1
|
Buss J, Achten C. Identification of spatiotemporal behavior of organic micropollutants in an agricultural and urban lowland river catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179665. [PMID: 40381263 DOI: 10.1016/j.scitotenv.2025.179665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Mixed land-use, medium-sized lowland rivers are subject to contamination by various input pathways for organic micropollutants. This study provides a unique long-term (2016-2020) and high-resolution investigation of the Münstersche Aa River (Northwestern Germany) focusing on the thorough characterization of input pathways for pesticides, biocides and pharmaceuticals in the catchment with heterogeneous land-use (62 % agricultural and 26 % urbanized). 468 samples were collected using two automated high-frequency samplers and five catchment-wide sampling campaigns providing a comprehensive data set. While the input of pesticides is the major stressor in the agriculturally dominated upper catchment, input of treated wastewater is dominating the water chemistry of the lower catchment, especially during summer low flows (up to 100 % wastewater fraction). Detected pharmaceuticals in the catchment include carbamazepine, diclofenac, metoprolol, phenazone and sulfamethoxazole. Moreover, caffeine as an indicator substance suggests input through non-conventionally treated wastewater. The pesticides chlortoluron (winter) as well as terbuthylazine and 2-methyl-4-chlorophenoxyacetic acid (MCPA) (summer), occur related to their respective application time. Moreover, a belated, accumulated input of terbuthylazine was observed in winter 2019/2020 after an extremely dry period from 2018 to 2019. Urban runoff adds further pesticides such as mecoprop-P while tebuconazole input from both agricultural and urban land-use was identified. Even though detected concentrations are below thresholds for acute toxicity, mixture toxicity could pose risks in the Münstersche Aa. Ongoing climate change is expected to intensify these seasonal patterns in the catchment. Lake Aasee may however function as a sink for OMPs through degradation processes especially during low-flow conditions. This study enhances the understanding of river pollution dynamics in small, mixed land-use catchments and aids targeting the goals of the Water Framework Directive for the Münstersche Aa and other lowland streams with comparable land use.
Collapse
Affiliation(s)
- Johanna Buss
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstrasse 24, 48149 Münster, Germany.
| |
Collapse
|
2
|
Waraniak J, Batchelor S, Wagner T, Keagy J. Landscape transcriptomic analysis detects thermal stress responses and potential adaptive variation in wild brook trout (Salvelinus fontinalis) during successive heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178960. [PMID: 40022980 DOI: 10.1016/j.scitotenv.2025.178960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Extreme weather events, such as heatwaves, are becoming more frequent and intense as a result of climate change. Critically, such extreme weather events can be more important drivers of extirpation and selection than changes in annual or seasonal averages and they pose a particularly large threat to poikilothermic organisms. In this study, we evaluated the transcriptomic response of a coldwater adapted fish species, the eastern brook trout (Salvelinus fontinalis), to two successive heatwaves during July and August 2022. We sampled brook trout at eight time points from four streams (N = 116 fish), sequenced mRNA from gill samples using TagSeq, and quantified expression levels of 32,670 unique transcripts. Multivariate analyses found that overall expression patterns in response to water temperature change were similar among streams. These analyses further detected groups of genes involved in immune response and oxygen carrier activity that were upregulated and downregulated respectively at higher water temperatures. We also detected 43 genes that were differentially expressed at different time points and followed the same expression pattern during the two heatwaves. Of these genes, 42 covaried with water temperature and most (27, 62.8 %) exhibited responses that varied by stream. Some of the differentially expressed genes, including heat shock proteins and cold-inducible RNA binding proteins, have been widely linked to temperature responses in experimental studies, whereas other genes we identified have functions that have not been well-studied in relationship to temperature or have unknown functions. This study shows the utility of landscape transcriptomic approaches to identify important biological processes governing wild organismal responses to short-term stressors. The results of this study can guide future investigations to identify phenotypic and genetic diversity that contribute to adaptive responses to heatwaves and improve predictions of how populations will respond to future climate change.
Collapse
Affiliation(s)
- Justin Waraniak
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, 421 Forest Resources Building, University Park, PA 16802, USA.
| | - Sarah Batchelor
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, The Pennsylvania State University, 421 Forest Resources Building, University Park, PA 16802, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA
| | - Jason Keagy
- Department of Ecosystem Science and Management, The Pennsylvania State University, 410 Forest Resources Building, University Park, PA 16802, USA
| |
Collapse
|
3
|
Legesse TG, Xiao J, Dong G, Dong X, Daba NA, Abeshu GW, Qu L, Zhu W, Wang L, Xin X, Shao C. Differential responses of plant and microbial respiration to extreme precipitation and drought during spring and summer in the Eurasian meadow steppe. ENVIRONMENTAL RESEARCH 2025; 269:120883. [PMID: 39828193 DOI: 10.1016/j.envres.2025.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Increasing extreme precipitation and drought events along changes in their seasonal patterns due to climate change are expected to have profound consequences for carbon cycling. However, how these climate extremes impact ecosystem respiration (Reco) and whether these impacts differ between seasons remain unclear. Here, we reveal the responses of Reco and its components to extreme precipitation and drought in spring and summer by conducting a five-year manipulative experiment in a temperate meadow steppe. Based on a 5-year average, the seasonal mean values (±SE) of Reco, Rh, Rroot, Rabg and Rplant significantly increased (p < 0.01) under both extreme precipitation treatments: wet spring (WSP) and wet summer (WSU), and significantly decreased (p < 0.01) under both extreme drought treatments: dry spring (DSP) and dry summer (DSU), except in Rabg under DSU, which remained comparable to the control. The sensitivity of Reco, Rh, Rroot and Rplant to extreme precipitation was significantly higher in spring than in summer. On average, Rplant was the primary contributor of Reco, accounting for 37.18% and 38.31% of the total across all its components under WSP and WSU, respectively during the growing season over the five study years. Moreover, linear models revealed Rplant explained 87% of the variance in Reco. Our findings indicate that future changes in precipitation events, particularly extreme precipitation may lead to increased carbon release from ecosystems, largely driven by enhanced plant respiration rather than microbial respiration. However, due to this study focused solely on respiration and did not measure photosynthesis, the findings represent only the carbon release processes and do not account for potential carbon uptake by plants during the same conditions. These emergent identified contribution to ecosystem respiration provide valuable insights for improving model benchmarks to better predict ecosystem respiration responses to extreme climate in specified season.
Collapse
Affiliation(s)
- Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA.
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaobing Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guta Wakbulcho Abeshu
- Computational Climate Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Luping Qu
- Forest Ecology Stable Isotope Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lulu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Xin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Zachora-Buławska A, Kędzior R, Operacz A. Spent geothermal water discharge to rivers: Risk or environmental benefit? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176527. [PMID: 39332728 DOI: 10.1016/j.scitotenv.2024.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Geothermal waters utilization is generally considered an environmentally friendly compared to non-renewable sources. However, the discharge of spent geothermal waters, legally classified as wastewater, poses potential environmental burdens. This study aimed to determine the extent to which treated spent geothermal waters impact the quality of the river into which they are discharged. Analyses were conducted on the effluent prior to its mixing with the receiver, and on the receiving waters both downstream and upstream of the effluent outflow. Additionally, aquatic macroinvertebrates were sampled at the outflow, 100 m downstream, and 150 m upstream. The results revealed no statistically significant differences in most analysed parameters (temperature, pH, chlorine, nitrites, phosphorus, and BOD) between the reference section and the section below the outflow. A total of 4519 aquatic macroinvertebrates were collected during the field survey. Multi-metric multidimensional scaling indicated significant differences in assemblages between the sections just upstream of the outflow and those above and below, which showed no variation in taxonomic composition. The lowest values of diversity and biotic indices occurred in the site where the effluent was discharged closest to the bank (1 m) and in the transect 3 m from the bank. In contrast, the transect furthest from the bank (5 m) exhibited parameters comparable to the reference section. No significant differences were observed for most parameters between the sections 100 m below and 150 m above. The findings suggest that the discharge of treated effluent into the river has a localized impact confined to the immediate vicinity of the outflow and does not extend over a broader gradient. The results highlight that with sufficient wastewater treatment and a hydromorphologically diverse receiving body, the negative impacts of geothermal discharge on river biodiversity are mitigated. This study provides a novel examination of a relatively under-applied approach.
Collapse
Affiliation(s)
- Agnieszka Zachora-Buławska
- Department of Sanitary Engineering and Water Management, University of Agriculture in Kraków, Mickiewicza Av. 21, 31-120 Krakow, Poland; Chochołowskie Termy Sp. z o.o., Chochołow 400, 34-513 Chochołow, Poland.
| | - Renata Kędzior
- Department of Ecology, Climatology and Air Protection, University of Agriculture in Kraków, Mickiewicza Av. 21, 31-120 Krakow, Poland
| | - Agnieszka Operacz
- Department of Sanitary Engineering and Water Management, University of Agriculture in Kraków, Mickiewicza Av. 21, 31-120 Krakow, Poland
| |
Collapse
|
5
|
Kokotović I, Kolar V, Rožman M, Bočkor L, Vitecek S, Previšić A. Wastewater and warming effects on aquatic invertebrates: Experimental insights into multi-level biodiversity consequences. WATER RESEARCH 2024; 267:122496. [PMID: 39340863 DOI: 10.1016/j.watres.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Wastewater effluents and global warming affect freshwater ecosystems and impact their crucial biodiversity. Our study aimed at characterizing individual and combined impacts of wastewater effluent and increased water temperature (as one aspect of climate change) on model freshwater communities. We tested the effect of experimental treatments on genetic diversity, survival, body weight, total lipid content, lipidome and metabolome of individual species as well as community composition and phylogenetic diversity. In a 21-day mesocosm experiment we assessed the responses of a simplified freshwater food web comprising of moss and seven species of benthic macroinvertebrate shredders and grazers (mayflies, stoneflies, caddisflies and amphipods) to four treatments in a full factorial design: control, increased water temperature, wastewater and a multiple stressor treatment combining increased temperature and wastewater. Physiological responses varied among taxa, with species-specific sensitivities observed in survival and lipid content. The lowest total lipid content was observed in caddisflies and a mayfly subjected to multiple stressor treatment. The effects of stressors were reflected in the altered metabolic pathways and lipid metabolism of the individual taxa, with differential treatment effects also observed between taxa. A notable decrease in phylogenetic diversity was observed across all experimental communities. Gammarus fossarum demonstrated a high susceptibility to environmental stressors at the genetic level. Hence, while commonly used indicators of ecosystem health (e.g. community composition) remained stable, molecular indicators (e.g. phylogenetic diversity, metabolome and lipidome) responded readily to experimental treatments. These findings underscore the vulnerability of macroinvertebrates to environmental stressors, even over relatively short exposure periods. They highlight the importance of molecular indicators in detecting immediate ecological impacts, offering valuable information for conservation strategies and understanding the ecological consequences in freshwater ecosystems.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Vojtech Kolar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; WasserCluster Lunz - Biologische Station, Lunz am See, Austria.
| | | | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia.
| | - Simon Vitecek
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
6
|
Cortés-Guzmán D, Bowler DE, Haase P. Spatial and temporal effects of heat waves on the diversity of European stream invertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176229. [PMID: 39270857 DOI: 10.1016/j.scitotenv.2024.176229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The frequency and magnitude of extreme events, such as heat waves, are predicted to increase with climate change. However, assessments of the response of biological communities to heat waves are often inconclusive. We aimed to assess the responses in abundance, taxonomic and functional diversity indices of stream invertebrate communities to heat waves using long-term monitoring data collected across Europe. We quantified the heat waves' magnitude, analyzed the spatial (i.e., long-term mean) and temporal (anomaly around the long-term mean) components of variation in the magnitude of heat waves, and their interaction with anthropogenic stressors (ecological quality and land cover). For the spatial component of variation, we found a negative association of the community indices to the increasing magnitude of heat waves. Sites undergoing heat waves of higher magnitude showed fewer species and lower trait diversity compared with sites experiencing lower magnitude heat waves. However, we could not detect an immediate temporal response of the communities to heat waves (i.e., the temporal component). Furthermore, we found that the effects of heat waves interacted with the ecological quality of the streams and their surrounding land cover. Diversity declined with increasing heat waves' magnitude in streams with higher ecological quality or surrounded by forest, which may be due to a higher proportion of sensitive species in the community. Heat waves' impacts on diversity were also exacerbated by increasing urban cover. The interaction between heat waves' magnitude and anthropogenic stressors suggests that the effects of extreme events can compromise the recovery of communities. Further, the predicted increase in heat waves will likely have long-term effects on stream invertebrate communities that are currently undetected.
Collapse
Affiliation(s)
- Daniela Cortés-Guzmán
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Diana E Bowler
- Biodiversity Monitoring & Analysis, UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
de Donnová S, Devánová A, Barešová L, Zahrádková S, Bojková J. Hydromorphological degradation modifies long-term macroinvertebrate responses to water quality and climate changes in lowland rivers. ENVIRONMENTAL RESEARCH 2024; 261:119638. [PMID: 39032623 DOI: 10.1016/j.envres.2024.119638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Due to decades of persistent anthropogenic pressures, lowland rivers represent one of the most severely impaired habitats in Europe. Despite improved water quality, novel stressors, particularly climate change, are emerging with most lowland rivers suffering from past hydromorphological degradation. We aim to elucidate how such degradation alters the biological response in multiple-stressor environments, as this has rarely been considered in studies documenting long-term development of anthropogenically impacted rivers. Here, benthic macroinvertebrates, water quality and hydroclimatic variables were monitored over a period of two decades in nine of the largest Czech rivers. Detailed data on hydromorphological degradation allowed us to track distinct patterns in rivers with high and low levels of degradation. Temporal changes in environmental variables showed similar patterns in both site groups, characterised by reduced organic and nutrient pollution but increased hydroclimatic and salinity stress. 150 % increase in total abundance, especially in abundance and richness of sediment-dwelling and non-native taxa was found in both site groups. While the increase in abundance was due to improved water quality and rising water temperature, the longer duration of minimal flows had a negative effect on species richness, hampering species gain particularly at highly degraded sites. Our results provide novel evidence that degree of hydromorphological degradation modifies long-term macroinvertebrate responses to anthropogenic pressures. Less degraded sites displayed several favourable changes, such as 27 % increase in total and 23 % increase in potamal indicator richness, and stabilisation of the assemblages with few functional changes. In contrast, highly degraded sites experienced 9 % reduction in evenness, 235 % increase in proportion of non-native taxa and functional reorganisation, changes congruent with continuous deterioration. While overall water quality at studied sites has improved, consequences of climate change and high degree of hydromorphological degradation limit biotic recovery in multiple-stressor lowland rivers.
Collapse
Affiliation(s)
- Selma de Donnová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic.
| | - Alžbeta Devánová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic
| | - Libuše Barešová
- Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Praha, CZ-14306 , Czech Republic
| | - Světlana Zahrádková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic
| | - Jindřiška Bojková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic
| |
Collapse
|
8
|
Zhao Y, Duan M, Lin X, Li W, Liu H, Meng K, Liu F, Hu W, Luo D. Molecular underpinnings underlying behaviors changes in the brain of juvenile common carp (Cyrinus carpio) in response to warming. J Adv Res 2024; 63:43-56. [PMID: 37956862 PMCID: PMC11380011 DOI: 10.1016/j.jare.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Global warming is increasing interest in how aquatic animals can adjust their physiological performance and cope with temperature changes. Therefore, understanding the behavioral changes and molecular underpinnings in fish under warming is crucial for both the individual and groups survival. This could provide experimental evidence and resource for evaluating the impact of global warming. OBJECTIVE Three genetic families of common carp (Cyprinus carpio) were generated. These juveniles were constructed short-term (4 days) and long-term (30 days) warming groups to investigate the effects of warming on behavioral responses and to elucidate the potential underlying mechanisms of warming-driven behavior. METHODS Behavioral tests were used to explore the effects of short- and long-term exposure to warming on the swimming behavior of C. carpio. Brain transcriptome combined with measurement of nervous system activity was used to further investigated the comprehensive neuromolecular mechanisms under warming. RESULTS Long-term warming groups had a more significant impact on the decline of swimming behavior in juvenile C. carpio. Furthermore, brain comparative transcriptomic analysis combined with measurement of nervous system activity revealed that genes involved in cytoskeletal organization, mitochondrial regulation, and energy metabolism are major regulators of behavior in the juvenile under warming. Importantly, especially in the long-term warming groups, enrichment analysis of associated gene expression suggested functional alterations of synaptic transmission and signal transduction leading to swimming function impairment in the central nervous system, as revealed by behavioral tests. CONCLUSIONS Our study provides evidence of the neurogenomic mechanism underlying the decreased swimming activity in juvenile C. carpio under warming. These findings have important implications for understanding the impacts of climate change on aquatic ecosystems and the organisms that inhabit them.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xing Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Weiwei Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hairong Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaifeng Meng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
9
|
Nguyen HH, Peters K, Kiesel J, Welti EAR, Gillmann SM, Lorenz AW, Jähnig SC, Haase P. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172659. [PMID: 38657809 DOI: 10.1016/j.scitotenv.2024.172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.
Collapse
Affiliation(s)
- Hanh H Nguyen
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany.
| | - Kristin Peters
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Jens Kiesel
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Svenja M Gillmann
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Cunze S, Jourdan J, Klimpel S. Ecologically and medically important black flies of the genus Simulium: Identification of biogeographical groups according to similar larval niches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170454. [PMID: 38290683 DOI: 10.1016/j.scitotenv.2024.170454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The black fly genus Simulium includes medically and ecologically important species, characterized by a wide variation of ecological niches largely determining their distributional patterns. In a rapidly changing environment, species-specific niche characteristics determine whether a species benefits or not. With aquatic egg, larval and pupal stages followed by a terrestrial adult phase, their spatial arrangements depend upon the interplay of aquatic conditions and climatic-landscape parameters in the terrestrial realm. The aim of this study was to enhance the understanding of the distributional patterns among Simulium species and their ecological drivers. In an ecological niche modelling approach, we focused on 12 common black fly species with different ecological requirements. Our modelling was based on available distribution data along with five stream variables describing the climatic, land-cover, and topographic conditions of river catchments. The modelled freshwater habitat suitability was spatially interpolated to derive an estimate of the adult black flies' probability of occurrence. Based on similarities in the spatial patterns of modelled habitat suitability we were able to identify three biogeographical groups, which allows us to confirm old assessments with current occurrence data: (A) montane species, (B) broad range species and (C) lowland species. The five veterinary and human medical relevant species Simulium equinum, S. erythrocephalum, S. lineatum, S. ornatum and S. reptans are mainly classified in the lowland species group. In the course of climatic changes, it is expected that biocoenosis will slightly shift towards upstream regions, so that the lowland group will presumably emerge as the winner. This is mainly explained by wider ecological niches, including a higher temperature tolerance and tolerance to various pollutants. In conclusion, these findings have significant implications for human and animal health. As exposure to relevant Simulium species increases, it becomes imperative to remain vigilant, particularly in investigating the potential transmission of pathogens.
Collapse
Affiliation(s)
- Sarah Cunze
- Department of Integrative Parasitology and Zoophysiology, Goethe University, Frankfurt am Main, Germany.
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - Sven Klimpel
- Department of Integrative Parasitology and Zoophysiology, Goethe University, Frankfurt am Main, Germany; Senckenebrg Biodiversity and Climate Research Centre, Senckenberg, Frankfurt am Main, Germany; Branch Bioresources, Frauenhofer Institute for Molecular and Applied Ecology, Giessen, Germany
| |
Collapse
|
11
|
Poyntz-Wright IP, Harrison XA, Johnson A, Zappala S, Tyler CR. Pesticide pollution associations with riverine invertebrate communities in England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166519. [PMID: 37640080 DOI: 10.1016/j.scitotenv.2023.166519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Globally freshwater biodiversity has experienced major decline and chemical pollutants are believed to have played a significant role in this decline, but this has not been well quantified for most riverine invertebrate populations. Here we applied a biogeographically independent trait-based bioindicator, SPEARpesticides across sites across five regions (Northern, Midlands and Western, Anglian, Southeast, and Southwest) in England to investigate for associations specifically between pesticide use/pollution and riverine invertebrate communities over a 55-year period (1965-2019). Both spatially and temporally post-1990, the Anglian and Thames regions consistently showed the lowest SPEARpesticides scores, illustrating the presence of fewer pesticide sensitive species. The Anglian region had the highest pesticide use compared to all other regions from 1990 to 2018 and there were negative relationships between the level of pesticide/insecticide use and the regional SPEARpesticides score. Biochemical Oxygen Demand and ammonia, as measures of general water quality, were also negatively correlated with the SPEARpesticides scores across the regions, but these factors were not the driver for the lower SPEARpesticides scores seen in the Anglian region. Based on SPEARpesticides scores, riverine invertebrate communities in England have been most impacted in the Anglian region and we evidence chronic insecticide exposure is likely a significant factor in shaping the status of those invertebrate communities.
Collapse
Affiliation(s)
- Imogen P Poyntz-Wright
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Xavier A Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Andrew Johnson
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Susan Zappala
- JNCC, Quay House, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
12
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Haubrock PJ, Pilotto F, Haase P. Multidecadal data indicate increase of aquatic insects in Central European streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163017. [PMID: 36963681 DOI: 10.1016/j.scitotenv.2023.163017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
In recent years, declining insect biodiversity has sparked interest among scientists and drawn the attention of society and politicians. However, our understanding of the extent of this decline is incomplete, particularly for freshwater insects that provide a key trophic link between aquatic and terrestrial ecosystems, but that are also especially vulnerable to climate change. To investigate the response of freshwater insects to climate change, we quantified shifts in insect abundance and diversity across 7264 samples covering Central Europe during 1990-2018 and related these changes to annual data on temperature and precipitation. We observed both increases in richness (10.6 %) and abundance (9.5 %) of freshwater insects over the past three decades. These changes were related to increases in summer temperature and summer precipitation, which had negative effects on species richness, and to increases in winter temperature and precipitation, which had positive effects. Further we found that increased temperature was generally related to increased abundance, whereas increased precipitation was associated with declines, thus highlighting the particularly varying impacts on differing insect orders. Given that freshwater insects have been more severely affected by global change than marine and terrestrial species, the observed increases are a positive sign, but the overall situation of freshwater invertebrates is still critical.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait.
| | - Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Biblioteksgränd 3, 907 36 Umeå, Sweden
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
14
|
Haubrock PJ, Cuthbert RN, Haase P. Long-term trends and drivers of biological invasion in Central European streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162817. [PMID: 36924970 DOI: 10.1016/j.scitotenv.2023.162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Rates of biological invasion continue to accelerate and threaten the structure and function of ecosystems worldwide. High habitat connectivity, multiple pathways, and inadequate monitoring have rendered aquatic ecosystems vulnerable to species introductions. Past riverine invasion dynamics were largely restricted to large rivers, leaving out smaller rivers that commonly harbour high freshwater biodiversity. Moreover, biodiversity time series have rarely been used to investigate invasions across larger spatial-temporal scales, limiting our understanding of aquatic invasion dynamics. Here, we used 6067 benthic invertebrate samples from streams and small rivers from the EU Water Framework Directive monitoring program collected across Central Europe between 2000 and 2018 to assess temporal changes to benthic invertebrate communities as well as non-native species. We assessed invasion rates according to temperature, precipitation, elevation, latitude, longitude, and stream type. Overall, average daily temperatures significantly increased by 0.02 °C per annum (0.34 °C in total) while annual precipitation significantly decreased by 0.01 mm per annum (-67.8 mm over the study period), paralleled with significant increases in overall species richness (12.3 %) and abundance (14.9 %); water quality was relatively stable. Non-native species richness increased 5-fold and abundance 40-fold, indicating an ongoing community shift from native to non-native species. The observed increase in invasions was stronger in low mountain rivers compared to low mountain streams, with the share of non-native species abundance and richness declining with increasing elevation and latitude but increasing with temperature. We found thermophilic non-native species invasion success was greatest in larger sized streams, at lower latitudes, lower elevations and higher temperatures. These results indicate that widespread environmental characteristics (i.e., temperature) could heighten invasion success and confer refuge effects (i.e., elevation and latitude) in higher sites. High altitude and latitude environments should be prioritised for prevention efforts, while biosecurity and management should be improved in lowland areas subject to greater anthropogenic pressure, where non-native introductions are more likely.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, UK
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
15
|
Worischka S, Schöll F, Winkelmann C, Petzoldt T. Twenty-eight years of ecosystem recovery and destabilisation: Impacts of biological invasions and climate change on a temperate river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162678. [PMID: 36894073 DOI: 10.1016/j.scitotenv.2023.162678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Most river ecosystems are exposed to multiple anthropogenic stressors affecting the composition and functionality of benthic communities. Identifying main causes and detecting potentially alarming trends in time depends on the availability of long-term monitoring data sets. Our study aimed to improve the knowledge about community effects of multiple stressors that is needed for effective, sustainable management and conservation. We conducted a causal analysis to detect the dominant stressors and hypothesised that multiple stressors, such as climate change and multiple biological invasions, reduce biodiversity and thus endanger ecosystem stability. Using a data set from 1992 to 2019 for the benthic macroinvertebrate community of a 65-km stretch of the upper Elbe river in Germany, we evaluated the effects of alien species, temperature, discharge, phosphorus, pH and abiotic conditional variables on the taxonomic and functional composition of the benthic community and analysed the temporal behaviour of biodiversity metrics. We observed fundamental taxonomic and functional changes in the community, with a shift from collectors/gatherers to filter feeders and feeding opportunists preferring warm temperatures. A partial dbRDA revealed significant effects of temperature and alien species abundance and richness. The occurrence of distinct phases in the development of community metrics suggests a temporally varying impact of different stressors. Taxonomic and functional richness responded more sensitively than the diversity metrics whereas the functional redundancy metric remained unchanged. Especially the last 10-year phase, however, showed a decline in richness metrics and an unsaturated, linear relationship between taxonomic and functional richness, which rather indicates reduced functional redundancy. We conclude that the varying anthropogenic stressors over three decades, mainly biological invasions and climate change, affected the community severely enough to increase its vulnerability to future stressors. Our study highlights the importance of long-term monitoring data and emphasises a careful use of biodiversity metrics, preferably considering also community composition.
Collapse
Affiliation(s)
- Susanne Worischka
- University of Koblenz, Institute for Integrated Natural Sciences, Universitätsstr. 1, 56070 Koblenz, Germany; Federal Institute of Hydrology, Department U4 Animal Ecology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| | - Franz Schöll
- Federal Institute of Hydrology, Department U4 Animal Ecology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Carola Winkelmann
- University of Koblenz, Institute for Integrated Natural Sciences, Universitätsstr. 1, 56070 Koblenz, Germany
| | - Thomas Petzoldt
- Dresden University of Technology, Institute of Hydrobiology, Zellescher Weg 40, 01062 Dresden, Germany
| |
Collapse
|
16
|
Rumschlag SL, Mahon MB, Jones DK, Battaglin W, Behrens J, Bernhardt ES, Bradley P, Brown E, De Laender F, Hill R, Kunz S, Lee S, Rosi E, Schäfer R, Schmidt TS, Simonin M, Smalling K, Voss K, Rohr JR. Density declines, richness increases, and composition shifts in stream macroinvertebrates. SCIENCE ADVANCES 2023; 9:eadf4896. [PMID: 37134169 PMCID: PMC10156106 DOI: 10.1126/sciadv.adf4896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Documenting trends of stream macroinvertebrate biodiversity is challenging because biomonitoring often has limited spatial, temporal, and taxonomic scopes. We analyzed biodiversity and composition of assemblages of >500 genera, spanning 27 years, and 6131 stream sites across forested, grassland, urban, and agricultural land uses throughout the United States. In this dataset, macroinvertebrate density declined by 11% and richness increased by 12.2%, and insect density and richness declined by 23.3 and 6.8%, respectively, over 27 years. In addition, differences in richness and composition between urban and agricultural versus forested and grassland streams have increased over time. Urban and agricultural streams lost the few disturbance-sensitive taxa they once had and gained disturbance-tolerant taxa. These results suggest that current efforts to protect and restore streams are not sufficient to mitigate anthropogenic effects.
Collapse
Affiliation(s)
- Samantha L Rumschlag
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Michael B Mahon
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Devin K Jones
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - William Battaglin
- Colorado Water Science Center, U.S. Geological Survey, Denver, CO, USA
| | - Jonny Behrens
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Paul Bradley
- South Atlantic Water Science Center, U.S. Geological Survey, Columbia, SC, USA
| | - Ethan Brown
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, Belgium
| | - Ryan Hill
- Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Stefan Kunz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Sylvia Lee
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Emma Rosi
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - Ralf Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Travis S Schmidt
- Wyoming-Montana Water Science Center, U.S. Geological Survey, Helena, MT, USA
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Kelly Smalling
- New Jersey Water Science Center, U.S. Geological Survey, Lawrenceville, NJ, USA
| | - Kristofor Voss
- Department of Biology, Regis University, Denver, CO, USA
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
17
|
Le Hen G, Balzani P, Haase P, Kouba A, Liu C, Nagelkerke LAJ, Theissen N, Renault D, Soto I, Haubrock PJ. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161486. [PMID: 36626991 DOI: 10.1016/j.scitotenv.2023.161486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Alien fish substantially impact aquatic communities. However, their effects on trait composition remain poorly understood, especially at large spatiotemporal scales. Here, we used long-term biomonitoring data (1984-2018) from 31 fish communities of the Rhine river in Germany to investigate compositional and functional changes over time. Average total community richness increased by 49 %: it was stable until 2004, then declined until 2010, before increasing until 2018. Average abundance decreased by 9 %. Starting from 198 individuals/m2 in 1984 abundance largely declined to 23 individuals/m2 in 2010 (-88 %), and then consequently increased by 678 % up to 180 individuals/m2 until 2018. Increases in abundance and richness starting around 2010 were mainly driven by the establishment of alien species: while alien species represented 5 % of all species and 0.1 % of total individuals in 1993, it increased to 30 % (7 species) and 32 % of individuals in 2018. Concomitant to the increase in alien species, average native species richness and abundance declined by 26 % and 50 % respectively. We identified increases in temperature, precipitation, abundance and richness of alien fish driving compositional changes after 2010. To get more insights on the impacts of alien species on fish communities, we used 12 biological and 13 ecological traits to compute four trait metrics each. Ecological trait dispersion increased before 2010, probably due to diminishing ecologically similar native species. No changes in trait metrics were measured after 2010, albeit relative shares of expressed trait modalities significantly changing. The observed shift in trait modalities suggested the introduction of new species carrying similar and novel trait modalities. Our results revealed significant changes in taxonomic and trait compositions following alien fish introductions and climatic change. To conclude, our analyses show taxonomic and functional changes in the Rhine river over 35 years, likely indicative of future changes in ecosystem services.
Collapse
Affiliation(s)
- Gwendaline Le Hen
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany.
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chunlong Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, Hubei Province 430072, China
| | - Leopold A J Nagelkerke
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Nikola Theissen
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Hauptsitz, Leibnizstraße 10, 45659 Recklinghausen, Germany
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France
| | - Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| |
Collapse
|
18
|
Powell KE, Oliver TH, Johns T, González‐Suárez M, England J, Roy DB. Abundance trends for river macroinvertebrates vary across taxa, trophic group and river typology. GLOBAL CHANGE BIOLOGY 2023; 29:1282-1295. [PMID: 36462155 PMCID: PMC10107317 DOI: 10.1111/gcb.16549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 05/26/2023]
Abstract
There is mounting evidence that terrestrial arthropods are declining rapidly in many areas of the world. It is unclear whether freshwater invertebrates, which are key providers of ecosystem services, are also declining. We addressed this question by analysing a long-term dataset of macroinvertebrate abundance collected from 2002 to 2019 across 5009 sampling sites in English rivers. Patterns varied markedly across taxonomic groups. Within trophic groups we detected increases in the abundance of carnivores by 19% and herbivores by 14.8%, while we estimated decomposers have declined by 21.7% in abundance since 2002. We also found heterogeneity in trends across rivers belonging to different typologies based on geological dominance and catchment altitude, with organic lowland rivers having generally higher rates of increase in abundance across taxa and trophic groups, with siliceous lowland rivers having the most declines. Our results reveal a complex picture of change in freshwater macroinvertebrate abundance between taxonomic groups, trophic levels and river typologies. Our analysis helps with identifying priority regions for action on potential environmental stressors where we discover macroinvertebrate abundance declines.
Collapse
Affiliation(s)
- Kathryn E. Powell
- UK Centre for Ecology and HydrologyWallingfordUK
- School of Biological SciencesUniversity of ReadingReadingUK
| | - Tom H. Oliver
- School of Biological SciencesUniversity of ReadingReadingUK
| | | | | | | | - David B. Roy
- UK Centre for Ecology and HydrologyWallingfordUK
| |
Collapse
|
19
|
Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev Camb Philos Soc 2023; 98:191-221. [PMID: 36173002 PMCID: PMC10088029 DOI: 10.1111/brv.12903] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Water temperature is one of the main abiotic factors affecting the structure and functioning of aquatic ecosystems and its alteration can have important effects on biological communities. Macroinvertebrates are excellent bio-indicators and have been used for decades to assess the status of aquatic ecosystems as a result of environmental stresses; however, their responses to temperature are poorly documented and have not been systematically evaluated. The aims of this review are: (i) to collate and summarize responses of freshwater macroinvertebrates to different temperature conditions, comparing the results of experimental and theoretical studies; (ii) to understand how the focus of research on the effects of temperature on macroinvertebrates has changed during the last 51 years; and (iii) to identify research gaps regarding temperature responses, ecosystem types, organism groups, spatiotemporal scales, and geographical regions to suggest possible research directions. We performed a comparative assessment of 223 publications that specifically consider freshwater macroinvertebrates and address the effects of temperature. Short-term studies performed in the laboratory and focusing on insects exposed to a range of temperatures dominated. Field studies were carried out mainly in Europe, at catchment scale and almost exclusively in rivers; they mainly investigated responses to water thermal regime at the community scale. The most frequent biological responses tested were growth rate, fecundity and the time and length of emergence, whereas ecological responses mainly involved composition, richness, and distribution. Thermal research on freshwater macroinvertebrates has undergone a shift since the 2000s when studies involving extended spatiotemporal scales and investigating the effects of global warming first appeared. In addition, recent studies have considered the effects of temperature at genetic and evolutionary scales. Our review revealed that the effects of temperature on macroinvertebrates are manifold with implications at different levels, from genes to communities. However, community-level physiological, phenological and fitness responses tested on individuals or populations should be studied in more detail given their macroecological effects are likely to be enhanced by climate warming. In addition, most field studies at regional scales have used air temperature as a proxy for water temperature; obtaining accurate water temperature data in future studies will be important to allow proper consideration of the spatial thermal heterogeneity of water bodies and any effects on macroinvertebrate distribution patterns. Finally, we found an uneven number of studies across different ecosystems and geographic areas, with lentic bodies and regions outside the West underrepresented. It will also be crucial to include macroinvertebrates of high-altitude and tropical areas in future work because these groups are most vulnerable to climate warming for multiple reasons. Further studies on temperature-macroinvertebrate relationships are needed to fill the current gaps and facilitate appropriate conservation strategies for freshwater ecosystems in an anthropogenic-driven era.
Collapse
Affiliation(s)
- Luca Bonacina
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federica Fasano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Valeria Mezzanotte
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
20
|
Trophic Structure of Macrozoobenthos in Permanent Streams in the Eastern Balkans. DIVERSITY 2022. [DOI: 10.3390/d14121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study provides data on the trophic structure of the benthic macroinvertebrate communities in mountainous and semi-mountainous small streams and river sections belonging to Mesta, Struma and Vardar River catchments from 7th Ecoregion. The benthic macroinvertebrates were assigned to seven Functional Feeding Groups. We analyzed their trophic structure and the dynamics in different seasons. The level of similarity between the sampling localities was analyzed in the context of both the river typology and the water catchment. A comparison between the two trophic indices was conducted in order to analyze the advantages of the application of these indices for assessment of the ecological status at the studied sites. We found that the trophic structure of the benthic macroinvertebrate communities in ostensibly typologically similar river sections differs at the undisturbed vs the impacted sampled sites. To a large extent, these differences were also determined by the presence of anthropogenic influence that resulted in the predominance of deposit feeders amplifying on higher disturbance on some of the studied rivers. Long-term negative pressure has led to changes in microhabitats that affect the structure and functioning of the aquatic ecosystem by transformation of the trophic structure of the macrozoobenthos.
Collapse
|
21
|
Szałkiewicz E, Kałuża T, Grygoruk M. Detailed analysis of habitat suitability curves for macroinvertebrates and functional feeding groups. Sci Rep 2022; 12:10757. [PMID: 35750852 PMCID: PMC9232556 DOI: 10.1038/s41598-022-15096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Environmental flows have primarily a practical purpose, being an important part of water management. Despite the widespread use of environmental flows, current studies rarely describe practical insights of the methods or consider environmental flows based on ecological traits, especially regarding macroinvertebrates. In addition to hydraulic parameters, the ecological traits may also indicate processes that drive the distribution of organisms. Nevertheless, so far the habitat suitability criteria for functional feeding groups, the most commonly used ecological trait for macroinvertebrates, have not been described. In this study, we performed a detailed analysis of habitat suitability curves for the macroinvertebrate community and for FFGs. The criteria were determined based on data collected during two field campaigns (2018 and 2019) from the Flinta River, a lowland, dynamic, sandy stream located in western Poland. The method of habitat preference curves (HPCs) for flow velocities, depths and substrate was adopted. Before determining the final habitat suitability criteria, for all considered groups the habitat preference curves and habitat utilization curves were determined separately for the data collected in 2018 and 2019. The results showed that this step was key in developing the final habitat suitability criteria. Additionally, considering FFGs provided insight into the mechanisms that drove the distribution of organisms and resultant suitability.
Collapse
Affiliation(s)
- Ewelina Szałkiewicz
- Department of Hydraulic and Sanitary Engineering, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, ul. Nowoursynowska 166, 02-787, Warsaw, Poland.
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, ul. Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Mateusz Grygoruk
- Department of Hydrology, Meteorology and Water Management, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, ul. Nowoursynowska 166, 02-787, Warsaw, Poland
| |
Collapse
|
22
|
van Rees CB, Hand BK, Carter SC, Bargeron C, Cline TJ, Daniel W, Ferrante JA, Gaddis K, Hunter ME, Jarnevich CS, McGeoch MA, Morisette JT, Neilson ME, Roy HE, Rozance MA, Sepulveda A, Wallace RD, Whited D, Wilcox T, Kimball JS, Luikart G. A framework to integrate innovations in invasion science for proactive management. Biol Rev Camb Philos Soc 2022; 97:1712-1735. [PMID: 35451197 DOI: 10.1111/brv.12859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and management, innovation has far outpaced implementation and coordination. Technological and methodological syntheses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics, and others, and present a generalized framework for distilling existing and emerging data into products for proactive IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.
Collapse
Affiliation(s)
- Charles B van Rees
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Brian K Hand
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Sean C Carter
- Numerical Terradynamic Simulation Group, University of Montana, ISB 415, Missoula, MT, 59812, U.S.A
| | - Chuck Bargeron
- Center for Invasive Species and Ecosystem Health, University of Georgia, 4601 Research Way, Tifton, GA, 31793, U.S.A
| | - Timothy J Cline
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way STE 2, Bozeman MT 59717 & 320 Grinnel Drive, West Glacier, MT, 59936, U.S.A
| | - Wesley Daniel
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Jason A Ferrante
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Keith Gaddis
- NASA Biological Diversity and Ecological Forecasting Programs, 300 E St. SW, Washington, DC, 20546, U.S.A
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Catherine S Jarnevich
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Bldg C, Fort Collins, CO, 80526, U.S.A
| | - Melodie A McGeoch
- Department of Environment and Genetics, La Trobe University, Plenty Road & Kingsbury Drive, Bundoora, Victoria, 3086, Australia
| | - Jeffrey T Morisette
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - Matthew E Neilson
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Helen E Roy
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, OX10 8BB, U.K
| | - Mary Ann Rozance
- Northwest Climate Adaptation Science Center, University of Washington, Box 355674, Seattle, WA, 98195, U.S.A
| | - Adam Sepulveda
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - Rebekah D Wallace
- Center for Invasive Species and Ecosystem Health, University of Georgia, 4601 Research Way, Tifton, GA, 31793, U.S.A
| | - Diane Whited
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Taylor Wilcox
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - John S Kimball
- Numerical Terradynamic Simulation Group, University of Montana, ISB 415, Missoula, MT, 59812, U.S.A
| | - Gordon Luikart
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| |
Collapse
|
23
|
Pilotto F, Haubrock PJ, Sundermann A, Lorenz AW, Haase P. Decline in niche specialization and trait β-diversity in benthic invertebrate communities of Central European low-mountain streams over 25 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151770. [PMID: 34801496 DOI: 10.1016/j.scitotenv.2021.151770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Biotic homogenization is one of the key aspects of the current biodiversity crisis. Here we analyzed the trends of three facets of niche homogenization, i.e. niche specialization, trait α-diversity and spatial β-diversity, over a period of 25 years (1990-2014) using a large dataset of 3782 stream benthic invertebrate samples collected from central European low-mountain streams. We studied a set of traits describing the ecological niche of species and their functions: body size, feeding groups, substrate preferences, flow preferences, stream zonation preferences and saprobity. Trait composition changed significantly during the study period, and we identified an overall increase in niche homogenization. Specifically, community niche specialization significantly decreased by 20.3% over the 25-year period, with declines ranging from -16.0 to -40.9% for zonation-, flow-, substrate-preferences, body size and feeding traits. Trait diversity did not change significantly, although we recorded significant decreases by -14.2% and -10.2% for flow- and substrate-preference and increases by 5.8% and 22.6% for feeding traits and zonation preference over the study period. Trait spatial β-diversity significantly decreased by -53.0%, with substrate-preference, feeding groups and flow-preference traits declining from -61.9% to -75.3% over the study period. This increased niche homogenization is likely driven by the increase of down-stream typical taxa, which are favored by warming temperatures. Further, it is in apparent contradiction with the recorded increase in abundance (+35.9%) and taxonomic richness (+39.2%) over the same period. Even such increases do not safeguard communities from undergoing niche homogenization, indicating that recovery processes may differ with regard to community taxonomic composition and traits. Our results emphasize the complexity of community responses to global change and warrant caution when founding conclusions based solely on single community metrics.
Collapse
Affiliation(s)
- Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Biblioteksgränd 3, 907 36 Umeå, Sweden; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt am Main, Faculty of Biology, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Armin W Lorenz
- University of Duisburg-Essen, Faculty of Biology, Department Aquatic Ecology, Universitätsstrasse 5, 45141 Essen, Germany
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
24
|
Howard L, van Rees CB, Dahlquist Z, Luikart G, Hand BK. A review of invasive species reporting apps for citizen science and opportunities for innovation. NEOBIOTA 2022. [DOI: 10.3897/neobiota.71.79597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Smartphone apps have enhanced the potential for monitoring of invasive alien species (IAS) through citizen science. They now have the capacity to massively increase the volume and spatiotemporal coverage of IAS occurrence data accrued in centralised databases. While more reporting apps are developed each year, innovation across diverse functionalities and data management in this field are occurring separately and simultaneously amongst numerous research groups with little attention to trends, priorities and opportunities for improvement. This creates the risk of duplication of effort and missed opportunities for implementing new and existing functionalities that would directly benefit IAS research and management. Using a literature search of Early Detection and Rapid Response implementation, smartphone app development and invasive species reporting apps, we developed a rubric for quantitatively assessing the functionality of IAS reporting apps and applied this rubric to 41 free, English-language IAS reporting apps, available via major mobile app stores in North America. The five highest performing apps achieved scores of 61.90% to 66.35% relative to a hypothetical maximum score, indicating that many app features and functionalities, acknowledged to be useful for IAS reporting in literature, are not present in sampled apps. This suggests that current IAS reporting apps do not make use of all available and known functionalities that could maximise their efficacy. Major implementation gaps, highlighted by this rubric analysis, included limited implementation in user engagement (particularly gamification elements and social media compatibility), ancillary information on search effort, detection method, the ability to report absences and local habitat characteristics. The greatest advancement in IAS early detection would likely result from app gamification. This would make IAS reporting more engaging for a growing community of non-professional contributors and encourage frequent and prolonged participation. We discuss these implementation gaps in relation to the increasingly urgent need for Early Detection and Rapid Response frameworks. We also recommend future innovations in IAS reporting app development to help slow the spread of IAS and curb the global economic and biodiversity extinction crises. We also suggest that further funding and investment in this and other implementation gaps could greatly increase the efficacy of current IAS reporting apps and increase their contributions to addressing the contemporary biological invasion threat.
Collapse
|
25
|
Kondor AC, Molnár É, Jakab G, Vancsik A, Filep T, Szeberényi J, Szabó L, Maász G, Pirger Z, Weiperth A, Ferincz Á, Staszny Á, Dobosy P, Horváthné Kiss K, Hatvani IG, Szalai Z. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152160. [PMID: 34864023 DOI: 10.1016/j.scitotenv.2021.152160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Small streams are crucial but vulnerable elements of ecological networks. To better understand the occurrence of pharmaceutically active compounds (PhACs) in streams, this study focused on the occurrence, distribution, and environmental risk of 111 PhACs and 7 trace elements based on a total of 141 water and sediment samples from small streams located in the urbanizing region of Budapest, Hungary. Eighty-one PhACs were detected in the aqueous phase, whereas sixty-two compounds were detected in the sediment. Carbamazepine (CBZ) was the most frequently identified PhAC in water, and was found in 91.5% of all samples. However, the highest concentrations were measured for lamotrigine (344.8 μg·L-1) and caffeine (221.4 μg·L-1). Lidocaine was the most frequently occurring PhAC in sediment (73.8%), but the maximum concentrations were detected for CBZ (395.9 ng·g-1) and tiapride (187.7 ng·g-1). In both water and sediment, more PhACs were found downstream of the wastewater treatment plants (WWTPs) than in the samples not affected by treated wastewater, even though no relationship was observed between the total amount of treated wastewater and the number of detected PhACs. The PhAC concentrations were also independent of the distance from the WWTP effluents. PhAC-polluted samples were detected upstream of the WWTPs, thereby suggesting the relevance of diffuse emissions in addition to WWTP outlets. The most frequently detected PhACs in the sediment were usually also present in the water samples collected at the same place and time. The varying concentrations of PhACs and the fluctuating water-sediment properties resulted in a lack of correlation between the general chemical properties and the concentrations of PhACs, which makes it difficult to predict PhAC contamination and risks in urbanized small streams. The environmental risk assessment indicated that diclofenac had the highest risk in the sampling area.
Collapse
Affiliation(s)
- Attila Csaba Kondor
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Éva Molnár
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - Gergely Jakab
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; Institute of Geography and Geoinformatics, University of Miskolc, Egyetemváros, Miskolc H-3515, Hungary.
| | - Anna Vancsik
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Tibor Filep
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - József Szeberényi
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Lili Szabó
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Gábor Maász
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary; Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós Str. 18, Nagykanizsa H-8800, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary
| | | | - István Gábor Hatvani
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Zoltán Szalai
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| |
Collapse
|
26
|
Zajicek P, Welti EAR, Baker NJ, Januschke K, Brauner O, Haase P. Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity. Sci Rep 2021; 11:17468. [PMID: 34471149 PMCID: PMC8410911 DOI: 10.1038/s41598-021-96910-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
While much of global biodiversity is undoubtedly under threat, the responses of ecological communities to changing climate, land use intensification, and long-term changes in both taxonomic and functional diversity over time, has still not been fully explored for many taxonomic groups, especially invertebrates. We compiled time series of ground beetles covering the past two decades from 40 sites located in five regions across Germany. We calculated site-based trends for 21 community metrics representing taxonomic and functional diversity of ground beetles, activity density (a proxy for abundance), and activity densities of functional groups. We assessed both overall and regional temporal trends and the influence of the global change drivers of temperature, precipitation, and land use on ground beetle communities. While we did not detect overall temporal changes in ground beetle taxonomic and functional diversity, taxonomic turnover changed within two regions, illustrating that community change at the local scale does not always correspond to patterns at broader spatial scales. Additionally, ground beetle activity density had a unimodal response to both annual precipitation and land use. Limited temporal change in ground beetle communities may indicate a shifting baseline, where community degradation was reached prior to the start of our observation in 1999. In addition, nonlinear responses of animal communities to environmental change present a challenge when quantifying temporal trends.
Collapse
Affiliation(s)
- Petr Zajicek
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Nathan J Baker
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Januschke
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Oliver Brauner
- Office for Zoology, Vegetation and Conservation (Büro für Zoologie, Vegetation und Naturschutz), Eberswalde, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Abstract
Insects have diversified through more than 450 million y of Earth's changeable climate, yet rapidly shifting patterns of temperature and precipitation now pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here, we consider how insects are responding to recent climate change while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared with changes in land use. The importance of climate is illustrated with a case study from the butterflies of Northern California, where we find that population declines have been severe in high-elevation areas removed from the most immediate effects of habitat loss. These results shed light on the complexity of montane-adapted insects responding to changing abiotic conditions. We also consider methodological issues that would improve syntheses of results across long-term insect datasets and highlight directions for future empirical work.
Collapse
|
28
|
Robinson SI, Mikola J, Ovaskainen O, O'Gorman EJ. Temperature effects on the temporal dynamics of a subarctic invertebrate community. J Anim Ecol 2021; 90:1217-1227. [PMID: 33625727 DOI: 10.1111/1365-2656.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Climate warming is predicted to have major impacts on the structure of terrestrial communities, particularly in high latitude ecosystems where growing seasons are short. Higher temperatures may dampen seasonal dynamics in community composition as a consequence of earlier snowmelt, with potentially cascading effects across all levels of biological organisation. Here, we examined changes in community assembly and structure along a natural soil temperature gradient in the Hengill geothermal valley, Iceland, during the summer of 2015. Sample collection over several time points within a season allowed us to assess whether temperature alters temporal variance in terrestrial communities and compositional turnover. We found that seasonal fluctuations in species richness, diversity and evenness were dampened as soil temperature increased, whereas invertebrate biomass varied more. Body mass was found to be a good predictor of species occurrence, with smaller species found at higher soil temperatures and emerging earlier in the season. Our results provide more in-depth understanding of the temporal nature of community and population-level responses to temperature, and indicate that climate warming will likely dampen the seasonal turnover of community structure that is characteristic of high latitude invertebrate communities.
Collapse
Affiliation(s)
- Sinikka I Robinson
- Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Juha Mikola
- Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
29
|
Baker NJ, Pilotto F, Jourdan J, Beudert B, Haase P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143685. [PMID: 33288265 DOI: 10.1016/j.scitotenv.2020.143685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Freshwater ecosystems are dynamic, complex systems with a multitude of physical and ecological processes and stressors which drive fluctuations on the community-level. Disentangling the effects of different processes and stressors is challenging due to their interconnected nature. However, as protected areas (i.e. national parks) are less anthropogenically impacted, they are ideal for investigating single stressors. We focus on the Bavarian Forest National Park, a Long-Term Ecological Research (LTER) site in Germany, where the major stressors are climate warming, air pollution (i.e. acidification) and bark beetle infestations. We investigated the effects of these stressors on freshwater macroinvertebrates using comprehensive long-term (1983-2014) datasets comprising high-resolution macroinvertebrate and physico-chemical data from a near-natural stream. Macroinvertebrate communities have undergone substantial changes over the past 32 years, highlighted by increases in overall community abundance (+173%) and richness (+51.6%) as well as taxonomic restructuring driven by a disproportional increase of dipterans. Prior to the year 2000, regression analyses revealed a decline in sulphate deposition and subsequent recovery from historical acidification as potential drivers of the increases in abundance and richness rather than to increases in water temperature (1.5 °C overall increase). Post 2000, however, alterations to nutrient cycling caused by bark beetle infestations coupled with warming temperatures were correlated to taxonomic restructuring and disproportional increases of dipterans at the expense of sensitive taxa such as plecopterans and trichopterans. Our results highlight the challenges when investigating the effects of climate change within a multi-stressor context. Even in conservation areas, recovery from previous disturbance might mask the effects of ongoing disturbances like climate change. Overall, we observed strong community restructuring, demonstrating that stenothermal headwater communities face additional stress due to emerging competition with tolerant taxa. Conservation efforts should consider the temporal variability of communities and their recovery from disturbances to adequately identify species vulnerable to local or widespread extinction.
Collapse
Affiliation(s)
- Nathan Jay Baker
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Umeå, Sweden
| | - Jonas Jourdan
- Department of Aquatic Ecotoxicology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Mota‐Ferreira M, Filipe AF, Filomena Magalhães M, Carona S, Beja P. Spatial modelling of temporal dynamics in stream fish communities under anthropogenic change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Mário Mota‐Ferreira
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Ana Filipa Filipe
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Maria Filomena Magalhães
- cE3c Centro de Ecologia, Evolução e Alterações Ambientais Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Sara Carona
- cE3c Centro de Ecologia, Evolução e Alterações Ambientais Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Pedro Beja
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
31
|
Dudgeon D, Ng LCY, Tsang TPN. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. GLOBAL CHANGE BIOLOGY 2020; 26:6399-6412. [PMID: 32866325 DOI: 10.1111/gcb.15325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
The effects of climatic warming on tropical streams have received little attention, and field studies of such changes are generally lacking. Drifting insects from a Hong Kong forest stream were sampled for 36 months between 2013 and 2016, and compared with samples collected using identical methods in 1983-84. Mean air temperatures rose by ~0.5°C (0.17°C per decade) over this period. The stream drained an uninhabited protected area, so no climate-change effects were confounded by anthropogenic disturbance. In total, 105 taxa and >77,000 individuals were collected. Richness of samples in the historic and contemporary datasets did not differ, but true diversity of drifting insects was highest in 1983-84, and declined between 2013-14 and 2015-16. There was considerable disparity in assemblage composition between 1983-84 and 2013-16, and smaller between-year changes in the contemporary dataset. Nine indicator species of the historic dataset were identified. Most were mayflies, particularly Baetidae, which were greatly reduced in relative abundance in 2013-16. Diptera became more numerous, and tanypodine chironomids were the sole contemporary indicator taxon. Relative abundance of eight of 19 drifting species (comprising 60% of total insects) was lower in 2013-16, when the dominant baetid mayfly during 1983-84 had declined by almost 90%; only one of the 19 species occurred at higher abundance. Eight species were affected by seasonal temperature variability, but these responses were not correlated with any tendency to exhibit long-term changes in abundance. Substantial shifts in composition, including declines in mayfly relative abundance and assemblage diversity, occurred after three decades of warming, despite the broad annual range of stream temperatures (~16°C) in Hong Kong. This contradicts the well-known prediction that organisms from variable climates have evolved wider thermal tolerances that reflect prevailing environmental conditions. The observed compositional reorganization indicates that variability, rather than stability, may be typical of undisturbed tropical stream communities.
Collapse
Affiliation(s)
- David Dudgeon
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lily C Y Ng
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Toby P N Tsang
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1241-1251. [PMID: 32022305 DOI: 10.1111/cobi.13477] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/24/2020] [Indexed: 05/12/2023]
Abstract
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species' phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25-30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969-2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.
Collapse
Affiliation(s)
- Viktor Baranov
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Department of Biology II, LMU Munich Biocenter, Planegg-Martinsried, 82152, Germany
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University of Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious studies, University of Umeå, Umeå, 90187, Sweden
| | - Rüdiger Wagner
- FB 10 Nat. Sci., Biology, Zoology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, 34132, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
33
|
Verberk WC, Buchwalter DB, Kefford BJ. Energetics as a lens to understanding aquatic insect's responses to changing temperature, dissolved oxygen and salinity regimes. CURRENT OPINION IN INSECT SCIENCE 2020; 41:46-53. [PMID: 32682316 DOI: 10.1016/j.cois.2020.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 05/12/2023]
Abstract
Assemblages of aquatic insects are structured by multiple biotic and abiotic conditions, including temperature, salinity and oxygen. Here we highlight recent developments in our understanding of how high temperatures, elevated salinities and low oxygen levels affect physiological processes, responses at the organismal level, and impacts on species interaction and community assembly. As aquatic insects may be exposed to multiple stressors, we review their sensitivity to interactive effects of multiple stressors. While each of these stressors may operate via different physiological mechanisms, they all influence the overall energy budget as well as the allocation of energy to competing functions such as homeostatic maintenance, growth, development and reproduction. As such, there is potential for interaction whereby one stressor may exacerbate the effect of another stressor. Integrating research on these stressors can provide a powerful approach for delineating the sensitivity of aquatic insects to multiple stressors and developing sound management practices.
Collapse
Affiliation(s)
- Wilco Cep Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University. Box 7633, Raleigh, NC 27695, USA
| | - Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Engels S, Medeiros AS, Axford Y, Brooks SJ, Heiri O, Luoto TP, Nazarova L, Porinchu DF, Quinlan R, Self AE. Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity. GLOBAL CHANGE BIOLOGY 2020; 26:1155-1169. [PMID: 31596997 DOI: 10.1111/gcb.14862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (Tjul ) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present-day Tjul between 2.5 and 14°C. In some areas with Tjul > 14°C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial-interglacial transition (~15,000-11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity-temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites.
Collapse
Affiliation(s)
- Stefan Engels
- Department of Geography, Birkbeck University of London, London, UK
| | - Andrew S Medeiros
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, Canada
| | - Yarrow Axford
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| | | | - Oliver Heiri
- Geoecology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Tomi P Luoto
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Larisa Nazarova
- Institute of Geosciences, Potsdam University, Potsdam-Golm, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany
- Kazan Federal University, Kazan, Russia
| | | | | | - Angela E Self
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
35
|
Kakouei K, Domisch S, Kiesel J, Kail J, Jähnig SC. Climate model variability leads to uncertain predictions of the future abundance of stream macroinvertebrates. Sci Rep 2020; 10:2520. [PMID: 32054891 PMCID: PMC7018820 DOI: 10.1038/s41598-020-59107-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
Climate change has the potential to alter the flow regimes of rivers and consequently affect the taxonomic and functional diversity of freshwater organisms. We modeled future flow regimes for the 2050 and 2090 time horizons and tested how flow regimes impact the abundance of 150 macroinvertebrate species and their functional trait compositions in one lowland river catchment (Treene) and one mountainous river catchment (Kinzig) in Europe. We used all 16 global circulation models (GCMs) and regional climate models (RCMs) of the CORDEX dataset under the RCP 8.5 scenario to calculate future river flows. The high variability in relative change of flow among the 16 climate models cascaded into the ecological models and resulted in substantially different predicted abundance values for single species. This variability also cascades into any subsequent analysis of taxonomic or functional freshwater biodiversity. Our results showed that flow alteration effects are different depending on the catchment and the underlying species pool. Documenting such uncertainties provides a basis for the further assessment of potential climate-change impacts on freshwater taxa distributions.
Collapse
Affiliation(s)
- Karan Kakouei
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecosystem Research, Berlin, Germany. .,Freie Universität Berlin, Institute of Biology, Berlin, Germany.
| | - Sami Domisch
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecosystem Research, Berlin, Germany
| | - Jens Kiesel
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecosystem Research, Berlin, Germany.,Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Kiel, Germany
| | - Jochem Kail
- University of Duisburg-Essen, Department of Aquatic Ecology, Essen, Germany
| | - Sonja C Jähnig
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecosystem Research, Berlin, Germany
| |
Collapse
|
36
|
Verniest F, Greulich S. Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Boukal DS, Bideault A, Carreira BM, Sentis A. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics. CURRENT OPINION IN INSECT SCIENCE 2019; 35:88-95. [PMID: 31445412 DOI: 10.1016/j.cois.2019.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Human-induced climate change, dominated by warming trends, poses a major threat to global biodiversity and ecosystem functioning. Species interactions relay the direct and indirect effects of climate warming on individuals to communities, and detailed understanding across these levels is crucial to predict ecological consequences of climate change. We provide a conceptual framework that links temperature effects on insect physiology and behaviour to altered species interactions and community dynamics. We highlight key features of this framework with recent studies investigating the impacts of warming climate on insects and other ectotherms and identify methodological, taxonomic and geographic biases. While the effects of increased constant temperatures are now well understood, future studies should focus on temperature variation, interactions with other stressors and cross-system comparisons.
Collapse
Affiliation(s)
- David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Azenor Bideault
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du Centre National de la Recherche Scientifique (CNRS), 2 Route du CNRS, 09200 Moulis, France
| | - Bruno M Carreira
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Arnaud Sentis
- IRSTEA, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| |
Collapse
|
38
|
Jourdan J, Baranov V, Wagner R, Plath M, Haase P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J Anim Ecol 2019; 88:1498-1509. [DOI: 10.1111/1365-2656.13054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Jonas Jourdan
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
- Department Aquatic Ecotoxicology Johann Wolfgang Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Viktor Baranov
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Rüdiger Wagner
- FB 10 Nat. Sci., Biology, Zoology University of Kassel Kassel Germany
| | - Martin Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Peter Haase
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
- Faculty of Biology University of Duisburg‐Essen Essen Germany
| |
Collapse
|
39
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
40
|
Guareschi S, Wood PJ. Taxonomic changes and non-native species: An overview of constraints and new challenges for macroinvertebrate-based indices calculation in river ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:40-46. [PMID: 30639717 DOI: 10.1016/j.scitotenv.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Freshwater ecosystems face many threats in the form of reduced water quantity, poor water quality and the loss of biodiversity. As a result, aquatic biomonitoring tools are required to enable the evaluation of these critical changes. Currently, macroinvertebrate-based indices are globally the most widely used biomonitoring tools in fluvial ecosystems. However, very little is known about the potential effects of changes in taxonomic understanding (updating of classification and nomenclature) or the presence of new non-native species for biotic indices calculation. This is especially relevant given that errors, incorrect classification or exclusion of new/updated nomenclature may affect ecological status evaluations and have direct consequences for the management and conservation of freshwater systems. In this discussion paper the main constraints, challenges and implications of these issues are outlined and case studies from a range of European countries are discussed. However, similar challenges affect rivers and managers globally and will potentially be amplified further in the future. Bioassessment science needs to be open to improvements, and current tools and protocols need to be flexible so that they can be updated and revised rapidly to allow new scientific developments to be integrated. This discussion highlights specific examples and new ideas that may contribute to the future development of aquatic biomonitoring using macroinvertebrates and other faunal and floral groups in riverine ecosystems.
Collapse
Affiliation(s)
- Simone Guareschi
- Department of Ecology and Hydrology, Regional Campus of International Excellence "Campus Mare Nostrum" University of Murcia, 30100, Spain.
| | - Paul J Wood
- Geography and Environment, Centre for Hydrological and Ecosystem Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| |
Collapse
|
41
|
Cai Y, Xu J, Zhang M, Wang J, Heino J. Different roles for geography, energy and environment in determining three facets of freshwater molluscan beta diversity at broad spatial scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:451-462. [PMID: 31096375 DOI: 10.1016/j.scitotenv.2018.12.373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/10/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Current understanding of different facets of beta diversity and their underlying determinants remains limited at broad scales in the freshwater realm. We examined the geographical patterns and spatial congruence of three beta diversity facets of freshwater molluscs across all of China, and evaluated the relative importance of environmental and spatial factors underlying the observed patterns. Taxonomic (β-TD), functional (β-FD) and phylogenetic (β-PD) beta diversity were calculated for 212 drainage basins belonging to 10 hydrographic regions using compiled occurrence data of 313 molluscan species. Geographical patterns of the three diversity facets were visualized on maps and pairwise spatial congruence among them was evaluated using regression on distance matrices. Variation partitioning and multivariate regression trees were used to assess the relative importance of different factors underlying beta diversity patterns. Beta diversity maps revealed that geographical patterns of β-TD and β-PD showed strong spatial clustering and were well matched with hydrographic regions' boundaries, while β-FD showed only moderate spatial aggregation. The three facets were only moderately congruent, with over 60% of the variation in one facet remaining unexplained by any other facet. Remarkably, all diversity facets were best explained by the spatial factors with considerable unique effects. Environmental filtering associated with energy gradients also made a large contribution, while habitat availability only explained minor fractions of the variation in beta diversity. At the national scale, β-TD and β-PD were more strongly related to spatial processes, whereas β-FD was more strongly associated with energy gradients. Our results suggested that, for freshwater organisms with low dispersal capacity, dispersal processes may override environmental filtering in driving geographical diversity patterns. However, different ecological drivers were important for each diversity facet. Importantly, rather weak spatial congruence among the different diversity facets stresses the need to incorporate functional and phylogenetic facets into the development of conservation planning.
Collapse
Affiliation(s)
- Yongjiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianjun Wang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jani Heino
- Finnish Environment Institute, Biodiversity Centre, Paavo Havaksen Tie 3, FI-90570 Oulu, Finland
| |
Collapse
|
42
|
Krajenbrink HJ, Acreman M, Dunbar MJ, Hannah DM, Laizé CLR, Wood PJ. Macroinvertebrate community responses to river impoundment at multiple spatial scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2648-2656. [PMID: 30296772 DOI: 10.1016/j.scitotenv.2018.09.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
River impoundment by the construction of dams potentially modifies a wide range of abiotic and biotic factors in lotic ecosystems and is considered one of the most significant anthropogenic impacts on rivers globally. The past two decades have witnessed a growing body of research centred on quantifying the effects of river impoundment, with a focus on mitigating and managing the effects of individual large dams. This study presents a novel multi-scale comparison of paired downstream and control sites associated with multiple water supply reservoirs (n = 80) using a spatially extensive multi-year dataset. Macroinvertebrate community structure and indices were analysed in direct association with spatial (e.g. region) and temporal variables (e.g. season) to identify consistent patterns in ecological responses to impoundment. Macroinvertebrate communities at monitoring sites downstream of water supply reservoirs differed significantly from those at control sites at larger spatial scales, both in terms of community structure and taxa richness. The effect was most significant at the regional scale, while biogeographical factors appeared to be important drivers of community differences at the national scale. Water supply reservoirs dampened natural seasonal patterns in community structure at sites downstream of impoundments. Generally, taxonomic richness was higher and %EPT richness lower at downstream sites. Biomonitoring indices used for river management purposes were able to detect community differences, demonstrating their sensitivity to river regulation activities. The results presented improve our understanding of the spatially extensive and long-term effects of water supply reservoirs on instream communities and provide a basis for the future implementation of mitigation measures on impounded rivers and heavily modified waterbodies.
Collapse
Affiliation(s)
- Hendrik J Krajenbrink
- Centre for Hydrological and Ecosystem Science, Department of Geography and Environment, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom.
| | - Mike Acreman
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom
| | - Michael J Dunbar
- Environment Agency of England, Manley House, Kestrel Way, Exeter EX2 7LQ, United Kingdom
| | - David M Hannah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Cédric L R Laizé
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paul J Wood
- Centre for Hydrological and Ecosystem Science, Department of Geography and Environment, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
43
|
Jourdan J, Plath M, Tonkin JD, Ceylan M, Dumeier AC, Gellert G, Graf W, Hawkins CP, Kiel E, Lorenz AW, Matthaei CD, Verdonschot PFM, Verdonschot RCM, Haase P. Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biol Rev Camb Philos Soc 2018; 94:368-387. [PMID: 30136362 DOI: 10.1111/brv.12458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Species reintroductions - the translocation of individuals to areas in which a species has been extirpated with the aim of re-establishing a self-sustaining population - have become a widespread practice in conservation biology. Reintroduction projects have tended to focus on terrestrial vertebrates and, to a lesser extent, fishes. Much less effort has been devoted to the reintroduction of invertebrates into restored freshwater habitats. Yet, reintroductions may improve restoration outcomes in regions where impoverished regional species pools limit the self-recolonisation of restored freshwaters. We review the available literature on macroinvertebrate reintroductions, focusing on identifying the intrinsic and extrinsic factors that determine their success or failure. Our study reveals that freshwater macroinvertebrate reintroductions remain rare, are often published in the grey literature and, of the attempts made, approximately one-third fail. We identify life-cycle complexity and remaining stressors as the two factors most likely to affect reintroduction success, illustrating the unique challenges of freshwater macroinvertebrate reintroductions. Consideration of these factors by managers during the planning process and proper documentation - even if a project fails - may increase the likelihood of successful outcomes in future reintroduction attempts of freshwater macroinvertebrates.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571, Gelnhausen, Germany
| | - Martin Plath
- Shaanxi Key Laboratory for Molecular Biology in Agriculture and College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, 712100, Shaanxi, China
| | - Jonathan D Tonkin
- Department of Integrative Biology, Oregon State University, Corvallis, 3029 Cordley Hall, OR, 97331, U.S.A
| | - Maria Ceylan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571, Gelnhausen, Germany
| | - Arlena C Dumeier
- Department of Biology and Environmental Sciences - Aquatic Ecology and Nature Conservation, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Georg Gellert
- Landesarbeitskreis Wasser, Bund für Umwelt und Naturschutz Deutschland Landesverband Nordrhein-Westfalen, Merowingerstr. 88, 40225, Düsseldorf, Germany
| | - Wolfram Graf
- Institute of Hydrobiology and Aquatic Ecosystem Management, BOKU - University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Charles P Hawkins
- Department of Watershed Sciences, National Aquatic Monitoring Center, and Ecology Center, Utah State University, 5210 Old Main Hill, Logan, UT, 84322-5210, U.S.A
| | - Ellen Kiel
- Department of Biology and Environmental Sciences - Aquatic Ecology and Nature Conservation, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Armin W Lorenz
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Piet F M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, Droevendaalsesteeg 3, 6700AA, Wageningen, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090GE, Amsterdam, The Netherlands
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, Droevendaalsesteeg 3, 6700AA, Wageningen, The Netherlands
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571, Gelnhausen, Germany.,Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
44
|
Kogovšek T, Vodopivec M, Raicich F, Uye SI, Malej A. Comparative analysis of the ecosystems in the northern Adriatic Sea and the Inland Sea of Japan: Can anthropogenic pressures disclose jellyfish outbreaks? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:982-994. [PMID: 29898563 DOI: 10.1016/j.scitotenv.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
A prominent increase in the moon jellyfish (genus Aurelia) populations has been observed since 1980 in two semi-enclosed temperate seas: the northern Adriatic Sea and the Inland Sea of Japan. Therefore, we reviewed long-term environmental and biotic data from the two Long-Term Ecological Research (LTER) sites, along with the increase in the moon jellyfish occurrence to elucidate how these coastal seas shifted to the jellyfish-dominated ecosystems. The principal component analysis of atmospheric data revealed a simultaneous occurrence of similar climatic changes in the early 1980s; thereafter, air temperature increased steadily and precipitation decreased but became more extreme. Accordingly, the average seawater temperature from March to October, a period of polyps' asexual reproduction i.e. budding, increased, potentially leading to an increase in the reproductive rates of local polyp populations. Conspicuous eutrophication occurred due to the rise of anthropogenic activities in both areas from the 1960s onwards. This coincided with an increase of the stock size of forage fishes, such as anchovy and sardine, but not the population size of the jellyfish. However, by the end of the 1980s, when the eutrophication lessened due to the regulations of nutrients loads from the land, the productive fishing grounds of both systems turned into a state that may be described as 'jellyfish-permeated,' as manifested by a drastic decrease in fish landings and a prominent increase in the intensity and frequency of medusa blooms. A steady increase in artificial marine structures that provide substrate for newly settled polyps might further contribute to the enhancement of jellyfish population size. Elevated fishing pressure and/or predation by jellyfish on ichthyoplankton and zooplankton might jeopardize the recruitment of anchovy, so that the anchovy catch has never recovered fully. These semi-enclosed seas may represent many temperate coastal waters with increased anthropogenic stressors, which have degraded the ecosystem from fish-dominated to jellyfish-dominated.
Collapse
Affiliation(s)
- Tjaša Kogovšek
- Marine Biology Station, National Institute of Biology, Slovenia.
| | | | - Fabio Raicich
- CNR - Institute for Marine Sciences, AREA Science Park Trieste, Italy
| | - Shin-Ichi Uye
- Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Alenka Malej
- Marine Biology Station, National Institute of Biology, Slovenia
| |
Collapse
|
45
|
Mirtl M, T Borer E, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H, Orenstein DE, Pauw JC, Peterseil J, Shibata H, Wohner C, Yu X, Haase P. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1439-1462. [PMID: 29898550 DOI: 10.1016/j.scitotenv.2017.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 06/08/2023]
Abstract
Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTER's mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information on sustainable use of natural resources.
Collapse
Affiliation(s)
- M Mirtl
- Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, Germany.
| | - E T Borer
- Department of Ecology, Evolution, and Behavior, 1987 Upper Buford Circle, Suite 100, University of Minnesota, St. Paul, MN 55108, USA
| | - I Djukic
- Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria
| | - M Forsius
- Finnish Environment Institute SYKE, P.O.Box 140, FI-00251 Helsinki, Finland
| | - H Haubold
- Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria
| | - W Hugo
- South African Environmental Observation Network (SAEON) of the National Research Foundation (NRF), 41 De Havilland Crescent, The Woods, Persequor Park, PO Box 2600, Pretoria 0001, South Africa
| | - J Jourdan
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystraße 12, 63571 Gelnhausen, Germany
| | - D Lindenmayer
- Fenner School of Environment and Society, Frank Fenner Building (Bldg 141), The ANU College of Medicine, Biology & Environment, The Australian National University, Acton, ACT 2601, Australia
| | - W H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Rudman Hall, 46 College Road, Durham, NH 03824, USA
| | - H Muraoka
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - D E Orenstein
- Faculty of Architecture and Town Planning, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - J C Pauw
- South African Environmental Observation Network (SAEON) of the National Research Foundation (NRF), 41 De Havilland Crescent, The Woods, Persequor Park, PO Box 2600, Pretoria 0001, South Africa
| | - J Peterseil
- Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria
| | - H Shibata
- Field Science Center for Northern Biosphere, Hokkaido University, N9 W9, Kita-ku, Sapporo 060-0809, Japan
| | - C Wohner
- Environment Agency Austria, Spittelauer Lände 5, 1090 Wien, Austria
| | - X Yu
- Chinese Ecosystem Research Network (CERN), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China
| | - P Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystraße 12, 63571 Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
46
|
Tonkin JD, Death RG, Muotka T, Astorga A, Lytle DA. Do latitudinal gradients exist in New Zealand stream invertebrate metacommunities? PeerJ 2018; 6:e4898. [PMID: 29844999 PMCID: PMC5971837 DOI: 10.7717/peerj.4898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
That biodiversity declines with latitude is well known, but whether a metacommunity process is behind this gradient has received limited attention. We tested the hypothesis that dispersal limitation is progressively replaced by mass effects with increasing latitude, along with a series of related hypotheses. We explored these hypotheses by examining metacommunity structure in stream invertebrate metacommunities spanning the length of New Zealand’s two largest islands (∼1,300 km), further disentangling the role of dispersal by deconstructing assemblages into strong and weak dispersers. Given the highly dynamic nature of New Zealand streams, our alternative hypothesis was that these systems are so unpredictable (at different stages of post-flood succession) that metacommunity structure is highly context dependent from region to region. We rejected our primary hypotheses, pinning this lack of fit on the strong unpredictability of New Zealand’s dynamic stream ecosystems and fauna that has evolved to cope with these conditions. While local community structure turned over along this latitudinal gradient, metacommunity structure was highly context dependent and dispersal traits did not elucidate patterns. Moreover, the emergent metacommunity types exhibited no trends, nor did the important environmental variables. These results provide a cautionary tale for examining singular metacommunities. The considerable level of unexplained contingency suggests that any inferences drawn from one-off snapshot sampling may be misleading and further points to the need for more studies on temporal dynamics of metacommunity processes.
Collapse
Affiliation(s)
- Jonathan D Tonkin
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Russell G Death
- Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Timo Muotka
- Department of Ecology, University of Oulu, Oulu, Finland.,Natural Environment Centre, Finnish Environment Institute, Oulu, Finland
| | - Anna Astorga
- Institute of Ecology and Biodiversity, P. Universidad Catolica de Chile & Centro de Investigación de Ecosistemas de la Patagonia, Coyhaique, Chile
| | - David A Lytle
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
47
|
Rogora M, Frate L, Carranza ML, Freppaz M, Stanisci A, Bertani I, Bottarin R, Brambilla A, Canullo R, Carbognani M, Cerrato C, Chelli S, Cremonese E, Cutini M, Di Musciano M, Erschbamer B, Godone D, Iocchi M, Isabellon M, Magnani A, Mazzola L, Morra di Cella U, Pauli H, Petey M, Petriccione B, Porro F, Psenner R, Rossetti G, Scotti A, Sommaruga R, Tappeiner U, Theurillat JP, Tomaselli M, Viglietti D, Viterbi R, Vittoz P, Winkler M, Matteucci G. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1429-1442. [PMID: 29929254 DOI: 10.1016/j.scitotenv.2017.12.155] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns.
Collapse
Affiliation(s)
- M Rogora
- CNR Institute of Ecosystem Study, Verbania Pallanza, Italy.
| | - L Frate
- DIBT, Envix-Lab, University of Molise, Pesche (IS), Italy
| | - M L Carranza
- DIBT, Envix-Lab, University of Molise, Pesche (IS), Italy
| | - M Freppaz
- DISAFA, NatRisk, University of Turin, Grugliasco (TO), Italy
| | - A Stanisci
- DIBT, Envix-Lab, University of Molise, Pesche (IS), Italy
| | - I Bertani
- Graham Sustainability Institute, University of Michigan, 625 E. Liberty St., Ann Arbor, MI 48104, USA
| | - R Bottarin
- Eurac Research, Institute for Alpine Environment, Bolzano (BZ), Italy
| | - A Brambilla
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz (AO) 11, Valsavarenche, Italy; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R Canullo
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino (MC), Italy
| | - M Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Parma, Italy
| | - C Cerrato
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz (AO) 11, Valsavarenche, Italy
| | - S Chelli
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino (MC), Italy
| | - E Cremonese
- Environmental Protection Agency of Aosta Valley, ARPA VdA, Climate Change Unit, Aosta, Italy
| | - M Cutini
- Department of Science, University of Roma Tre, Viale G. Marconi, 446-00146 Rome, Italy
| | - M Di Musciano
- Department of Life Health & Environmental Sciences, University of L'Aquila Via Vetoio, 67100 L'Aquila, Italy
| | - B Erschbamer
- University of Innsbruck, Institute of Botany, Sternwartestr 15, A-6020 Insbruck, Austria
| | - D Godone
- CNR IRPI Geohazard Monitoring Group, Strada delle Cacce, 73, 10135 Torino, Italy
| | - M Iocchi
- Department of Science, University of Roma Tre, Viale G. Marconi, 446-00146 Rome, Italy
| | - M Isabellon
- DISAFA, University of Turin, Grugliasco (TO), Italy; Environmental Protection Agency of Aosta Valley, ARPA VdA, Climate Change Unit, Aosta, Italy
| | - A Magnani
- DISAFA, University of Turin, Grugliasco (TO), Italy
| | - L Mazzola
- Sciences and Technologies for Environment and Resources, University of Parma, Italy
| | - U Morra di Cella
- Environmental Protection Agency of Aosta Valley, ARPA VdA, Climate Change Unit, Aosta, Italy
| | - H Pauli
- GLORIA Coordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences & Center for Global Change and Sustainability, University of Natural Resources and Life Sciences Vienna (BOKU), Silbergasse 30/3, 1190 Vienna, Austria
| | - M Petey
- Environmental Protection Agency of Aosta Valley, ARPA VdA, Climate Change Unit, Aosta, Italy
| | - B Petriccione
- Carabinieri, Biodiversity and Park Protection Dpt., Roma, Italy
| | - F Porro
- Department of Earth and Environmental Sciences, University of Pavia, via Ferrata 1, 27100 Pavia, Italy
| | - R Psenner
- Eurac Research, Institute for Alpine Environment, Bolzano (BZ), Italy; Lake and Glacier Research Group, Institute of Ecology, University of Innsbruck, Technikerstr, 25, 6020 Innsbruck, Austria
| | - G Rossetti
- Department of Environmental Sciences, University of Parma, Parco Area delle Scienze, 33/A, 43100 Parma, Italy
| | - A Scotti
- Eurac Research, Institute for Alpine Environment, Bolzano (BZ), Italy
| | - R Sommaruga
- Lake and Glacier Research Group, Institute of Ecology, University of Innsbruck, Technikerstr, 25, 6020 Innsbruck, Austria
| | - U Tappeiner
- Eurac Research, Institute for Alpine Environment, Bolzano (BZ), Italy
| | - J-P Theurillat
- Centre Alpien de Phytogéographie, Fondation J.-M. Aubert, 1938 Champex-Lac, Switzerland, & Section of Biology, University of Geneva, 1292 Chambésy, Switzerland
| | - M Tomaselli
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Parma, Italy
| | - D Viglietti
- DISAFA, NatRisk, University of Turin, Grugliasco (TO), Italy
| | - R Viterbi
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz (AO) 11, Valsavarenche, Italy
| | - P Vittoz
- Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
| | - M Winkler
- GLORIA Coordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences & Center for Global Change and Sustainability, University of Natural Resources and Life Sciences Vienna (BOKU), Silbergasse 30/3, 1190 Vienna, Austria
| | | |
Collapse
|
48
|
Kakouei K, Kiesel J, Domisch S, Irving KS, Jähnig SC, Kail J. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances. Ecol Evol 2018; 8:3393-3409. [PMID: 29607034 PMCID: PMC5869304 DOI: 10.1002/ece3.3907] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 01/19/2023] Open
Abstract
Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species abundances and can be applied to any stressor, species, or region.
Collapse
Affiliation(s)
- Karan Kakouei
- Department of Ecosystem Research Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany.,Department of Biology, Chemistry and Pharmacy Free University of Berlin Berlin Germany
| | - Jens Kiesel
- Department of Ecosystem Research Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany.,Department of Hydrology and Water Resources Management Institute for Natural Resource Conservation Christian-Albrechts-University Kiel Kiel Germany
| | - Sami Domisch
- Department of Ecosystem Research Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Katie S Irving
- Department of Ecosystem Research Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany.,Department of Biology, Chemistry and Pharmacy Free University of Berlin Berlin Germany
| | - Sonja C Jähnig
- Department of Ecosystem Research Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Jochem Kail
- Department of Aquatic Ecology University of Duisburg-Essen Essen Germany
| |
Collapse
|