1
|
Yu W, Liu F, Jiao X, Fan P, Yang H, Zhang Y, Li J, Chen J, Li X. Human-induced N-P imbalances will aggravate GHG emissions from lakes and reservoirs under persisting eutrophication. WATER RESEARCH 2025; 276:123240. [PMID: 39922139 DOI: 10.1016/j.watres.2025.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Lakes and reservoirs are hotspots for emissions of atmospheric greenhouse gas (GHG) such as CO2, CH4, and N2O, and their nutrient levels and stoichiometric status are significant drivers of GHG emissions. In recent decades, human-induced unbalanced inputs of nitrogen (N) and phosphorus (P) have enhanced the P-limiting state of inland lake and reservoir systems. However, it remains unclear whether this state transition involves global changes in nutrient-limiting systems and GHG emissions from lakes and reservoirs. In this study, a comprehensive model was developed to examine the relationship between GHG fluxes and total N (TN) and total P (TP) to predict future human-induced N over-enrichment and its impact on global GHG emissions. Our results show that excess N inputs amplified GHG emissions, with future water eutrophication (1.2×) projected to increase CO2 emissions (384.66 Tg·y-1), CH4 (7.38 Tg·y-1), and N2O (0.23 Tg·y-1) from lakes and reservoirs by 49 %, 12 %, and 25 %, respectively, amounting to approximately US$0.13 trillion ($0.08-6.91 trillion, 2015$) in social costs. A future 50 % increase in N: P will increase the relative social cost of carbon by 15 % compared to future 1.2× eutrophication levels. Given the social costs and benefits of reducing N and P pollutants in water individually and in synchronization, future long-term strategies for managing eutrophication in lakes and reservoirs need to emphasize balanced control of N and P.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Reservoir Ecosystem, Guiyang, 551499, PR China
| | - Fali Liu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xianglan Jiao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Pingping Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Haiquan Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Reservoir Ecosystem, Guiyang, 551499, PR China.
| | - Yongmei Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jie Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Reservoir Ecosystem, Guiyang, 551499, PR China
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
2
|
Yang C, Ding S, Niu Y, Zhang X, Li J. Characteristics of macrobenthic communities and their response to environmental changes in East Taihu Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:642. [PMID: 40343537 DOI: 10.1007/s10661-025-14084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
East Taihu Lake watershed has complex water functional areas; though it is small, human activities on the East Taihu Lake watershed environment interference are relatively strong. In this study, we investigated the diversity of macrobenthic communities and analyzed the pivotal environmental factors affecting alterations in the macrobenthic communities of East Taihu Lake. This analysis was augmented by controlled laboratory simulation experiments designed to elucidate and validate the responses of critical indicator species within various functional areas to environmental shifts. This study showed that (1) 28 species of macrobenthos were collected in the study area, belonging to 3 phyla, 6 orders, 13 orders, 18 families, and 25 genera. The mean values of annual macroinvertebrate density and biomass were 70.93 ± 42.92 ind/m2 and 50.99 ± 36.50 g/m2. Bellamya purificata, Limnodrilus, and Tubifex were the dominant species on a year-round scale. Water depth and sediment water content were the most important environmental factors affecting the macrobenthic communities; (2) simulation experiments revealed that the growth condition of Bellamya was significantly worse in the simulated entrance area than in the simulated original enclosure aquaculture and wetland areas. The growth of Radix auricularia was significantly better in the presence of aquatic plants than in the absence of plants, and was more significantly influenced by environmental factors closely related to aquatic plants. The densities of annelids were significantly higher in the treatment group without plants than in that with plants, generally showing the growing trend of the simulated original enclosure aquaculture area > the simulated entrance area > the simulated wetland area. The results of the study support an aquatic revegetation strategy dominated by submerged plant restoration, and recommend water level regulation in shallow lake areas to reduce the impact of water level fluctuations on benthic habitats.
Collapse
Affiliation(s)
- Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai, 200092, China.
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Shuhan Ding
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Yangdan Niu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Xiang Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Geng Y, Cao Z, Yu R, Li X, Sun H, Wang X. Delving into nitrogen and phosphorus dynamics in shallow eutrophic lakes: Multi-interface response to freeze-thaw cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177052. [PMID: 39437929 DOI: 10.1016/j.scitotenv.2024.177052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Assessing the impact of freeze-thaw cycles on nutrient transfer in lakes is crucial for addressing the global eutrophication of freshwater ecosystems in cold and arid regions. However, available information about the dynamics of nitrogen (N) and phosphorus (P) release during intact freeze-thaw cycles, especially in the sediment-porewater-water column continuum of lakes, is limited. This study collected the samples during ice-covered (January) and non-ice-covered (April, July, and October) periods. The changes in total nitrogen (TN) and total phosphorus (TP) were analyzed to estimate their release fluxes from the sediment-water interface. Both redundancy analysis (RDA) and variance partitioning analysis (VPA) were used to explore the effects of environmental variables on N and P. The results indicated that during the ice-covered period (ICP), the surface water content of different forms of N and P was lower than that of the overlying water, whereas the opposite was true during the non-ice-covered period (NICP). The overall trend for the different forms of N was TN > DIN > NH4-N > NO3-N > NO2-N, and for P, it was TP > PP > DTP > DOP>DIP. The vertical profiles of the porewater TN and TP generally demonstrated an increase followed by a decrease from the surface to the bottom, with an inflection point at 15 cm. Sediment TN and TP trends over time matched porewater trends, with both being spatially highest at the lake inlet. ICP sediments acted as sinks for TN and TP, and NICP sediments acted as sources. N and P in the water column were significantly correlated mainly with physicochemical indicators, whereas sediment contributed positively to TN and TP in the porewater. VPA indicated that environmental factors explained 46.45 % of the variation in TN and TP in the porewater. These findings emphasize the importance of freeze-thaw cycling processes in driving N and P nutrient enrichment, source-sink effects, and multi-media coupling in shallow lakes in arid plateau regions.
Collapse
Affiliation(s)
- Yue Geng
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhengxu Cao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010021, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaozhuang Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Zeng X, Liu Y, Wang Q, Ma H, Li X, Wang Q, Yang Q. Tanning wastewater restructured nitrogen-transforming bacteria communities and promoted N 2O emissions in receiving river riparian sediments. ENVIRONMENTAL RESEARCH 2024; 260:119580. [PMID: 38992757 DOI: 10.1016/j.envres.2024.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Physicochemical and toxicological characterization of leather tanning wastewater has been widely documented. However, few reports have examined the response of denitrification N2 and N2O emissions in riparian sediments of tannery wastewater-receiving rivers. In this study, 15N-nitrate labeling was used to reveal the effects of tanning wastewater on denitrification N2 and N2O emission in a wastewater-receiving river (the old Mang River, OMR). OMR riparian sediments were highly polluted with total organic carbon (93.39 mg/kg), total nitrogen (5.00 g/kg) and heavy metals; specifically, Cr, Zn, Cd, and Pb were found at concentrations 47.3, 5.8, 1.6, 4.3, and 2.8 times that in a nearby parallel river without tanning wastewater input (the new Mang River, NMR), respectively. The denitrification N2 emission rates (0.0015 nmol N · g-1 h-1) of OMR riparian sediments were significantly reduced by 2.5 times compared with those from the NMR (p < 0.05), but the N2O emission rates (0.31 nmol N · g-1 h-1) were significantly increased (4.1 times, p < 0.05). Although the dominant nitrogen-transforming bacteria phylum was Proteobacteria in the riparian sediments of both rivers, 11 nitrogen-transforming bacteria genera in the OMR were found to be significantly enriched; five of these were related to pollutant degradation based on linear discriminant analysis (LDA >3). The average activity of the electron transport system in the OMR was 6.3 times lower than that of the NMR (p < 0.05). Among pollution factors, heavy metal complex pollution was the dominant factor driving variations in N2O emissions, microbial community structure, and electron transport system activity. These results provide a new understanding and reference for the treatment of tanning wastewater-receiving rivers.
Collapse
Affiliation(s)
- Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yanyan Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qingqing Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Haitao Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Zhou Y, Cheng L, Lian Y, Feng J, Zhou M, Jing D, Yin W, Wang H, Liu L. High-proportions of tailwater discharge alter microbial community composition and assembly in receiving sediments. Sci Rep 2024; 14:14171. [PMID: 38898074 PMCID: PMC11187100 DOI: 10.1038/s41598-024-63859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The tailwater from wastewater treatment plants serves as an important water resource in arid regions, alleviating the conflict between supply and demand. However, the effects of different tailwater discharge proportions on microbial community dynamics remain unclear. In this study, we investigated the effects of different tailwater discharge proportions on the water quality and microbial community characteristics of sediments in receiving water bodies under controlled conditions (WF-1, WF-2, WF-3, WF-4, and WF-5, containing 0% tailwater + 100% natural water, 25% tailwater + 75% natural water, 50% tailwater + 50% natural water, 75% tailwater + 25% natural water, and 100% tailwater + 0% natural water, respectively). Microbial co-occurrence networks and structural equation model were used to unveil the relationship between microbial communities and their shaping factors. Results showed that distinct microbial community compositions were found in the sediments with low- (< 50%) and high- (> 50%) proportions of tailwater. Specifically, WCHB1-41 and g_4-29-1, which are involved in organic degradation-related functions, were the key genera in the high-proportion cluster. A total of 21 taxa were more abundant in the low-proportion (< 50%) cluster than that in high-proportion (> 50%). Moreover, higher modularity was observed in the low-proportion. Total phosphorus directly affected while ammonia nitrogen indirectly affected the microbial community structure. Our findings support the distinct heterogeneity of microbial communities driven by tailwater discharge in receiving water bodies, and further confirmed that high-proportion tailwater depletes sensitive microbial communities, which may be avoided through scientific management.
Collapse
Affiliation(s)
- Yaqian Zhou
- Beijing Institute of Economics and Management, Beijing, 100102, China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China
| | - Li Cheng
- China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Ying Lian
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China
| | - Jiaying Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China
| | - Mengling Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China
| | - Dan Jing
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China
| | - Weiwen Yin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China.
| |
Collapse
|
6
|
Fei Q, Li W, Wang S, Zhou Z, Wang W, Li M. Risk and mechanisms of phosphorus release at the sediment-water interface of lakes in cold and arid regions during non-frozen seasons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23579-23590. [PMID: 38421544 DOI: 10.1007/s11356-024-32704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
In recent years, the eutrophication of lakes has accelerated in cold arid regions; the release of nutrients from sediments is an important contributor. The sequential extraction method, high-resolution peeper (HR-Peeper), and diffusive gradients in thin films (DGT) techniques were used to study the occurrence characteristics, release risk, and release mechanism of phosphorus (P) at the sediment-water interface (SWI) of Ulanor Wetland in the Hulun Lake Basin, Inner Mongolia, China. The mean total P concentration in overlying water was lower in August than that in May. Dissolved organic P (DOP) or particulate P (PP) was the main form of P in the overlying water. PP dominates in May and DOP in August. Refractory P was the main form of P in sediments. The concentrations of soluble reactive P and DGT-active P in the pore water of the sediment column were higher than those in the overlying water, and the concentrations were higher in August than those in May. Release of P in the wetland sediments occurred during the non-frozen seasons, with a higher risk in August than in May. The good linear correlation between dissolved P, Fe, and Mn in the DGT profiles verified their co-release due to the anaerobic reduction of Fe/Mn oxides. Moreover, alkaline sediments are also conducive to the release of sediment P. This study can provide data and theoretical support for eutrophication control in Ulanor Wetland and other similar water bodies in cold and arid regions.
Collapse
Affiliation(s)
- Qi Fei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Zhanqi Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wenwen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Mengze Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
7
|
Ouyang C, Qin Y, Fang P, Liang Y. Methane flux at the water-gas interface is influenced by complex interactions among phytoplankton, phosphorus inputs and methane-functional bacteria: A microcosm systems study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169373. [PMID: 38104802 DOI: 10.1016/j.scitotenv.2023.169373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Phytoplankton affect carbon cycling and emissions in eutrophic reservoirs dramatically, but our knowledge about carbon emissions response to phytoplankton bloom and phosphorus enrichment is rather limited. Here we performed a microcosm experiment with five treatments to investigate how phytoplankton blooms and phosphorus addition will impact the carbon emissions and the methane-functional bacterial community. During the 43-day incubation, the CH4 and CO2 flux at the water-air interface in the five water columns fluctuated between 7.536 and 16.689 μmol and between 2788.501 and 4142.726 μmol, respectively. The flux of CH4 and CO2 during phytoplankton decay was 1.542 to 10.397 times and 4.203 to 8.622 times higher, respectively, compared to that during phytoplankton growth. Furthermore, exogenous phosphorus increases bloom biomass of phytoplankton and subsequent CH4 production, even with low nitrogen concentrations. The addition of 1 mg KH2PO4 resulted in a conservative increase of 0.0715 μmol in CH4 emission and 11.911 μmol in CO2 emission in the water column, respectively, compared to the in-situ water column. High throughput sequencing determined that hydrogenotrophic Methanoregula dominated methanogens (MPB) and Methylocystaceae dominated methanotrophs (MOB) in the sediment. Phosphorus inhibited the relative abundance of Methanoregula after incubation, resulting in a significant decrease. Real-time quantitative polymerase chain reaction indicated that the absolute abundance of MPB and MOB (i.e., the mcrA gene and the pmoA gene) in the sediments ranged from 5.1354E+06 to 6.3176E+07 copies·g-1 and 1.1656E+06 to 9.5056E+06 copies·g-1, respectively. The mcrA gene showed a preference for sediments with high organic carbon content. The effect of eutrophication on CH4 emissions is closely related to nutrient load and distinct niche of methane-functional bacteria.
Collapse
Affiliation(s)
- Changyue Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, 400074 Chongqing, China
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, 400074 Chongqing, China.
| | - Peng Fang
- Chongqing Aerospace Rocket Electronic Technology Co., Ltd, Chongqing 400039, China
| | - Yue Liang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
8
|
Yang Y, Li K, Liang S, Lin G, Liu C, Li J, Xie L, Li Y, Wang X. A simulation-optimization approach based on the compound eutrophication index to identify multi-nutrient allocated load. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167626. [PMID: 37804968 DOI: 10.1016/j.scitotenv.2023.167626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Eutrophication with nutrient enrichment is a global marine ecosystem concern that threatens human health, economic activities, and ecosystem functions. Therefore, a nutrient load optimization method is required to help control marine eutrophication. However, eutrophication-based nutrient allocated load optimization is a multi-objective project due to a series of eutrophication pressures, such as cross-regional land-based nutrient loads and multi-nutrient regimes and ratios. In this study, a synergistic multi-nutrient control method was developed for the Bohai Sea (BS), China, which links multi-nutrient pressures with eutrophication states. Based on the eutrophication control standard, which is the second level of compound eutrophication index (CEI), the total maximum allocated loads (CEI-based TMALs) of total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and the chemical oxygen demand (COD) were calculated by a simulation-optimization approach. Using the end year of China's 13th Five-Year Plan (2020) as the reference year, 154 high load pressure jurisdictions (HLPJs) that contribute to eutrophication response segments in the BS were identified. Accordingly, practiced the optimized annual reduction rates of TDN, TDP, and COD in the HLPJs at 15 %, 11 %, and 2 % according to CEIII, respectively, the proportion of eutrophicated areas gradually decreased from 32 % in 2020 to 15 % in 2025 and might be 0 % in 2035 with ecosystem resilience in 2035. In particular, under the annual reduction rates of TDN and TDP optimized based on CEIII, the DIN/DIP molar ratio in the BS decreased to 16:1 by 2035. The simulation-optimization approach associated with the CEI-based TMALs for multi-nutrient control in this study might make implementing land-sea coordination more efficiency and marine nutrient regime stably. This can provide scientific and technological support for improving the health of coastal ecosystems.
Collapse
Affiliation(s)
- Yanqun Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China
| | - Keqiang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China.
| | - Shengkang Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China
| | - Guohong Lin
- Material Science and Engineering College, Qingdao University, Qingdao 266061, China
| | - Cheng Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China
| | - Jixin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China
| | - Linping Xie
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China
| | - Xiulin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266100, China
| |
Collapse
|
9
|
Zhang C, Sun S, Xu S, Johnston C, Wu C. Phosphorus Removal from Dirty Farmyard Water by Activated Anaerobic-Digestion-Derived Biochar. Ind Eng Chem Res 2023; 62:19216-19224. [PMID: 38020791 PMCID: PMC10655106 DOI: 10.1021/acs.iecr.2c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The management of anaerobic digestate is important to realize the value of the waste and enhance the whole system sustainability of anaerobic digestion. In this study, the phosphorus treatment of dirty irrigation water by biochar samples derived from digestate of anaerobic digestion were investigated. The biochars were further activated by steam activation with different duration time and KOH activation with different introducing ratios; the textural properties of biochars were optimized after activation from the aspect of biochar characterization. Notably, AD-N2 demonstrates a remarkable adsorption effect of phosphorus, with an adsorption efficiency of 8.99 mg g-1. Besides the effect of biochar dosage on phosphorus removal, adsorption kinetics and thermodynamic isotherms are studied. According to the adsorption kinetics, the adsorption of phosphorus from dirty water fits the Elovich equation (R2 = 0.95). Furthermore, the thermodynamic isotherm results illustrate the process of phosphorus removal by biochar is endothermic (ΔH0 = 17.93 kJ mol-1) and spontaneous (ΔS = 96.24 J mol-1 K-1). Therefore, this work suggests a promising solution to phosphorus-related environmental challenges in industry and agriculture.
Collapse
Affiliation(s)
- Chen Zhang
- School
of Chemistry and Chemical Engineering, Queens
University Belfast, BelfastBT7 1NN, United Kingdom
| | - Shuzhuang Sun
- School
of Chemistry and Chemical Engineering, Queens
University Belfast, BelfastBT7 1NN, United Kingdom
| | - Shaojun Xu
- School
of Chemistry, Cardiff University, CardiffCF10 3AT, United Kingdom
- UK Catalysis
Hub, Research Complex at Harwell, DidcotOX11 0FA, United Kingdom
| | - Chris Johnston
- The
Agri-Food and Biosciences Institute, BelfastBT9 5PX, United Kingdom
| | - Chunfei Wu
- School
of Chemistry and Chemical Engineering, Queens
University Belfast, BelfastBT7 1NN, United Kingdom
| |
Collapse
|
10
|
Zhang X, Shi HT, Feng XC, Jiang CY, Wang WQ, Xiao ZJ, Xu YJ, Zeng QY, Ren NQ. Efficient aerobic denitrification without nitrite accumulation by Pseudomonas mendocina HITSZ-D1 isolated from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 379:129039. [PMID: 37037332 DOI: 10.1016/j.biortech.2023.129039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
A highly efficient aerobic denitrifying microbe was isolated from sewage sludge by using a denitrifier enrichment strategy based on decreasing carbon content. The microbe was identified as Pseudomonas mendocina HITSZ-D1 (hereafter, D1). Investigation of the conditions under which D1 grew and denitrified revealed that it performed good growth and nitrate removal performance under a wide range of conditions. In particular, D1 rapidly removed all types of inorganic nitrogen without accumulation of the intermediate products nitrite and nitrous oxide. Overall, D1 showed a total nitrogen removal efficiency >96% at a C/N ratio of 8. The biotransformation modes and fates of three typical types of inorganic nitrogen were also assessed. Moreover, D1 had significantly higher denitrification efficiency and enzyme activities than other aerobic denitrifying microbes (Paracoccus denitrificans, Pseudomonas aeruginosa, and Pseudomonas putida). These results suggest that D1 has great potential for treating wastewater containing high concentrations of nitrogen.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Yu-Jie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Qin-Yao Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
11
|
Chen Q, Hu W, Shen L, Shen W, Zhang X. The role of nutrients, wind speed, and rainfall in determining the composition of the algal community of shallow lakes in the Taoge water system, upstream from Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16195-16209. [PMID: 36180803 DOI: 10.1007/s11356-022-22935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Gaining a deeper understanding of factors that influence changes in phytoplankton community has significant implications for shallow lake management. The present study examined changes in the algae community of three shallow eutrophic lakes of the Taoge water system between 2008 and 2018 and the related factors influencing these changes. The composition of the algal community varied significantly during this period with the relative diatom biomass in lakes Changdanghu and Gehu increasing between 2014 and 2016 and again decreasing after 2017. However, relative cyanobacteria biomass initially decreased and later increased; meanwhile, the proportion of biomass of other phyla decreased continuously in the study period. Lake Zhushanhu showed similar trends, although it eventually returned to its initial state with absolute Microcystis dominance. Furthermore, the analysis of driving factors revealed that the concentrations of total nitrogen (TN), nitrate (NO3), and orthophosphate (PO4) were significantly associated with a significant increase in Microcystis biomass. Meteorological conditions also influenced changes in total algal and diatom biomasses, which were inversely related to the daily mean and daily maximum wind speeds. Monthly cumulative precipitation was only significantly associated with diatom biomass. Meanwhile, rainfall primarily affected the algal community structure between 2013 and 2017; an increase in the relative biomass of diatoms coincided with increased precipitation. Coordinating nitrogen and phosphorous use within the Taoge water system should improve lake habitat management; a broader perspective in attempts to control global and regional climate change may be needed.
Collapse
Affiliation(s)
- Qiao Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Aquatic Biomonitoring, Changzhou Environmental Monitoring Center of Jiangsu Province, Changzhou, 213001, China
| | - Weiping Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Lijuan Shen
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Aquatic Biomonitoring, Changzhou Environmental Monitoring Center of Jiangsu Province, Changzhou, 213001, China
| | - Wei Shen
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Aquatic Biomonitoring, Changzhou Environmental Monitoring Center of Jiangsu Province, Changzhou, 213001, China
| | - Xiang Zhang
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Aquatic Biomonitoring, Changzhou Environmental Monitoring Center of Jiangsu Province, Changzhou, 213001, China
| |
Collapse
|
12
|
Kuang B, Xiao R, Hu Y, Wang Y, Zhang L, Wei Z, Bai J, Zhang K, Acuña JJ, Jorquera MA, Pan W. Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Front Microbiol 2023; 13:1112669. [PMID: 36713194 PMCID: PMC9874162 DOI: 10.3389/fmicb.2022.1112669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction As the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities. Methods The abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication. Results Many genera, with plural genes encoding key enzymes involved in genes, belonging to Proteobacteria and Actinobacteria which were the most main phylum in bacterial community of Baiyangdian sediment were involved in C, N, S, P cycling processes, such as Nocardioides (Actinobacteria), Thiobacillus, Nitrosomonas, Rhodoplanes and Sulfuricaulis (Proteobacteria).For instance, the abundance of Nocardioides were positively correlated to TN, EC, SOC and N/P ratio in pathways of phytase, regulation of phosphate starvation, dissimilatory sulfate reduction and oxidation, assimilatory sulfate reduction, assimilatory nitrate reduction and reductive tricarboxylic acid (rTCA) cycle. Many key genes in C, N, P, S cycling were closely related to the reductive citrate cycle. A complete while weaker sulfur cycle between SO4 2- and HS- might occur in Baiyangdian lake sediments compared to C fixation and N cycling. In addition, dissimilatory nitrate reduction to ammonia was determined to co-occur with denitrification. Methanogenesis was the main pathway of methane metabolism and the reductive citrate cycle was accounted for the highest proportion of C fixation processes. The abundance of pathways of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling in sediments with higher TN content was higher than those with lower TN content. Besides, Nocardioides with plural genes encoding key enzymes involved in nasAB and nirBD gene were involved in these pathways. Discussion Nocardioides involved in the processes of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling may have important effects on nitrogen transformation.
Collapse
Affiliation(s)
- Bo Kuang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Rong Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China,*Correspondence: Rong Xiao, ✉
| | - Yanping Hu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Yaping Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Zhuoqun Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
| | - Jacquelinne J. Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Milko A. Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Wenbin Pan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
13
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
14
|
Liu Z, Bai G, Liu Y, Zou Y, Ding Z, Wang R, Chen D, Kong L, Wang C, Liu L, Liu B, Zhou Q, He F, Wu Z, Zhang Y. Long-term study of ecological restoration in a typical shallow urban lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157505. [PMID: 35870592 DOI: 10.1016/j.scitotenv.2022.157505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area. The sediment TP decreased from 2.94 mg/g in 2015 to 1.33 mg/g in 2020. The sediment OM of the restored area decreased from 27.44 % in 2015 to 8.08 % in 2020. Principal component analysis (PCA) confirmed that the restoration improved the sediment conditions, making it suitable for the growth of submerged macrophytes, and then sped up the restoration and reconstruction of the lake ecosystem. These results have significant implications on the ecological management of shallow lakes.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Disong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chuan Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Xu J, Huang Y, Li Z, Ni S, Huang F, Jia J. Demonstration study of bypass stabilization pond system in the treatment of eutrophic water body. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2601-2612. [PMID: 35576255 DOI: 10.2166/wst.2022.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study involved a comprehensive renovation of fish ponds to improve the water quality of a eutrophic river in Dongguan City. The abandoned fish ponds were transformed into three different types of stabilization ponds: facultative, aerated biological, and submerged plant stabilization ponds. The water of the eutrophic section of the river was pumped into the facultative stabilization pond and discharged into the Haizai River through an aerated biological pond and a submerged plant pond. In the aerated biological pond, secondary treatment was carried out using plant zoning and artificial floating island aeration system. The submerged plant pond used fountain-type aeration and an underwater forest for tertiary treatment. After four months of monitoring the water quality of the stabilization pond and the river, the ammonia nitrogen (NH3-N), total phosphorus (TP), and chemical oxygen demand (CODCr) levels in the raw sewage reduced from 6.53 mg/L to 1.13 mg/L, 1.76 mg/L to 0.29 mg/L, and 63 mg/L to 22 mg/L, respectively; the transparency of water increased to 45 cm, and dissolved oxygen (DO) level increased to 5.32 mg/L. This study provides a reference for the ex-situ treatment of urban eutrophic waterbodies.
Collapse
Affiliation(s)
- Jiefei Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Yongbing Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Zhipeng Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Shang Ni
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Fuyao Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Junzuo Jia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| |
Collapse
|
16
|
Liu J, Feng Y, Zhang Y, Liang N, Wu H, Liu F. Allometric releases of nitrogen and phosphorus from sediments mediated by bacteria determines water eutrophication in coastal river basins of Bohai Bay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113426. [PMID: 35306214 DOI: 10.1016/j.ecoenv.2022.113426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Although the Chinese government has conducted much work in recent years to reduce land-based pollutant discharge, eutrophication continues to occur frequently in many rivers, estuaries, and coastal waters. This may indicate that sediment is a major source rather than a sink for nitrogen (N) and phosphorus (P). To clarify the endogenous mechanisms of eutrophication in coastal river basins, the eutrophication status, physicochemical properties, and bacterial parameters of overlying waters and sediments in the catchment (CA), estuarine (EA), and offshore (OA) areas in the Duliujian River Basin of Bohai Bay were investigated. The results showed that the eutrophication index (EI) of CA, EA, and OA were 62.71, 57.86, and 36.51, respectively. The EI was more sensitive to increases in P (slope = 3.887) than to increases in N (slope = 0.734) of the overlying water, indicating that P is the main factor driving eutrophication in the coastal river basin. However, a nonlinear relationship was found between P in sediments and overlying waters, suggesting that bacterial mediation may occur during P release. As speculated in this study, P in the overlying water increased more quickly than N with increasing bacterial diversity and metabolic abundance, indicating that the allometric release of N and P mediated by bacteria increases the risk of eutrophication. Redundancy analysis showed that organic matter and total N in sediment have positive effects on bacterial communities, which explains 21.8% and 23.7% variation in bacterial diversity, and explains 31.3% and 7.1% variation in bacterial metabolism. This also suggests that the accumulation of N in the sediment promotes the release of P and further aggravates the eutrophication of water. Therefore, simultaneous control of N and P is necessary to control water eutrophication in coastal river basins.
Collapse
Affiliation(s)
- Jiayuan Liu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Feng
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Zhang
- Tianjin Academy of Eco-Environmental Sciences, Tianjin 300191, China
| | - Nan Liang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hailong Wu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Fude Liu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
17
|
Deng F, Zhang D, Yang L, Li L, Lu Y, Wang J, Fan Y, Zhu Y, Li X, Zhang Y. Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes. CHEMOSPHERE 2022; 291:132948. [PMID: 34800504 DOI: 10.1016/j.chemosphere.2021.132948] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 05/15/2023]
Abstract
Antibiotic and heavy metal residues in shallow lakes caused by aquaculture and human activities such as sewage discharge have attracted much attention and public concern. However, mechanisms by which these environmental pollutants affect the microorganism-mediated biogeochemical cycle are unknown. This study focused on the effects of antibiotics, heavy metal, and antibiotic resistance genes (ARGs) on denitrification in shallow lakes. The results showed that antibiotics and metal elements had inhibitory effects on denitrification, whereas AGRs exhibited stimulating effects. Specifically, the enrofloxacin concentration showed a significant negative correlation with the copy number of denitrifying bacteria, whereas the copy number of the ARGs sulI, sulII, and tetG showed significant positive correlations. In addition, tetG was closely related to the community structure of nirS-type denitrifiers, and nirS-type denitrifiers were significantly correlated with the potential denitrification rate (PDR). Furthermore, the ARGs sulI, sulII, and tetG were positively correlated with PDR (P < 0.05). By contrast, the metal elements arsenic, manganese, cobalt, and antimony were negatively correlated with the copy number of denitrifying bacteria. Arsenic was significantly correlated with the community composition of nirK-type denitrifiers, but nirK-type denitrifiers did not show a significant correlation with the PDR. This work extends our understanding of the effects of antibiotics and heavy metals on denitrification, but further studies are needed to determine the interaction effects of pollutants.
Collapse
Affiliation(s)
- Fei Deng
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Dongwei Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Liting Yang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Lijuan Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Yu Lu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Jing Wang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Yujiao Fan
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| | - Yanrong Zhu
- Hanjiang Bureau of Hydrology and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang, 441022, PR China.
| | - Xiaowen Li
- Key Laboratory of Algal Biology, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, #7 Donghu South Road, Wuhan, 430072, PR China.
| | - Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, PR China.
| |
Collapse
|
18
|
Li L, Chen X, Zhang M, Zhang W, Wang D, Wang H. The spatial variations of water quality and effects of water landscape in Baiyangdian Lake, North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16716-16726. [PMID: 34655384 DOI: 10.1007/s11356-021-16938-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Baiyangdian Lake (BYD), a large shallow lake in North China, has complex water landscape patterns that are underlies spatial variations in water quality. In this study, we collected 61 water samples from three water landscapes (reed littoral zones, fish ponds, and open water) and analyzed them for water quality parameters, such as dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP). Water landscape distribution (determined using remote sensing imagery) was then used to assess correlations between water quality parameters and water landscape proportion in differently scaled buffer zones. There was substantial variation across all subareas, with TN and TP concentrations ranging from 0.90 to 4.10 mg/L and 0.06 to 0.18 mg/L, respectively, in class IV of water quality as a whole. Spatial variations in water quality were mainly caused by water landscape distribution and external nutrient inputs. There were negative correlations between DOC, TN, and TP concentrations and the area proportion of reed littoral zones in the 300 and 500 m buffers. In contrast, DOC, TN, and TP concentrations were significantly positively correlated with the area proportion of fish ponds in the 100 m buffer. Furthermore, compared with reed littoral zones, a lower ratio of nitrogen to phosphorus and a higher proportion of dissolved organic nitrogen and tyrosine-like proteins were found in fish ponds. These effects were mainly attributed to the development of internal sediment loadings due to nutrient exchange across the sediment-water interface. Therefore, dredging-based sediment removal from fish ponds should be considered to suppress internal phosphorus loading and accelerate recovery of the BYD ecosystem.
Collapse
Affiliation(s)
- Liqing Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China.
| | - Xinghong Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Meiyi Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding, 071002, China
| |
Collapse
|
19
|
Preisner M, Smol M, Horttanainen M, Deviatkin I, Havukainen J, Klavins M, Ozola-Davidane R, Kruopienė J, Szatkowska B, Appels L, Houtmeyers S, Roosalu K. Indicators for resource recovery monitoring within the circular economy model implementation in the wastewater sector. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114261. [PMID: 34923410 DOI: 10.1016/j.jenvman.2021.114261] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
Collapse
Affiliation(s)
- Michał Preisner
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland.
| | - Marzena Smol
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Han X, Brookes JD, Qin B. High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118276. [PMID: 34606973 DOI: 10.1016/j.envpol.2021.118276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Limnologists and governments have long had an interest in whether nitrogen (N) and/or phosphorous (P) limit algal productivity in lakes. However, the types and importance of anthropogenic and biogeochemical processes of N and P differ with lake trophic status. Here, a global lake dataset (annual average data from 831 lakes) demonstrates that total nitrogen (TN): total phosphorous (TP) ratios declined significantly as lakes become more eutrophic. From oligotrophic to hypereutrophic lakes, the probability of N and P co-limitation significantly increases from 15.0 to 67.0%, while P-only limitation decreases from 77.0 to 22.3%. Furthermore, TN:TP ratios are mainly affected by concentrations of TP (r = -0.699) rather than TN (r = -0.147). These results reveal that lake eutrophication mainly occurs with increasing P rather than N, which shifts lake ecosystems from stoichiometric P limitation toward a higher probability of N and P co-limitation. This study suggests that low N:P stoichiometry and a high probability of N and P co-limitation tend to occur in eutrophic systems.
Collapse
Affiliation(s)
- Jian Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, PR China
| | - Xiaoxia Han
- Jiangsu Environmental Engineering and Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing, 210036, China
| | - Justin D Brookes
- Water Research Centre, School of Biological Science, The University of Adelaide, South Australia, 5005, Australia
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, PR China.
| |
Collapse
|
21
|
Carricondo JM, Oliver-Villanueva JV, Turégano JV, González JA, Mengual J. Use of Phragmites australis for controlling phosphorus contamination in anthropogenic wetland ecosystems. ENVIRONMENTAL TECHNOLOGY 2021; 42:3055-3064. [PMID: 31986998 DOI: 10.1080/09593330.2020.1720311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Continuous phosphorus discharges in bodies of water, generated by human activities, such as agriculture, domestic effluences or wastewater from industrial processes, produce contaminated water and eutrophication. For this reason, efficient and low-cost systems that can remove phosphorus from contaminated water are necessary. In addition, it is important to generate renewable energy such as the energy produced in biomass power plants, taking advantage of the available biomass waste in each place. When producing this renewable energy, the resulting ash is a residue that can be used for phosphorus removal by adsorption processes. Moreover, according to the concept of the circular economy, the ash waste generated in this bio energy process should be reduced as much as possible. One of the advantages of this research being that surplus phosphorus-laden ash can be reused as fertilizer in agricultural fields. Considering this, the efficiency of reed ash (RA) (Phragmites australis) has been analysed in batch experiments, as well as the effect of several parameters on the removal of phosphate, such as contact time, phosphate-ash ratio, ash dose and temperature. Significant results obtained show that RA can be used to improve water quality.
Collapse
Affiliation(s)
- J M Carricondo
- Institute for Water and Environmental Engineering Research - IIAMA, Universitat Politècnica de València, Valencia, Spain
| | - J V Oliver-Villanueva
- Department of Rural Engineering - DIRA, Universitat Politècnica de València, Valencia, Spain
- Institute for Information and Telecommunication Technologies - ITACA, Universitat Politècnica de València, Valencia, Spain
| | - J V Turégano
- Department of Rural Engineering - DIRA, Universitat Politècnica de València, Valencia, Spain
- Institute for Information and Telecommunication Technologies - ITACA, Universitat Politècnica de València, Valencia, Spain
| | - J A González
- Institute for Water and Environmental Engineering Research - IIAMA, Universitat Politècnica de València, Valencia, Spain
| | - J Mengual
- Institute for Water and Environmental Engineering Research - IIAMA, Universitat Politècnica de València, Valencia, Spain
- Institute of Chemical Technology, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
22
|
Song Y, Qi J, Deng L, Bai Y, Liu H, Qu J. Selection of water source for water transfer based on algal growth potential to prevent algal blooms. J Environ Sci (China) 2021; 103:246-254. [PMID: 33743906 DOI: 10.1016/j.jes.2020.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Water transfer is becoming a popular method for solving the problems of water quality deterioration and water level drawdown in lakes. However, the principle of choosing water sources for water transfer projects has mainly been based on the effects on water quality, which neglects the influence in the variation of phytoplankton community and the risk of algal blooms. In this study, algal growth potential (AGP) test was applied to predict changes in the phytoplankton community caused by water transfer projects. The feasibility of proposed water transfer sources (Baqing River and Jinsha River) was assessed through the changes in both water quality and phytoplankton community in Chenghai Lake, Southwest China. The results showed that the concentration of total nitrogen (TN) and total phosphorus (TP) in Chenghai Lake could be decreased to 0.52 mg/L and 0.02 mg/L respectively with the simulated water transfer source of Jinsha River. The algal cell density could be reduced by 60%, and the phytoplankton community would become relatively stable with the Jinsha River water transfer project, and the dominant species of Anabaena cylindrica evolved into Anabaenopsis arnoldii due to the species competition. However, the risk of algal blooms would be increased after the Baqing River water transfer project even with the improved water quality. Algae gained faster proliferation with the same dominant species in water transfer source. Therefore, water transfer projects should be assessed from not only the variation of water quality but also the risk of algal blooms.
Collapse
Affiliation(s)
- Yongjun Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Le Deng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Rakhimbekova S, O'Carroll DM, Oldfield LE, Ptacek CJ, Robinson CE. Spatiotemporal controls on septic system derived nutrients in a nearshore aquifer and their discharge to a large lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141262. [PMID: 32889253 DOI: 10.1016/j.scitotenv.2020.141262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates spatiotemporal variability in the behavior of septic system derived nutrients in a sandy nearshore aquifer and their discharge to a large lake. A groundwater nutrient-rich plume was monitored over a two-year period with the septic system origin of the plume confirmed using artificial sweeteners. High temporal variability in NO3-N attenuation in the nearshore aquifer prior to discharge to the lake (42-96%) reveals the complex behavior of NO3-N and potential importance of changing hydrological and geochemical conditions in controlling NO3-N discharge to the lake. While PO4-P was retarded in the nearshore aquifer, the PO4-P plume extended over 90 m downgradient of the septic system. It was estimated that the PO4-P plume may reach the lake within 10 years and represents a legacy issue whereby PO4-P loads to the lake may increase over time. To provide broader assessment of the contribution of septic systems to P and N loads to a large lake, a regional scale geospatial model was developed that considers the locations of individual septic systems along the Canadian Lake Erie shoreline. The estimated P and N loads indicate that septic systems along the shoreline are only a minor contributor to the annual P and N loads to Lake Erie. However, it is possible that nutrients from septic systems may contribute to localized algal blooms in shoreline areas with high septic system density. In addition, disproportionate P and N loads in discharging groundwater may change the N:P ratio in nearshore waters and promote growth of harmful cyanobacteria. The study provides new insights into factors controlling the function of the reaction zone near the groundwater-lake interface including its impact on groundwater-derived nutrient inputs to large lakes. Further, the study findings are needed to inform septic system and nutrient management programs aimed at reducing lake eutrophication.
Collapse
Affiliation(s)
- Sabina Rakhimbekova
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 3K7, Canada
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Manly Vale, NSW 2093, Australia
| | - Lauren E Oldfield
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 3K7, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
24
|
Liang Z, Soranno PA, Wagner T. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. WATER RESEARCH 2020; 185:116236. [PMID: 32739700 DOI: 10.1016/j.watres.2020.116236] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
The effect of nutrients on phytoplankton biomass in lakes continues to be a subject of debate by aquatic scientists. However, determining whether or not chlorophyll a (CHL) is limited by phosphorus (P) and/or nitrogen (N) is rarely considered using a probabilistic method in studies of hundreds of lakes across broad spatial extents. Several studies have applied a unified CHL-nutrient relationship to determine nutrient limitation, but pose a risk of ecological fallacy because they neglect spatial heterogeneity in ecological contexts. To examine whether or not CHL is limited by P, N, or both nutrients in hundreds of lakes and across diverse ecological settings, a probabilistic machine learning method, Bayesian Network, was applied. Spatial heterogeneity in ecological context was accommodated by the probabilistic nature of the results. We analyzed data from 1382 lakes in 17 US states to evaluate the cause-effect relationships between CHL and nutrients. Observations of CHL, total phosphorus (TP), and total nitrogen (TN) were discretized into three trophic states (oligo-mesotrophic, eutrophic, and hypereutrophic) to train the model. We found that although both nutrients were related to CHL trophic state, TP was more related to CHL than TN, especially under oligo-mesotrophic and eutrophic CHL conditions. However, when the CHL trophic state was hypereutrophic, both TP and TN were important. These results provide additional evidence that P-limitation is more likely under oligo-mesotrophic or eutrophic CHL conditions and that co-limitation of P and N occurs under hypereutrophic CHL conditions. We also found a decreasing pattern of the TN/TP ratio with increasing CHL concentrations, which might be a key driver for the role change of nutrients. Previous work performed at smaller scales support our findings, indicating potential for extension of our findings to other regions. Our findings enhance the understanding of nutrient limitation at macroscales and revealed that the current debate on the limiting nutrient might be caused by failure to consider CHL trophic state. Our findings also provide prior information for the site-specific eutrophication management of unsampled or data-limited lakes.
Collapse
Affiliation(s)
- Zhongyao Liang
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 407 Forest Resources Building, University Park, Pennsylvania 16802, USA.
| | - Patricia A Soranno
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, Michigan 48824, USA.
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
25
|
Identification of Key Factors Affecting the Trophic State of Four Tropical Small Water Bodies. WATER 2020. [DOI: 10.3390/w12051454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to their dimensions, small and shallow water bodies are more sensitive to changes in nutrient load, water flow, and human management. The four water bodies studied are small (area <0.01 km2), constantly supplied by a non-anthropogenic source of nutrients, and these water bodies present different trophic states: mesotrophic, eutrophic, and hyper-eutrophic. The objective of this study was to identify the key environmental factors that created differences in the trophic state of these adjacent shallow urban lakes by modeling chlorophyll-a (Chl a) through the application of the Partial Least Squares Regression (PLSR). The models (n = 36) explain 45.8–60.6% (R2), and predicts 39–52.9% (Q2) of the variance. Environmental variables were identified in the water bodies as critical factors of trophic state determination, water residence time (WRT), ions (e.g., Ca2+), and minerals as hydroxyapatite (HAP). These variables were related to processes that could improve trophic conditions, such as flushing and phosphorous precipitation. Conversely, N-NH3 concentration was associated with nutrient recycling, and found to be able to promote eutrophication.
Collapse
|
26
|
Wang J, Yuan S, Tang L, Pan X, Pu X, Li R, Shen C. Contribution of heavy metal in driving microbial distribution in a eutrophic river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136295. [PMID: 31945533 DOI: 10.1016/j.scitotenv.2019.136295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 05/27/2023]
Abstract
Urban rivers represent an important source of freshwater. Accelerated urban development has resulted in imbalances in the water ecological environment and even eutrophication. Moreover, both natural and anthropogenic sources result in frequent heavy metal pollution in urban rivers. However, the combined impact of eutrophication and heavy metal pollution on the diversity and structure of the river microbial communities has not been adequately addressed. The microbial community distribution and predicted functions were examined in six water and sediment samples from the Laojingshui (LJS) River using metagenomic sequencing. The results showed that there were distinct differences in the microbial composition along the river. Redundancy analysis (RDA) revealed that the redox potential (Eh) was the most influential factor, explaining 76.5% of the variation (p = 0.002), and the heavy metals Zn and Cu explained 4.5 and 3.9%, respectively (p < 0.05). The results revealed that high nitrogen and phosphorus concentrations may have affected the proliferation of opportunistic plant species, such as Eichhornia crassipes, but Eh and heavy metals may have had greater impacts than N and P on the microorganisms in the water and sediment. The sensitivities of Deltaproteobacteria, Acidobacteria, Gemmatimonadetes and Nitrospira were most significant under Zn and Cu contamination when accompanied by eutrophic conditions. The expression ratio of the CYS (Cystain) gene might explain why the spatial distribution of each metal differed. This study suggests that heavy metals in eutrophication water continue to be the main factors determining the composition of microbial community, so the treatment of eutrophic water still needs to attach great importance to the complex pollution of heavy metals.
Collapse
Affiliation(s)
- Jingting Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangdong Pan
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Shen
- Chengdu Engineering Corporation Limited, Power China, Chengdu 610041, China
| |
Collapse
|
27
|
Wang Y, Lu X, Fan P, Huang X, Li B, Wang W, Zhao J. Effects of different dosing modes of calcium nitrate on P locking in sediment and nutrient concentrations in waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7504-7514. [PMID: 31884534 DOI: 10.1007/s11356-019-07382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Sediment is an endogenous pollution source, which often leads water systems to eutrophication due to the release of nutrients, especially phosphorus (P). Calcium nitrate (CN) was dosed to the water systems under different modes to control P release from the sediments in this study. A 63-day static laboratory test was conducted to explore the effects of intermittent dosing and one-time dosing modes of CN on P locking in the sediment and the concentrations of nitrogen (N) and P in waters. Results showed that 89% total phosphorus (TP) in the overlying water and 91% TP in the interstitial water of sediment were reduced in the intermittent dosing reactor, which were 4% and 13% higher than those in the one-time dosing reactor, respectively. Thus, the concentration of TP in the overlying water of the dosing reactors was both below 0.1 mg/L during the whole experiment. Meanwhile, the mean values of oxidation-reduction potential (ORP) in the sediment increased to - 110.7 ± 42.02 mV when CN was added intermittently, which were significantly higher than those of the one-time dosing reactor (- 158.3 ± 44.61 mV) and control reactor (- 320.7 ± 0.05 mV). Compared with one-time dosing mode, the intermittent dosing not only reduced the maximum concentrations of NO2--N from 9.21 to 1.79 mg/L and NO3--N from 92.42 to 27.58 mg/L but also shorten their retention time in the overlying water, which might depress the toxic threats to aquatic animals in water environments. Therefore, the intermittent dosing of CN could not only improve the P locking effect but also minimize the risks to aquatic animals in water environments under the premise of reasonable dosage selected. In a word, this research provided an effective operation mode for locking P with CN in the heavily polluted water bodies, which is also advantageous to avoid toxic threats to aquatic animals in water environment.
Collapse
Affiliation(s)
- Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Beilin District, Xi'an, 710055, Shaanxi, China.
| | - Xinxin Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Beilin District, Xi'an, 710055, Shaanxi, China
| | - Pan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Beilin District, Xi'an, 710055, Shaanxi, China
| | - Xiaozhong Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Beilin District, Xi'an, 710055, Shaanxi, China
| | - Binjuan Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Beilin District, Xi'an, 710055, Shaanxi, China
| | - Wenhuai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Beilin District, Xi'an, 710055, Shaanxi, China
| | - Jingchan Zhao
- College of Chemistry &Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
28
|
Liu X, Zhang G, Xu YJ, Wu Y, Liu Y, Zhang H. Assessment of water quality of best water management practices in lake adjacent to the high-latitude agricultural areas, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3338-3349. [PMID: 31845257 DOI: 10.1007/s11356-019-06858-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
A major inland alkalinity lake in Northeast China, the Chagan Lake, was studied for the changes of its water qualities over the past three decades. Water quality data, including total nitrogen (TN), total phosphorus (TP), pH, dissolved oxygen (DO), and fluoride (F-), were analyzed to derive key indices for guiding water quality management. Our study found that the Chagan Lake had an average trophic state index (TSI) ranging 50 to 70; the average TSI for TP ranging between 70 and 80, and the average TSI for TN being 50. Over the past three decades, the TSI values generally trended lower, but there was a slight uptrend from 2012 onwards. Seasonal variations in the concentrations of TN and TP were identified. The TSI values in September were higher than those in May, while the values of un-ionized ammonia (UIA) during rainy seasons were higher than those during dry seasons. The average values of alkalinity and F- in the lake water exceeded the upper limits set in the Chinese water quality standards, i.e., 20 mg/L and 1 mg/L, respectively. It was defined that the evolution of lake water quality proceeded in four consecutive periods, namely natural, deterioration, improvement, and risk period; the improvement period benefitted from a historical water conservation project. Our study concluded that the amount of irrigation discharge into the Chagan must be monitored, and controlled, in order to sustain the critical ecological functions currently provided by the Chagan Lake.
Collapse
Affiliation(s)
- Xuemei Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, People's Republic of China.
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, 227 Highland Road, Baton Rouge, LA, 70803, USA
| | - Yao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, People's Republic of China
| | - Yan Liu
- Songyuan Branch, Hydrology and Water Resources Bureau of Jilin Province, Songyuan, Jilin, 138000, China
| | - Haibo Zhang
- Songyuan Branch, Hydrology and Water Resources Bureau of Jilin Province, Songyuan, Jilin, 138000, China
| |
Collapse
|
29
|
Zhan Y, Yu Y, Lin J, Wu X, Wang Y, Zhao Y. Simultaneous control of nitrogen and phosphorus release from sediments using iron-modified zeolite as capping and amendment materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109369. [PMID: 31400585 DOI: 10.1016/j.jenvman.2019.109369] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/27/2019] [Accepted: 08/04/2019] [Indexed: 05/24/2023]
Abstract
The use of zeolite as a geo-engineering tool has a high potential to control nitrogen (N) release from sediments, but its efficiency for controlling sedimentary phosphorus (P) release still need to be further increased. To address this issue, this work synthesized an iron-modified zeolite (IM-Z) by coating iron onto the surface of natural zeolite (NAT-Z) and then the as-obtained IM-Z was utilized as a geo-engineering material to block the upward mobilization of N and P from sediments to the overlying water. The efficiencies of IM-Z covering and amendment to prevent the liberation of N and P from sediments were evaluated, and the controlling mechanism was explored. Capping and amendment with IM-Z not only resulted in the tremendous reduction of the levels of ammonium-N (NH4+-N) and reactive soluble P (RSP) in the overlying water, but also led to the decrease of the contents of NH4+-N and RSP in the pore water. More importantly, sediment capping and amendment with IM-Z resulted in the formation of a static layer in the upper sediment directly below the sediment-water interface, with very low concentration of RSP in the pore water. In addition, IM-Z capping and addition effectively immobilized the diffusive gradients in thin films (DGT)-labile P in the overlying water and sediment. Furthermore, the decrease of the DGT-labile Fe concentrations in the overlying water as well as the top sediment were also observed after IM-Z capping and addition. Nearly 70% of P bound by IM-Z is stable and difficult to be released back into the overlying water under common pH and anoxic conditions. The adsorption of pore water NH4+-N on IM-Z, the immobilization of pore water RSP and DGT-labile P by IM-Z and the uptake of DGT-labile Fe on IM-Z played a significant role in the simultaneous control of NH4+-N and RSP liberation. Compared to NAT-Z, the efficiency of IM-Z to block the liberation of sedimentary P was higher. Results of this study demonstrate that IM-Z is suitable for use in the simultaneous interception of the upward transportation of NH4+-N and RSP from sediments into the overlying water.
Collapse
Affiliation(s)
- Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaolong Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuying Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
30
|
Huang Y, Luo L, Xu K, Wang XC. Characteristics of external carbon uptake by microalgae growth and associated effects on algal biomass composition. BIORESOURCE TECHNOLOGY 2019; 292:121887. [PMID: 31401355 DOI: 10.1016/j.biortech.2019.121887] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Water eutrophication may be affected not only by nutrients but also the coexisting organic carbon. In order to reveal the effect of external carbon on algal growth, an experimental study was conducted using Chlorella vulgaris as the representative microalgae to investigate their growth under varied N and P levels with/without added glucose at TOC = 18 mg/L. The TOC consumption by microalgae growth depended much on N and P concentrations and N/P ratio especially when P was sufficient. This ultimately increased the specific growth rate and resulted in higher N and P accumulations but lower carbon fixation in algal biomass in contrast to non-TOC addition. The biomass dry weight became much lower with TOC addition, along with an apparent change of algal composition shown by the much lower chlorophyll contents in the microalgae cells, which might associate the extent of two carbon fixation pathways - anabolism vs catabolism.
Collapse
Affiliation(s)
- Yue Huang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Li Luo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| | - Ke Xu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| |
Collapse
|
31
|
Coupling between Nitrification and Denitrification as well as Its Effect on Phosphorus Release in Sediments of Chinese Shallow Lakes. WATER 2019. [DOI: 10.3390/w11091809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coupling of nitrification and denitrification has attracted wide attention since it plays an important role in mitigating eutrophication in aquatic ecosystems. However, the underlying mechanism is largely unknown. In order to study the coupling relationship between nitrification and denitrification, as well as its effect on phosphorus release, nutrient levels, functional gene abundance and potential rates involved in nitrification and denitrification were analyzed in three shallow urban lakes with different nutrient status. Trophic level was found positively related to not only copy numbers of functional genes of nitrosomonas and denitrifiers, but also the potential nitrification and denitrification rates. In addition, the concentrations of different forms of phosphorus showed a positive correlation with the number of nitrosomonas and denitrifiers, as well as potential nitrification and denitrification rates. Furthermore, the number of functional genes of nitrosomonas exhibited positive linear correlations with functional genes and rate of denitrification. These facts suggested that an increase in phosphorus concentration might have promoted the coupling of nitrification and denitrification by increasing their functional genes. Strong nitrification–denitrification fueled the nitrogen removal from the system, and accelerated the phosphorus release due to the anaerobic state caused by organic matter decomposition and nitrification. Moreover, dissolved organic nitrogen was also released into the water column during this process, which was favorable for balancing the nitrogen and phosphorus ratio. In conclusion, the close coupling between nitrification and denitrification mediated by nitrifier denitrification had an important effect on the cycling mode of nitrogen and phosphorus.
Collapse
|
32
|
Tamura K, Kawashiri R, Iyi N, Watanabe Y, Sakuma H, Kamon M. Rosette-like Layered Double Hydroxides: Adsorbent Materials for the Removal of Anionic Pollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27954-27963. [PMID: 31348636 DOI: 10.1021/acsami.9b08719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rosette-like layered double hydroxide (roseLDH) crystals with interlayer CO32- anions were synthesized by the reaction of Mg(NO3)2, Al(NO3)3, and hexamethylenetetramine (HMT) at 140 °C over 4 days. Crystals as large as 20 μm were produced when using a specific range of HMT concentrations. The substitution of CO32- interlayer ions with ClO4- or Cl- anions was achieved by the addition of perchloric acid or hydrochloric acid, respectively, to dispersion of material in methanol. The products were denoted as CO32-roseLDH, ClO4-roseLDH, and Cl-roseLDH, respectively. These LDHs were characterized using X-ray diffraction under controlled relative humidity, as well as by Fourier transform infrared spectroscopy and scanning electron microscopy. Adsorption experiment with anions such as phosphate (HPO42-) and nitrate (NO3-) was conducted by using ClO4-roseLDH and Cl-roseLDH. The results indicate that both anions were adsorbed through an ion-exchange mechanism. The maximum HPO42- adsorption capacity at equilibrium on ClO4-roseLDH was 1.6 mmol g-1 (49.6 mg P g-1), which corresponds to approximately 75% of the total positive layer charge. Cl-roseLDH showed a similar adsorption capability. Commercially available platelike LDH particles were essentially impermeable to water flow due to clogging, while the roseLDH crystals showed excellent permeability, an order of magnitude higher than that exhibited by the platelike LDH synthesized using a homogeneous precipitation method with different growth conditions. Anion adsorption during batch and flow-through test with the ClO4-roseLDH (mean particle diameter ∼ 38 μm) in a packed bed showed good uptake of HPO42- and NO3- from aqueous solutions. These results demonstrate the potential of roseLDH materials to serve as a column filler adsorbent of the hazardous anions.
Collapse
Affiliation(s)
- Kenji Tamura
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Rina Kawashiri
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Faculty of Bioscience and Applied Chemistry , Hosei University , 3-7-2 Kajino-cho , Koganei, Tokyo 184-8584 , Japan
| | - Nobuo Iyi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yujiro Watanabe
- Faculty of Bioscience and Applied Chemistry , Hosei University , 3-7-2 Kajino-cho , Koganei, Tokyo 184-8584 , Japan
| | - Hiroshi Sakuma
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Masumi Kamon
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
33
|
Pan X, Lin L, Huang Z, Liu M, Dong L, Chen J, Crittenden J. Distribution characteristics and pollution risk evaluation of the nitrogen and phosphorus species in the sediments of Lake Erhai, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22295-22304. [PMID: 31152427 DOI: 10.1007/s11356-019-05489-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Erhai is a famous tectonic rift lake in China. In this study, the distribution of nitrogen and phosphorus species in Erhai sediment cores and their ecology risk were evaluated. The total nitrogen (TN) in the sediment cores ranged from 1583.3 to 8018.5 mg/kg. Nitrogen (N) was still accumulating in the sediment. For depths of 0 to 25 cm, the TN decreased dramatically and for deeper depths the TN got stabilized. The proportions of various N fractions in the sediments of the study areas ranked as follows: the strong oxidation extractable N (SOEF-N) > the weak acid extractable N (WAEF-N) > the strong alkali extractable N (SAEF-N) > the ion-exchangeable N (IEF-N). The total phosphorus (TP) ranged from 814.9 to 1442.3 mg/kg. The vertical distribution of each fraction of phosphorus showed that there were different sources of sediment phosphorus around the Erhai Lake. The results of nitrogen and phosphorus pollution evaluation in sediments by single pollution standard index method showed that the standard index of the TN (STN) ranged from 4.29 to 14.01, and the standard index of the TP (STP) ranged from 1.69 to 2.18. It illustrated that N and P in the sediments were the serious ecological pollution risks in Erhai Lake.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China.
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China.
| | - Zhuo Huang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Min Liu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Jin Chen
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
- Administration office, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
34
|
Dou M, Ma X, Zhang Y, Zhang Y, Shi Y. Modeling the interaction of light and nutrients as factors driving lake eutrophication. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Peng XY, Tang YK, Yang WW, Chen YN, Zhou Y, Yuan Y, Huang YF, Liu L. Occurrence of microcystin-LR in vegetated lagoons used for urban runoff management. Toxicon 2019; 160:23-28. [PMID: 30772435 DOI: 10.1016/j.toxicon.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/02/2018] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
Abstract
Phytoremediation with aquatic macrophyte has been considered as an eco-friendly technique for controlling harmful cyanobacteria outbreak and proven to be effective. The conventional water quality parameters are frequently measured to evaluate the effectiveness of phytoremediation. However, the concentration of microcystin-leucine-arginine (MC-LR) in different vegetated water still remains uncertain. In this study, the contents of MC-LR in four macrophyte-vegetated lagoons were determined by solid phase extraction and ultra-high-performance liquid chromatography with tandem mass spectrometry technology. Results indicated that MC-LR was found in Nymphaea tetragona lagoon (lagoon-S), Vallisneria spiralis lagoon (lagoon-B) and another Vallisneria spiralis lagoon (lagoon-J). Only in lagoon dominated by Pistia stratiotes L. (lagoon-D), MC-LR concentration was undiscovered regardless of seasonal variation. The levels of MC-LR varied seasonally and were affected by the different vegetated aquatic macrophytes. The results suggest that in addition to conventional physicochemical parameters and indicators of water quality, MC-LR levels should be taken into consideration when the effectiveness of phytoremediation is assessed.
Collapse
Affiliation(s)
- Xiao-Yu Peng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yan-Kui Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China.
| | - Wei-Wei Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yu-Nong Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yan Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yang Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yin-Feng Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lu Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
36
|
Lin J, He S, Zhang H, Zhan Y, Zhang Z. Effect of zirconium-modified zeolite addition on phosphorus mobilization in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:144-157. [PMID: 30055484 DOI: 10.1016/j.scitotenv.2018.07.281] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
There is generally a significant heterogeneity in the vertical distribution of mobile phosphorus (P) in sediments, but the previous studies concerning the effect of zirconium-modified zeolite (ZrMZ) addition on the mobilization of P in sediments neglected this feature. In this study, microcosm experiments were conducted to investigate the effect of ZrMZ addition on the mobilization of P in river surface sediments at different depths. A high-resolution diffusive gradients in thin films technology (DGT) was used to measure the concentration of labile P in the overlying water-sediment profiles at a submillimeter vertical resolution. Results showed that the ZrMZ amendment not only could reduce the concentration of soluble reactive P (SRP) in the overlying water, but also could decrease the concentrations of SRP in the pore water at different depths. Furthermore, the ZrMZ amendment resulted in the reduction of both the releasing flux of SRP from sediments to the overlying water and the diffusion flux of SRP from the pore water to the overlying water. After the addition of ZrMZ into the top sediment, the static layer with low DGT-liable P (DGT-P) concentration was observed in the upper sediment. The addition of ZrMZ into the upper sediment resulted in the reduction of mobile P (Pm) in the upper and lower sediments via the transformation of Pm to more stable NaOH-extractable P (NaOH-rP) and residual P (Res-P). In addition, the contents of bioavailable P (BAP) including water-soluble P (WSP), readily desorbable P (RDP) and iron oxide paper extractable P (FeO-P) in the upper sediment were greatly reduced by the ZrMZ addition. Results of this study show that the immobilization of pore water SRP, DGT-P, sediment Pm and sediment BAP by ZrMZ played a very important role in the control of P release from sediments to the overlying water by the ZrMZ amendment.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Siqi He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Honghua Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
37
|
Yang H, Gao L, Bai Q, Xu S, Pan D, Wu Y, Xiao G. Nitrogenous compounds produced by catalytic pyrolysis of cyanobacteria over metal loaded MCM-41 with vaporized methanol. NEW J CHEM 2019. [DOI: 10.1039/c9nj00290a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect of methanol and an acidic catalyst promotes the production of nitriles and the enrichment of pentadecanenitrile.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Lijing Gao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Qianqian Bai
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Siquan Xu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Donghui Pan
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Yuanfeng Wu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|