determination of the effects of Escherichia coli (E. coli) pollution on agricultural pond ecosystems with vegetation at different life stages is essential for the protection of ecological functions. However, no comprehensive study has yet shown the responses of epiphytic microbial communities to E. coli invasion during plant decay. Thus, this study was conducted to clarify variation in the decay of the following aquatic plants-Myriophyllum aquaticum, Nymphaea tetragona and Phragmites australis after E. coli pollution. Exogenous E. coli especially shifted the epiphytic microbial composition and distribution of P. australis. Stronger effects of E. coli on the archaeal community (edges/nodes = 0.818 < 1, modularity = 0.654; lower clustered structure, 0.389) were found than on the bacterial community (edges/nodes = 1.538 > 1, modularity = 1.291 > 0.654; higher clustered, 0.593). During plant decomposition, E. coli weakened methanogenesis by regulating the network of core genera Methanobacterium and Methanospirillum (spearman, P < 0.05), stimulated the accumulation of organic matters in water (P < 0.05). Similarly, nitrification and denitrification increased and decreased through network regulation in relative biomass of genera Devosia and Desulfovibrio (P < 0.05), respectively. The results provided theoretical supports for eutrophication management in pond ecosystems threatened by E. coli pollution.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Qing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ying Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ke-Jian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
34
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
35
|
Mu X, Zhang S, Han B, Hua Z, Fu D, Li P. Impacts of water flow on epiphytic microbes and nutrients removal in constructed wetlands dominated by Vallisneria natans with decreasing temperature. BIORESOURCE TECHNOLOGY 2020; 318:124058. [PMID: 32905946 DOI: 10.1016/j.biortech.2020.124058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms behind water flow on contaminant removal by a submerged macrophyte-biofilm complex in surface flow wetlands remain to be fully elucidated. In this study, water flow (2.02 ~ 2.12 or 4.06 ~ 4.5 L s-1; hydraulic retention time, 7d) significantly enhanced NH4+-N and COD but inhibited TN and TP removal compared to the static ones. No more than 30% of TN and TP were assimilated by V. natans-biofilm complex in wetland system. Water flow remarkably affected alpha-diversity of microbial community in epiphytic biofilm. As revealed by beta-diversity analysis, turnover played greater contribution to the total dissimilarity than nestedness. Network analyses revealed that the microbial interactions including predation, symbiosis and competition in epiphytic biofilms were much more intensive in the Sept.- Oct. than the Nov.-Dec group. Redundancy and Mantel correlation analyses revealed that temperature played a key role in determining microbial community structure, especially for bacteria.
Collapse
Affiliation(s)
- Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Bing Han
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Dongwang Fu
- Nanjing Water Planning and Designing Institute. Corp. Ltd, China
| | - Ping Li
- Nanjing Water Planning and Designing Institute. Corp. Ltd, China
| |
Collapse
|
36
|
Zhang Z, Chen H, Mu X, Zhang S, Pang S, Ohore OE. Nitrate application decreased microbial biodiversity but stimulated denitrifiers in epiphytic biofilms on Ceratophyllum demersum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110814. [PMID: 32561016 DOI: 10.1016/j.jenvman.2020.110814] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Among nitrogen species, nitrate is more stable than ammonium and nitrite, and it is an important nitrogenous pollutant in surface water. However, little is known about the characterization of epiphytic microbial communities on submersed macrophytes under nitrate loading. In this study, we investigated the co-occurring pattern and response of bacteria and microeukaryotes in epiphytic biofilms under nitrate loading. Nitrate loading significantly affected bacterial and eukaryotic communities, and turnover played greater contribution to the total dissimilarity than nestedness by partitioning beta-diversity analysis. Cyanobacteria, α-proteobacteria, β-proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, and γ-proteobacteria were dominant bacterial phyla/classes. Metazoan (phylum Arthropoda, Rotifera, Gastrotricha, Annelida, and Nematoda) and algae (phylum Bacillariophyta, Chlorophyta, and Streptophyta) were dominated in eukaryotic communities. The abundances of denitrifying bacteria (Rhodobacter, Acinetobacter, Bacillus, Flavobacterium, and Pseudomonas) and genes (nirS, cnorB, and nosZ) increased with nitrate loading. The network analysis showed there were complex interactions among photosynthetic microbes, metazoan, and bacteria (including denitrifiers) that they were potentially interrelated via photosynthesis, predation or feeding. This study provides new perspectives into understanding the factors affecting nitrate removal mechanisms in wetlands with submersed macrophytes.
Collapse
Affiliation(s)
- Ziqiu Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hezhou Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Okugbe Ebiotubo Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
37
|
Zhang M, Zhao D, Chen C, Yang J, Lu Q, Zhang N, Leng X, An S. The effect of re-startup strategies on the recovery of constructed wetlands after long-term resting operation. BIORESOURCE TECHNOLOGY 2020; 311:123583. [PMID: 32474375 DOI: 10.1016/j.biortech.2020.123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to identify the proper re-startup strategies (RSSs) for constructed wetlands (CWs) after long-term resting operation in terms of the recovery of pollutant removal efficiency (RE) and N-cycle gene abundance. The results suggested that backwashing increased the gene abundance without shortening the recovery time of gene abundance. The RSS involving excavation and washing performed better in terms of chemical oxygen demand (COD) RE, especially at the beginning, and performed slightly better or similarly in terms of N-cycle gene abundance and the REs of ammonia nitrogen (NH4+-N) and total nitrogen (TN). The abundance of the Amox gene was 66.1-92.8, 76.3-161.8 and 1550-2492 times larger than that of the napA, narG and amoA genes, respectively, and the anammox process was the dominant N removal pathway. Therefore, excavation and washing is recommended as the RSS for CWs with a long-term rest period.
Collapse
Affiliation(s)
- Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China.
| | - Chen Chen
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Qianqian Lu
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Nannan Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Xin Leng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
38
|
Si T, Chen H, Qiu Z, Zhang L, Ohore OE, Zhang S. Bacterial succession in epiphytic biofilms and deciduous layer sediments during Hydrilla verticillata decay: A field investigation. J Environ Sci (China) 2020; 93:193-201. [PMID: 32446455 DOI: 10.1016/j.jes.2020.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems. However, little is known about the dynamical changes in nutrients release and bacterial community during submersed macrophyte decay in natural environment. In this study, a field observation was conducted in a wetland dominated with Hydrilla verticillata for 36 days. Increase of H2O2 and malondialdehyde (MDA) content and decrease of soluble proteins concentration were detected in leaves during H. verticillata decay. Meanwhile, ammonium-N, soluble microbial products (SMP) and TOC concentration increased in overlying water. According to bacterial 16S rRNA Illumina sequencing analysis, the Shannon values were lower in epiphytic biofilms than deciduous layer sediments. The relative abundances of Proteobacteria, Cyanobacteria and Actinobacteria were higher in epiphytic biofilms than in deciduous layer sediments (P < 0.05). Co-occurrence network analyses showed that a total of 578 and 845 pairs of correlations (|r| > 0.6) were identified from 122 and 112 genera in epiphytic biofilms and deciduous layer sediments, respectively. According to co-occurrence patterns, eight hubs were mainly from phyla Proteobacteria, Acidobacteria and Parcubacteria in epiphytic biofilms; while 37 hubs from the 14 phyla (Proteobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, et al.) were detected in deciduous layer sediments. Our results indicate that bacterial community in deciduous layer sediments was more susceptible than in epiphytic biofilms during decay process. These data highlight the role of microbial community in deciduous layer sediments on nutrients removal during H. verticillata decay and will provide useful information for wetland management.
Collapse
Affiliation(s)
- Tingting Si
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Hezhou Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zheng Qiu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lisha Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Okugbe Ebiotubo Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
39
|
Model Test of the Effect of River Sinuosity on Nitrogen Purification Efficiency. WATER 2020. [DOI: 10.3390/w12061677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
River pollution is a significant problem within the urbanization process in China. Nitrogen is one of the most important pollutants in rivers, and the nitrogen purification capacity of rivers can be affected by their sinuous morphology. In this study, a set of sandy circulating water test models was constructed, consisting of four river channel simulation models with sinuosities of 1.0, 1.4, 1.8, and 2.2. Each model was then infused with the same concentration of nitrogen-polluted water, which circulated for 52 h. The nitrogen reduction processes of rivers with different sinuosities were studied through water quality monitoring. The positive correlation between river sinuosity and nitrogen purification capacity was verified in physical laboratory test models. The effect of sinuosity on the spatiotemporal distribution of total nitrogen in pore water was confirmed. Additionally, the near-shore substrate was more involved in the process of river self-purification than the far-shore substrate. The concave bank of the sinuous rivers was more prone to pollutant accumulation and had a higher purification capacity than the convex bank. After the polluted water entered the sinuous channel systems, pollutant concentration differed within the convex bank between the more polluted upstream section and the less polluted downstream section. This study lays a foundation for studying the mechanism by which river sinuosity influences self-purification capacity.
Collapse
|
40
|
Gu L, Wu JY, Hua ZL, Chu KJ. The response of nitrogen cycling and bacterial communities to E. coli invasion in aquatic environments with submerged vegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110204. [PMID: 32148275 DOI: 10.1016/j.jenvman.2020.110204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The effects of exogenous Escherichia coli on nitrogen cycling (N-cycling) in freshwater remains unclear. Thus, seven ecosystems, six with submerged plants-Potamogeton crispus (PC) and Myriophyllum aquaticum (MA)-and one with no plants were set up. Habitats were assessed before and after E. coli addition (107 colony-forming units/mL). E. coli colonization of freshwater ecosystems had significant effects on bacterial community structure in plant surface biofilms and surface sediments (ANOVA, P < 0.05). It reduced the relative abundance of nitrosification bacteria (-70.94 ± 26.17%) and nitrifiers (-47.86 ± 23.68%) in biofilms which lead to significant reduction of ammoxidation in water (P < 0.05). The N-cycling intensity from PC systems was affected more strongly by E. coli than were MA systems. Furthermore, the coupling coefficient of exogenous E. coli to indigenous N-cycling bacteria in sediments (6.061, average connectivity degree) was significantly weaker than that in biofilms (9.852). Additionally, at the genus level, E. coli were most-closely associated with N-cycling bacteria such as Prosthecobacter, Hydrogenophaga, and Bacillus in sediments and biofilms according to co-occurrence bacterial network (Spearman). E. coli directly changed their abundance, so that the variability of species composition of N-cycling bacterial taxa was triggered, as well. Overall, exogenous E. coli repressed ammoxidation, but promoted ammonification and denitrification. Our results provided new insights into how pathogens influence the nitrogen cycle in freshwater ecosystems.
Collapse
Affiliation(s)
- Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China.
| | - Ke-Jian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
41
|
Soana E, Gavioli A, Vincenzi F, Fano EA, Castaldelli G. Nitrate availability affects denitrification in Phragmites australis sediments. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:194-209. [PMID: 33016349 DOI: 10.1002/jeq2.20000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 06/11/2023]
Abstract
Understanding relationships between an increase in nitrate (NO3 - ) loading and the corresponding effects of wetland vegetation on denitrification is essential to designing, restoring, and managing wetlands and canals to maximize their effectiveness as buffers against eutrophication. Although Phragmites australis (Cav.) Trin. ex Steud. is frequently used to remediate nitrogen (N) pollution, no information is available on how NO3 - concentration may affect plant-mediated denitrification. In the present study, denitrification was measured in outdoor vegetated and unvegetated mesocosms incubated in both summer and winter. After spiking the mesocosms with NO3 - concentrations typical of agricultural drainage water (0.7-11.2 mg N L-1 ), denitrification was quantified by the simultaneous measurement of NO3 - consumption and dinitrogen gas (N2 ) production. Although denitrification rates varied with vegetation presence and season, NO3 - availability exerted a significant positive effect on the process. Vegetated sediments were more efficient than bare sediments in adapting their mitigation potential to an increase in NO3 - , by yielding a one-order-of-magnitude increase in NO3 - removal rates, under both summer (743-6007 mg N m-2 d-1 ) and winter (43-302 mg N m-2 d-1 ) conditions along the NO3 - gradient. Denitrification was the dominant sink for water NO3 - in winter and only for vegetated sediments in summer. Nitrification likely contributed to fuel denitrification in summer unvegetated sediments. Since denitrification rates followed Michaelis-Menten kinetics, P. australis-mediated depuration may be considered optimal up to 5.0 mg N L-1 . The present outcomes provide experimentally supported evidence that restoration with P. australis can work as a cost-effective means of improving water quality in agricultural watersheds.
Collapse
Affiliation(s)
- Elisa Soana
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46-44121, Ferrara, Italy
| | - Anna Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46-44121, Ferrara, Italy
| | - Fabio Vincenzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46-44121, Ferrara, Italy
| | - Elisa Anna Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46-44121, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46-44121, Ferrara, Italy
| |
Collapse
|
42
|
Zhang X, Zha L, Jiang P, Wang X, Lu K, He S, Huang J, Zhou W. Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23696-23706. [PMID: 31203550 DOI: 10.1007/s11356-019-05580-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Excessive nitrogen accumulated from wastewater with low C/N ratio is a new threat to water ecosystem. In this study, surface flow constructed wetland (SFCW) and floating treatment wetland (FTW) planted with Iris pseudacorus were set in parallel for nitrogen removal. The nitrogen removal efficiencies and pathways, as well as the abundance and functional diversities of the microbial community, were investigated. The results demonstrated that SFCW generally had better nitrogen removal performance than FTW did over four seasons. The average total nitrogen removal efficiency was 66.0% and 43.8% in SFCW and FTW, respectively. The plant uptake played a vital role in nitrogen reduction, which accounted for 29.3% and 7.7% of the total removed nitrogen in SFCW and FTW, respectively. A combination of high-throughput sequencing and quantitative polymerase chain reaction analysis revealed that the two wetland systems had complete nitrogen cycling, and the narG gene was the dominant nitrogen-transformation functional gene in both systems. More abundant denitrifying genes in SFCW than in FTW were also responsible for higher removal capacity of nitrogen. The results suggest that the planting pattern of wetland vegetation has an important impact on nitrogen removal efficiency by influencing the plant absorption and the development of microbial communities.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lina Zha
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Panyu Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiayu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kewei Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
43
|
He J, Guo J, Fu X, Cai J. Potential use of high-throughput sequencing of bacterial communities for postmortem submersion interval estimation. Braz J Microbiol 2019; 50:999-1010. [PMID: 31364013 DOI: 10.1007/s42770-019-00119-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Microorganisms play vital roles in the natural decomposition of carcasses in aquatic systems. Using high-throughput sequencing techniques, we evaluated the composition and succession of microbial communities throughout the decomposition of rat carcasses in freshwater. A total of 4,428,781 high-quality 16S rRNA gene sequences and 2144 operational taxonomic units were obtained. Further analysis revealed that the microbial composition differed significantly between the epinecrotic (rat skins) and the epilithic (rocks) samples. During the carcass decomposition process, Proteobacteria became the dominant phylum in the epinecrotic, epilithic, and environmental (water) samples, followed by Firmicutes in the epinecrotic samples and Bacteroidetes in the epilithic and water samples. Microbial communities were influenced by numerous environmental factors, such as dissolved oxygen content and conductivity. Our study provides new insight about postmortem submersion interval (PMSI) estimation in aquatic environments.
Collapse
Affiliation(s)
- Jing He
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Juanjuan Guo
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaoliang Fu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jifeng Cai
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
44
|
Yan D, Xia P, Song X, Lin T, Cao H. Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01485-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Li M, Liang Z, Callier MD, Roque d'orbcastel E, Sun G, Ma X, Li X, Wang S, Liu Y, Song X. Nutrients removal and substrate enzyme activities in vertical subsurface flow constructed wetlands for mariculture wastewater treatment: Effects of ammonia nitrogen loading rates and salinity levels. MARINE POLLUTION BULLETIN 2018; 131:142-150. [PMID: 29886930 DOI: 10.1016/j.marpolbul.2018.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/03/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the effects of ammonia nitrogen loading rates and salinity levels on nutrients removal rates and substrate enzyme activities of constructed wetland (CW) microcosms planted with Salicornia bigelovii treating mariculture wastewater. Activities of urease (UA), dehydrogenase (DA), protease (PrA) and phosphatase (PA) were considered. Using principal component analysis (PCA), nutrient removal index (NRI) and enzyme activity index (EAI) were developed to evaluate the effects. The results revealed that increasing ammonia nitrogen loading rates had positive effects on nitrogen removal rates (i.e. NH4-N and DIN) and enhanced substrate enzyme activities. Compared with low salinity (i.e. 15 and 22), high salinity levels (i.e. 29 and 36) enhanced nutrients removal rates, DA and UA, but weaken PA and PrA. In conclusion, CW microcosms with Salicornia bigelovii can be used for the removal of nutrients under a range of ammonia nitrogen loadings and high salinity levels.
Collapse
Affiliation(s)
- Meng Li
- Fisheries College, Ocean University of China, Qingdao 266001, China
| | - Zhenlin Liang
- Fisheries College, Ocean University of China, Qingdao 266001, China
| | - Myriam D Callier
- Ifremer, UMR MARBEC (IRD, Ifremer, University of Montpellier, CNRS), Chemin de Maguelone, F-34250 Palavas-les-Flots, France
| | - Emmanuelle Roque d'orbcastel
- Ifremer, UMR MARBEC (IRD, Ifremer, University of Montpellier, CNRS), Avenue Jean Monnet, CS 30171, F-34203 Sète, France
| | - Guoxiang Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Xiaona Ma
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Shunkui Wang
- Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Ying Liu
- Dalian Ocean University, Dalian 116023, China.
| | - Xiefa Song
- Fisheries College, Ocean University of China, Qingdao 266001, China.
| |
Collapse
|