1
|
Abozahra MS, Amin MA, Sarker TC, Abd-ElGawad AM, Aboelezz E. Molecular, biophysical, and biochemical studies on irradiated Zea mays seeds using various sources of gamma rays for dosimetrical applications. Sci Rep 2025; 15:9340. [PMID: 40102432 PMCID: PMC11920066 DOI: 10.1038/s41598-025-87531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
Gamma rays are a powerful tool for enhancing crop quality and production. They can cause mutations that improve plant traits and are commonly used in agriculture. The present study aimed to examine the effects of gamma irradiation on maize hybrids' triple white seeds (Giza 321) using different doses (10, 20, and 50 Gy) from different radiation sources 60Co or 137Cs). The maize treated with gamma rays from the Co-60 source at 10 Gy exhibited the lowest shoot length percentage of 37.5%, compared to control groups, while root lengths were unaffected at 10 and 50 Gy Cs-137 doses. In addition, the study revealed that gamma irradiation stimulated the excess production of proline, protein, and antioxidant enzymes, which revealed the defense strategy of the plant that tolerates stress. The study also revealed that gamma rays caused a significant reduction in chlorophyll content for all doses, while carotenoid content increased. DNA tail length indicated that minimal damage occurred at 50 Gy of 60Co and 137Cs, respectively. Moreover, the analysis of tail DNA% and tail moment showed that the lowest damage was determined for 20 Gy of 60Co and 137Cs, respectively. SDS-PAGE analysis showed that the 20 Gy Co treatments had the largest number of bands (15), while the 20 Gy Cs dose had the minimum number of bands (10). Ultimately, the proline content and peroxidase enzymes respond exponentially with the dose, making them potential radiation biomarkers for dosimetric purposes. However, further dosimetric features of these two parameters are necessary to be defined in future work. The present results showed that the treatment of plants with gamma rays enhanced the defense system of the maize at a specific dose, thereby, a large-scale study is recommended for using this radiation to enhance the defense and/or the tolerance of a wide range of crops as well as evaluate its safety, applicability, and reproducibility at field scale.
Collapse
Affiliation(s)
- Mahmoud S Abozahra
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Amin
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Tushar C Sarker
- Texas A & M AgriLife Research Center, Overton, TX, 75684, USA
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards (NIS), Giza, 12211, Egypt.
| |
Collapse
|
2
|
Teng Y, Ma J, Zhang J, Liang B, Zhang A, Li Y, Dong S, Fan H. X-Ray Irradiation Induces Oxidative Stress and Upregulates Intestinal Nrf2-Mrp2 Pathway, Leading to Decreased Intestinal Absorption of Valsartan. Pharmaceutics 2025; 17:268. [PMID: 40006635 PMCID: PMC11860126 DOI: 10.3390/pharmaceutics17020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: It has been documented that radiation can influence the pharmacokinetics of chemotherapy drugs, yet the underlying mechanisms remain poorly understood. In clinical practice, a considerable number of cancer patients undergo radiotherapy, and those with comorbid hypertension required antihypertensive drugs, including valsartan, an angiotensin II receptor blocker. However, there is no research investigating whether radiotherapy poses a risk of altering the pharmacokinetics. Objective: The objective of this study is to investigate the impact of X-ray abdominal irradiation on the pharmacokinetics of valsartan and to preliminarily elucidate the underlying mechanism. Methods: The pharmacokinetics of valsartan after X-ray irradiation was investigated in rats and in vitro by detecting the concentration of valsartan in biological samples by LC-MS/MS. The oxidative stress in the intestine and the mRNA expression of partial transporters and Nrf2 in the liver and small intestine were detected by biochemical reagent kit or RT-qPCR. Results: In vivo studies showed that X-ray irradiation resulted in a significant decrease in the AUC and Cmax of valsartan, and the cumulative fractional excretion of valsartan in bile and urine, although there was no significant change in fecal excretion. In vitro studies showed that the uptake of valsartan by both intestine and Caco-2 cells decreased after irradiation, and the cellular uptake could be restored by Mrp2 inhibitor MK571. The levels of GSH, SOD, and CAT in the intestine decreased after irradiation. The mRNA expressions of Mrp2 and P-gp in the intestine or Caco-2 cells were significantly upregulated after irradiation while there was a downregulation of Mrp2 and oatp1b2 in liver. Nrf2 and HO-1 in the intestine were also significantly upregulated, which clarified the involvement of Mrp2 and the possible molecular mechanism. Conclusions: Abdominal X-ray irradiation can cause oxidative stress and upregulate intestinal Mrp2, which may be related to oxidative stress and upregulation of Nrf2, reducing intestinal absorption of valsartan and leading to a significant decrease in the blood concentration of valsartan.
Collapse
Affiliation(s)
- Yunhua Teng
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Y.T.); (B.L.); (A.Z.); (Y.L.); (S.D.)
| | - Jiaojiao Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (J.M.); (J.Z.)
| | - Junxia Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (J.M.); (J.Z.)
| | - Bohan Liang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Y.T.); (B.L.); (A.Z.); (Y.L.); (S.D.)
| | - Aijie Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Y.T.); (B.L.); (A.Z.); (Y.L.); (S.D.)
| | - Yanjie Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Y.T.); (B.L.); (A.Z.); (Y.L.); (S.D.)
| | - Shiqi Dong
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Y.T.); (B.L.); (A.Z.); (Y.L.); (S.D.)
| | - Huirong Fan
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Y.T.); (B.L.); (A.Z.); (Y.L.); (S.D.)
| |
Collapse
|
3
|
Lai W, Song Y, Tollefsen KE, Hvidsten TR. SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow. Front Genet 2024; 15:1508521. [PMID: 39687738 PMCID: PMC11647027 DOI: 10.3389/fgene.2024.1508521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
An increasing number of ecotoxicological studies have used omics-data to understand the dose-response patterns of environmental stressors. However, very few have investigated complex non-monotonic dose-response patterns with multi-omics data. In the present study, we developed a novel semi-supervised network analysis workflow as an alternative to benchmark dose (BMD) modelling. We utilised a previously published multi-omics dataset generated from Daphnia magna after chronic gamma radiation exposure to obtain novel knowledge on the dose-dependent effects of radiation. Our approach combines 1) unsupervised co-expression network analysis to group genes with similar dose responses into modules; 2) supervised classification of these modules by relevant response patterns; 3) reconstruction of regulatory networks based on transcription factor binding motifs to reveal the mechanistic underpinning of the modules; 4) differential co-expression network analysis to compare the discovered modules across two datasets with different exposure periods; and 5) pathway enrichment analysis to integrate transcriptomics and metabolomics data. Our method unveiled both known and novel effects of gamma radiation, provide insight into shifts in responses from low to high dose rates, and can be used as an alternative approach for multi-omics dose-response analysis in future. The workflow SOLA (Semi-supervised Omics Landscape Analysis) is available at https://gitlab.com/wanxin.lai/SOLA.git.
Collapse
Affiliation(s)
- Wanxin Lai
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Torgeir R. Hvidsten
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| |
Collapse
|
4
|
Maremonti E, Brede DA, Kassaye YA, Zheng K, Lee Y, Salbu B, Teien HC. Dose rate dependent genotoxic and metabolic effects predict onset of impaired development and mortality in Atlantic salmon (S. salar) embryos exposed to chronic gamma radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176263. [PMID: 39278484 DOI: 10.1016/j.scitotenv.2024.176263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Release of radionuclides to the environment from either nuclear weapon and fuel cycles or from naturally occurring radionuclides (NORM) may cause long term contamination of aquatic ecosystems and chronic exposure of living organisms to ionizing radiation, which in turn could lead to adverse effects compromising the sustainability of populations. To address the effects of chronic ionizing radiation on the development of fish, Atlantic salmon embryos were exposed from fertilization until hatching (88 days, 550 day-degree) to dose rates from 1 to 30 mGy·h-1 gamma radiation (60Co). The lowest adopted dose rate was similar to the highest doses measured in some water bodies right after the Chernobyl accident (1 mGy·h-1), however, well above current environmentally realistic scenarios (20 μGy·h-1), or the threshold assumed for significant effects on fish population (40 μGy·h-1). Dose dependent effects were observed on survival, hatching, morbidity, DNA damage, antioxidant defenses, and metabolic status. Histopathological analysis showed dose rate dependent impairment of eye and brain tissues development and establishment of epidermal mucus cell layers accompanied by increased DNA damage at doses ≥1.3 Gy (dose rates ≥1 mGy·h-1). At ≥32.8 Gy (dose rates ≥20 mGy·h-1) deformities and developmental growth defects resulted in respective 46 and 95 % pre-hatch mortality. The 10 mGy·h-1 exposure (≥ 12 Gy total dose) caused significantly increased DNA damage, impaired eye development, and both premature and delayed hatching, while no deformities or effect on survival were observed. We observed a dose rate dependent reduction from dose rate ≥ 20 mGy·h-1 (≥ 27 Gy total dose) on antioxidant SOD, catalase and glutathione reductase enzyme activities. The reduction of antioxidant enzyme activities was in line with observed developmental delay and disturbance to time of hatching. Metabolomic profiles showed a clear shift at dose rates ≥10 mGy·h-1 (≥ 12 Gy total dose) in pathways related to oxidative stress, detoxification, DNA damage and repair. Due to gamma radiation exposure, a switch of central metabolism from glycolysis, citric acid cycle and lactate production towards pentose phosphate pathway indicated a rewiring mechanism for increased production of reductive equivalents to maintain redox homeostasis at the expense of energy output and thus embryonic development.
Collapse
Affiliation(s)
- Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Keke Zheng
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - YeonKyeong Lee
- Korea University Graduate School, Department of Plant Biotechnology, 145, Anam-ro, Seongbuk-ku, Seoul, Republic of Korea
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
5
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
An J, Park S, Jain N, Kim Y, Nimse SB, Churchill DG. Novel mycophenolic acid precursor-based fluorescent probe for intracellular H 2O 2 detection in living cells and Daphnia magna and Zebrafish model systems. Analyst 2024; 149:4477-4486. [PMID: 39041806 DOI: 10.1039/d4an00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Innovative for the scientific community and attracting attention in the extensive biomedical field are novel compact organic chemosensing systems built upon unique core molecular frameworks. These systems may demonstrate customized responses and may be adaptable to analytes, showing promise for potential in vivo applications. Our recent investigation focuses on a precursor of Mycophenolic acid, resulting in the development of LBM (LOD = 13 nM) - a specialized probe selective for H2O2. This paper details the synthesis, characterization, and thorough biological assessments of LBM. Notably, we conducted experiments involving living cells, daphnia, and zebrafish models, utilizing microscopy techniques to determine probe nontoxicity and discern distinct patterns of probe localization. Localization involved the distribution of the probe in the Zebrafish model within the gut, esophagus, and muscles of the antennae.
Collapse
Affiliation(s)
- Jongkeol An
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Neha Jain
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
- Division of Energy and Environment Technology, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 24252, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Шеремета МС, Трухин АА, Ярцев ВД, Юдаков ДВ, Корчагина МО, Годжаева СА. [The lacrimal apparatus as an organ at risk during radionuclide therapy]. PROBLEMY ENDOKRINOLOGII 2024; 70:13-17. [PMID: 38433537 PMCID: PMC10926245 DOI: 10.14341/probl13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 03/05/2024]
Abstract
Within the framework of the article, the authors analyzed the available information about the damage to the lacrimal apparatus during radionuclide therapy. In focus of article lesions of the lacrimal production system, the main and accessory lacrimal glands, as well as lacrimal drainage are considered. It was found that damage to the lacrimal apparatus is characteristic of 131I therapy for thyroid cancer, as well as for radioligand therapy using anti-PSMA antibodies labeled with 177Lu and 225Ac. 177Lu-PSMA and 225Ac-PSMA may damage the lacrimal gland with the formation of a clinically pronounced "dry eye syndrome". The pathogenesis of such lesions is associated with the accumulation of a radioisotope in the tissues of the lacrimal apparatus, while during therapy with 131I, accumulation is realized due to the expression of the sodium-iodine symporter in the nasolacrimal duct, and during therapy with 177Lu-PSMA and 225Ac-PSMA, the radiobiological effect is realized in connection with the expression PSMA by lacrimal tissue. An analysis of the available sources showed that to date there are no results of systematic studies on the problem, there is a lack of knowledge regarding the individual risks of developing these complications, methods for their prevention that have proven effectiveness have not been developed, and the treatment methods used, having relatively low efficiency, are not specialized. The authors concluded that the strengthening of interdisciplinary interaction, as well as the organization verification methodology and correct studies, can contribute to solving problems related to the study of the complications under consideration.
Collapse
Affiliation(s)
- М. С. Шеремета
- Национальный медицинский исследовательский центр эндокринологии
| | - А. А. Трухин
- Национальный медицинский исследовательский центр эндокринологии
| | - В. Д. Ярцев
- ФГБНУ «НИИ глазных болезней им. М.М. Краснова»
| | - Д. В. Юдаков
- Национальный медицинский исследовательский центр эндокринологии
| | - М. О. Корчагина
- Национальный медицинский исследовательский центр эндокринологии
| | - С. А. Годжаева
- ФГБНУ «НИИ глазных болезней им. М.М. Краснова»; Первый московский государственный медицинский университет имени И.М. Сеченова
| |
Collapse
|
8
|
Pradhoshini KP, Priyadharshini M, Santhanabharathi B, Ahmed MS, Parveen MHS, War MUD, Musthafa MS, Alam L, Falco F, Faggio C. Biological effects of ionizing radiation on aquatic biota - A critical review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104091. [PMID: 36870406 DOI: 10.1016/j.etap.2023.104091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ionizing radiation from radionuclides impacts marine aquatic biota and the scope of investigation must be wider than just invertebrates. We intend to detail and illustrate numerous biological effects that occur in both aquatic vertebrates and invertebrates, at various dose rates from all three kinds of ionizing radiation. The characteristics of radiation sources and dosages that would most effectively generate the intended effects in the irradiated organism were assessed once the biological differentiation between vertebrates and invertebrates was determined through multiple lines of evidence. We contend that invertebrates are still more radiosensitive than vertebrates, due to their small genome size, rapid reproduction rates and lifestyle, which help them to compensate for the effects of radiation induced declines in fecundity, life span and individual health. We also identified various research gaps in this field and suggest future directions to be investigated to remedy the lack of data available in this area.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamat Hanifa Shafeeka Parveen
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mehraj Ud Din War
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Franscesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
9
|
Song Y, Zheng K, Brede DA, Gomes T, Xie L, Kassaye Y, Salbu B, Tollefsen KE. Multiomics Point of Departure (moPOD) Modeling Supports an Adverse Outcome Pathway Network for Ionizing Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3198-3205. [PMID: 36799527 PMCID: PMC9979642 DOI: 10.1021/acs.est.2c04917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/07/2023]
Abstract
While adverse biological effects of acute high-dose ionizing radiation have been extensively investigated, knowledge on chronic low-dose effects is scarce. The aims of the present study were to identify hazards of low-dose ionizing radiation to Daphnia magna using multiomics dose-response modeling and to demonstrate the use of omics data to support an adverse outcome pathway (AOP) network development for ionizing radiation. Neonatal D. magna were exposed to γ radiation for 8 days. Transcriptomic analysis was performed after 4 and 8 days of exposure, whereas metabolomics and confirmative bioassays to support the omics analyses were conducted after 8 days of exposure. Benchmark doses (BMDs, 10% benchmark response) as points of departure (PODs) were estimated for both dose-responsive genes/metabolites and the enriched KEGG pathways. Relevant pathways derived using the BMD modeling and additional functional end points measured by the bioassays were overlaid with a previously published AOP network. The results showed that several molecular pathways were highly relevant to the known modes of action of γ radiation, including oxidative stress, DNA damage, mitochondrial dysfunction, protein degradation, and apoptosis. The functional assays showed increased oxidative stress and decreased mitochondrial membrane potential and ATP pool. Ranking of PODs at the pathway and functional levels showed that oxidative damage related functions had relatively low PODs, followed by DNA damage, energy metabolism, and apoptosis. These were supportive of causal events in the proposed AOP network. This approach yielded promising results and can potentially provide additional empirical evidence to support further AOP development for ionizing radiation.
Collapse
Affiliation(s)
- You Song
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Keke Zheng
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Tânia Gomes
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Yetneberk Kassaye
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Brit Salbu
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian
Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Centre
for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty
of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
10
|
DNA double-strand break repair machinery in Penaeid crustaceans: A focus on the Non-Homologous End-Joining pathway. Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110803. [DOI: 10.1016/j.cbpb.2022.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
|
11
|
Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J. Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential targets for epigenetic biomarkers? CHEMOSPHERE 2022; 308:136231. [PMID: 36055596 DOI: 10.1016/j.chemosphere.2022.136231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms are moving to the forefront of environmental sciences, as environmentally induced epigenetic changes shape biological responses to chemical contamination. This work focused on Daphnia as a representative of potentially threatened freshwater biota, aiming to gain an insight into the involvement of epigenetic mechanisms in their response and eventual adaptation to metal contamination. Copper-induced DNA methylation changes, their potential transgenerational inheritance, and life-history traits were assessed. Organisms with different histories of past exposure to copper were exposed to toxic levels of the element for one generation (F0) and then monitored for three subsequent unexposed generations (F1, F2, and F3). Overall, methylation changes targeted important genes for counteracting the effects of metals and oxidative stress, including dynein light chain, ribosomal kinase and nuclear fragile X mental retardation-interacting protein. Also, contrasting overall and gene-specific methylation responses were observed in organisms differing in their history of exposure to copper, with different transgenerational methylation responses being also identified among the two groups, without apparent life-history costs. Taken together, these results demonstrate the capacity of copper to promote epigenetic transgenerational inheritance in a manner related explicitly to history of exposure, thereby supporting the development and incorporation of epigenetic biomarkers in risk assessment frameworks.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Telma Veloso
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; CICECO - Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Joana Luísa Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| |
Collapse
|
12
|
Radiation as a Tool against Neurodegeneration-A Potential Treatment for Amyloidosis in the Central Nervous System. Int J Mol Sci 2022; 23:ijms232012265. [PMID: 36293118 PMCID: PMC9603404 DOI: 10.3390/ijms232012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Radiotherapy (RT) is a relatively safe and established treatment for cancer, where the goal is to kill tumoral cells with the lowest toxicity to healthy tissues. Using it for disorders involving cell loss is counterintuitive. However, ionizing radiation has a hormetic nature: it can have deleterious or beneficial effects depending on how it is applied. Current evidence indicates that radiation could be a promising treatment for neurodegenerative disorders involving protein misfolding and amyloidogenesis, such as Alzheimer's or Parkinson's diseases. Low-dose RT can trigger antioxidant, anti-inflammatory and tissue regeneration responses. RT has been used to treat peripheral amyloidosis, which is very similar to other neurodegenerative disorders from a molecular perspective. Ionizing radiation prevents amyloid formation and other hallmarks in cell cultures, animal models and pilot clinical trials. Although some hypotheses have been formulated, the mechanism of action of RT on systemic amyloid deposits is still unclear, and uncertainty remains regarding its impact in the central nervous system. However, new RT modalities such as low-dose RT, FLASH, proton therapy or nanoparticle-enhanced RT could increase biological effects while reducing toxicity. Current evidence indicates that the potential of RT to treat neurodegeneration should be further explored.
Collapse
|
13
|
Mahmut K, Demiray GA, Sevgiler Y. Oxidative and osmoregulatory effects of imidacloprid, cadmium, and their combinations on Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103963. [PMID: 36028165 DOI: 10.1016/j.etap.2022.103963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and osmoregulatory system damage-inducing potential of binary mixtures of neonicotinoid insecticide imidacloprid (IMI) and Cd2+ in Daphnia magna were evaluated. Animals were subjected to subchronic (7 days) and acute (48 h) of IMI and Cd2+ effects with single and binary mixtures. ATPase and antioxidant enzyme activities with lipid peroxidation were measured. Morphometric characteristics were also evaluated. Response patterns showed variability due to the duration, concentration, and toxicant type. While the enzyme activities mostly showed a decreasing trend upon the subchronic IMI effect, there was an increasing trend after the Cd2+. Declined enzyme activities were more pronounced with the acute higher IMI+Cd2+ exposure. Ca2+-ATPase and CAT were the most sensitive biomarkers in the toxicity response. IMI+Cd2+ exposures are appeared to increase their toxic effects due to their oxidative potential. ATPase inhibition and antioxidant enzyme alterations with a decrease in morphometric characteristics in Daphnia even at their low concentrations of IMI and Cd2+ show evidence of their toxicities on aquatic life. It was emphasized that investigating the combined effects of toxicants at their environmental level based on the multi-biomarker approach is essential in toxicity evaluation.
Collapse
Affiliation(s)
- Kemal Mahmut
- Çukurova University, Biotechnology Center, Adana, Turkey
| | - Gülüzar Atli Demiray
- Çukurova University, Biotechnology Center, Adana, Turkey; Çukurova University, Vocational School of Imamoglu, Adana, Turkey.
| | - Yusuf Sevgiler
- Adıyaman University, Faculty of Science and Letters, Department of Biology, Adıyaman, Turkey.
| |
Collapse
|
14
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
15
|
Chauhan V, Beaton D, Hamada N, Wilkins R, Burtt J, Leblanc J, Cool D, Garnier-Laplace J, Laurier D, Le Y, Yamada Y, Tollefsen KE. Adverse Outcome Pathway: A Path towards better Data Consolidation and Global Co-ordination of Radiation Research. Int J Radiat Biol 2021; 98:1694-1703. [PMID: 34919011 DOI: 10.1080/09553002.2021.2020363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The purpose of toxicology is to protect human health and the environment. To support this, the Organisation for Economic Co-operation and Development (OECD), operating via its Extended Advisory Group for Molecular Screening and Toxicogenomics (EAGMST), has been developing the Adverse Outcome Pathway (AOP) approach to consolidate evidence for chemical toxicity spanning multiple levels of biological organization. The knowledge transcribed into AOPs provides a structured framework to transparently organize data, examine the weight of evidence of the AOP, and identify causal relationships between exposure to stressors and adverse effects of regulatory perspective. The AOP framework has undergone substantial maturation in the field of hazard characterization of chemicals over the last decade, and has also recently gained attention from the radiation community as a means to advance the mechanistic understanding of human and ecological health effects from exposure to ionizing radiation at low dose and low dose-rates. To fully exploit the value of such approaches for facilitating risk assessment and management in the field of radiation protection, solicitation of experiences and active cooperation between chemical and radiation communities are needed. As a result, the Radiation and Chemical (Rad/Chem) AOP joint topical group was formed on June 1, 2021 as part of the initiative from the High Level Group on Low Dose Research (HLG-LDR). HLG-LDR is overseen by the OECD Nuclear Energy Agency (NEA) Committee on Radiation Protection and Public Health (CRPPH). The main aims of the joint AOP topical group are to advance the use of AOPs in radiation research and foster broader implementation of AOPs into hazard and risk assessment. With global representation, it serves as a forum to discuss, identify and develop joint initiatives that support research and take on regulatory challenges. Conclusion: The Rad/Chem AOP joint topical group will specifically engage, promote, and implement the use of the AOP framework to: a) organize and evaluate mechanistic knowledge relevant to the protection of human and ecosystem health from radiation; b) identify data gaps and research needs pertinent to expanding knowledge of low dose and low dose-rate radiation effects; and c) demonstrate utility to support risk assessment by developing radiation-relevant case studies. It is envisioned that the Rad/Chem AOP joint topical group will actively liaise with the OECD EAGMST AOP developmental program to collectively advance areas of common interest and, specifically, provide recommendations for harmonization of the AOP framework to accommodate non-chemical stressors, such as radiation.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | - Ruth Wilkins
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Julie Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ontario, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ontario, Canada
| | - Donald Cool
- Electric Power Research Institute, Charlotte, North Carolina, US
| | | | - Dominque Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | - Yevgeniya Le
- CANDU Owners Group Inc., Toronto, Ontario, Canada
| | - Yukata Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
16
|
Liao Y, Liu K, Ren T, Zhang Z, Ma Z, Dan SF, Lan Z, Lu M, Fang H, Zhang Y, Liu J, Zhu P. The characterization, expression and activity analysis of three superoxide dismutases in Eriocheir hepuensis under azadirachtin stress. FISH & SHELLFISH IMMUNOLOGY 2021; 117:228-239. [PMID: 34418554 DOI: 10.1016/j.fsi.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Superoxide dismutase (SOD) can effectively eliminate of excess ROS, which causes oxidative damage to lipids, proteins, and DNA. In this study, we cloned the CuZn-SOD, cMn-SOD1, and cMn-SOD2 genes in Eriocheir hepuensis, and found that the coding sequence (CDS) lengths were 627 bp, 861 bp and 1062 bp, which encoded 208, 286, and 353 amino acids, respectively. Phylogenetic analysis indicated that all SOD genes were evolutionarily conserved, while cMn-SOD2 had an extra gap (67 amino acids) in the conserved domain compared with cMn-SOD1 without huge changes in the tertiary structure of the conserved domain, suggesting that cMn-SOD2 may be a duplicate of cMn-SOD1. qRT-PCR showed that the three SOD genes were widely expressed in all the tested tissues, CuZn-SOD and cMn-SOD1 were mostly expressed in the hepatopancreas, while cMn-SOD2 was mostly expressed in thoracic ganglia. Under azadirachtin stress, the oxidation index of surviving individuals, including the T-AOC, SOD activity, and MDA contents increased in the early stage and then remained steady except for a decrease in MDA contents in the later stage. qRT-PCR showed that the three SOD genes displayed the same trends as SOD activity in surviving individuals, and the highest expressions of CuZn-SOD in the hepatopancreas, heart, and gill were 14.16, 1.41, and 30.87 times that of the corresponding control group, respectively. The changes were 1.35, 5.77 and 3.33 fold for cMn-SOD1 and 1.62, 1.71 and 1.79 fold for cMn-SOD2, respectively. However, the activity and expression of SOD genes in dead individuals were lower than that observed in surviving individuals. These results reveal that SOD plays a significant role in the defence against azadirachtin-induced oxidative stress.
Collapse
Affiliation(s)
- Yongyan Liao
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Ke Liu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China; School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China
| | - Tianjiao Ren
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Zining Zhang
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Zihang Ma
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | | | - Zhenyu Lan
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Min Lu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Huaiyi Fang
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Yan Zhang
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Jinxia Liu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China.
| | - Peng Zhu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China; School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China.
| |
Collapse
|
17
|
Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. Int J Mol Sci 2021; 22:ijms221910277. [PMID: 34638618 PMCID: PMC8508812 DOI: 10.3390/ijms221910277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.
Collapse
|
18
|
Fang Z, Chen P, Tang S, Chen A, Zhang C, Peng G, Li M, Chen X. Will mesenchymal stem cells be future directions for treating radiation-induced skin injury? Stem Cell Res Ther 2021; 12:179. [PMID: 33712078 PMCID: PMC7952822 DOI: 10.1186/s13287-021-02261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
Radiation-induced skin injury (RISI) is one of the common serious side effects of radiotherapy (RT) for patients with malignant tumors. Mesenchymal stem cells (MSCs) are applied to RISI repair in some clinical cases series except some traditional options. Though direct replacement of damaged cells may be achieved through differentiation capacity of MSCs, more recent data indicate that various cytokines and chemokines secreted by MSCs are involved in synergetic therapy of RISI by anti-inflammatory, immunomodulation, antioxidant, revascularization, and anti-apoptotic activity. In this paper, we not only discussed different sources of MSCs on the treatment of RISI both in preclinical studies and clinical trials, but also summarized the applications and mechanisms of MSCs in other related regenerative fields.
Collapse
Affiliation(s)
- Zhuoqun Fang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Penghong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Chaoyu Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
19
|
Thaulow J, Song Y, Lindeman LC, Kamstra JH, Lee Y, Xie L, Aleström P, Salbu B, Tollefsen KE. Epigenetic, transcriptional and phenotypic responses in Daphnia magna exposed to low-level ionizing radiation. ENVIRONMENTAL RESEARCH 2020; 190:109930. [PMID: 32738623 DOI: 10.1016/j.envres.2020.109930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation is known to induce oxidative stress and DNA damage as well as epigenetic effects in aquatic organisms. Epigenetic changes can be part of the adaptive responses to protect organisms from radiation-induced damage, or act as drivers of toxicity pathways leading to adverse effects. To investigate the potential roles of epigenetic mechanisms in low-dose ionizing radiation-induced stress responses, an ecologically relevant crustacean, adult Daphnia magna were chronically exposed to low and medium level external 60Co gamma radiation ranging from 0.4, 1, 4, 10, and 40 mGy/h for seven days. Biological effects at the molecular (global DNA methylation, histone modification, gene expression), cellular (reactive oxygen species formation), tissue/organ (ovary, gut and epidermal histology) and organismal (fecundity) levels were investigated using a suite of effect assessment tools. The results showed an increase in global DNA methylation associated with loci-specific alterations of histone H3K9 methylation and acetylation, and downregulation of genes involved in DNA methylation, one-carbon metabolism, antioxidant defense, DNA repair, apoptosis, calcium signaling and endocrine regulation of development and reproduction. Temporal changes of reactive oxygen species (ROS) formation were also observed with an apparent transition from ROS suppression to induction from 2 to 7 days after gamma exposure. The cumulative fecundity, however, was not significantly changed by the gamma exposure. On the basis of the new experimental evidence and existing knowledge, a hypothetical model was proposed to provide in-depth mechanistic understanding of the roles of epigenetic mechanisms in low dose ionizing radiation induced stress responses in D. magna.
Collapse
Affiliation(s)
- Jens Thaulow
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Leif C Lindeman
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Jorke H Kamstra
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, NL-3508 TD, Utrecht, the Netherlands
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of BioSciences, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
20
|
Song Y, Xie L, Lee Y, Tollefsen KE. De Novo Development of a Quantitative Adverse Outcome Pathway (qAOP) Network for Ultraviolet B (UVB) Radiation Using Targeted Laboratory Tests and Automated Data Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13147-13156. [PMID: 32924456 DOI: 10.1021/acs.est.0c03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultraviolet B (UVB) radiation is a natural nonchemical stressor posing potential hazards to organisms such as planktonic crustaceans. The present study was conducted to revisit the lethal effects of UVB on crustaceans, generate new experimental evidence to fill in knowledge gaps, and develop novel quantitative adverse outcome pathways (qAOPs) for UVB. A combination of laboratory and computational approaches was deployed to achieve the goals. For targeted laboratory tests, Daphnia magna was used as a prototype and exposed to a gradient of artificial UVB. Targeted bioassays were used to quantify the effects of UVB at multiple levels of biological organization. A toxicity pathway network was assembled based on the new experimental evidence and previously published data extracted using a novel computational tool, the NIVA Risk Assessment Database (NIVA RAdb). A network of AOPs was developed, and weight of evidence was assessed based on a combination of the current and existing data. In addition, quantitative key event relationships in the AOPs were developed by fitting the D. magna data to predefined models. A complete workflow for assembly and evaluation of qAOPs has been presented, which may serve as a good example for future de novo qAOP development for chemical and nonchemical stressors.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
21
|
Chen X, Li X, Xu Z, Liu Q, Peng Z, Zhu Y, Hong J, Lu W, Cui J, Xiao L. The distinct microbial community in Aurelia coerulea polyps versus medusae and its dynamics after exposure to 60Co-γ radiation. ENVIRONMENTAL RESEARCH 2020; 188:109843. [PMID: 32846637 DOI: 10.1016/j.envres.2020.109843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Radiation (e.g., nuclear leakage) is a common harmful factor in the ocean that potentially affects the microbial community in nearby benthic hosts such as jellyfish polyps, which is essential for the maintenance of jellyfish populations and high-quality medusae. After comparison with the microbial community of medusae, the effect of 60Co-γ on the microbial community in Aurelia coerulea polyps was dynamically tested using 16S rRNA gene sequencing. Our results suggested that Proteobacteria (76.19 ± 3.24%), Tenericutes (12.93 ± 3.20%) and Firmicutes (8.33 ± 1.06%) are most abundant in medusae, while Proteobacteria (29.49 ± 2.29%), Firmicutes (46.25 ± 5.59%), and Bacteroidetes (20.16 ± 2.65%) are the top three phyla in polyps. After 60Co-γ radiation, the proportion of Proteobacteria increased from 29.49 ± 2.29% to 59.40 ± 3.09% over 5 days, while that of Firmicutes decreased from 46.25 ± 5.59% to 13.58 ± 3.74%. At the class level, Gammaproteobacteria continually increased during the 5 days after radiation exposure, whereas Bacilli declined, followed by partial recovery, and Alphaproteobacteria and Flavobacteriia remained almost unchanged. Intriguingly, Staphylococcus from Firmicutes and three other genera, Rhodobacter, Vibrio, and Methylophaga, from Proteobacteria greatly overlapped according to their KEGG functions. It is concluded that the microbial community in A. coerulea polyps is distinct from that in the medusae and is greatly affected by 60Co-γ exposure, with a growth (0-3 d) period and a redistribution (3-5 d) period. The dynamic change in the microbial community is probably an important self-defense process in response to external interference that is regulated by the host's physiological characteristics and the intense interspecific competition among symbiotic microbes with similar functions and functional redundancies.
Collapse
Affiliation(s)
- XinTong Chen
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - XiaoYa Li
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zheng Xu
- Administration Office for Scientific Research, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Qing Liu
- College of Animal Science and Veterinary Medicine; ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - ZhaoYun Peng
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - YiNa Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - JianPing Hong
- College of Resources and Environment; ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - Wei Lu
- 905th Hospital of PLA Navy, Naval Medical University (Second Military Medical University), Shanghai, 200052, China.
| | - Jianguo Cui
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
22
|
Maremonti E, Eide DM, Rossbach LM, Lind OC, Salbu B, Brede DA. In vivo assessment of reactive oxygen species production and oxidative stress effects induced by chronic exposure to gamma radiation in Caenorhabditis elegans. Free Radic Biol Med 2020; 152:583-596. [PMID: 31805397 DOI: 10.1016/j.freeradbiomed.2019.11.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
In the current study, effects of chronic exposure to ionizing gamma radiation were assessed in the radioresistant nematode Caenorhabditis elegans in order to understand whether antioxidant defences (AODs) could ameliorate radical formation, or if increased ROS levels would cause oxidative damage. This analysis was accompanied by phenotypical as well as molecular investigations, via assessment of reproductive capacity, somatic growth and RNA-seq analysis. The use of a fluorescent reporter strain (sod1::gfp) and two ratiometric biosensors (HyPer and Grx1-roGFP2) demonstrated increased ROS production (H2O2) and activation of AODs (SOD1 and Grx) in vivo. The data showed that at dose-rates ≤10 mGy h-1 defence mechanisms were able to prevent the manifestation of oxidative stress. In contrast, at dose-rates ≥40 mGy h-1 the continuous formation of radicals caused a redox shift, which lead to oxidative stress transcriptomic responses, including changes in mitochondrial functions, protein degradation, lipid metabolism and collagen synthesis. Moreover, genotoxic effects were among the most over-represented functions affected by chronic gamma irradiation, as indicated by differential regulation of genes involved in DNA damage, DNA repair, cell-cycle checkpoints, chromosome segregation and chromatin remodelling. Ultimately, the exposure to gamma radiation caused reprotoxic effects, with >20% reduction in the number of offspring per adult hermaphrodite at dose-rates ≥40 mGy h-1, accompanied by the down-regulation of more than 300 genes related to reproductive system, apoptosis, meiotic functions and gamete development and fertilization.
Collapse
Affiliation(s)
- Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Centre for Environmental Radioactivity (CoE CERAD), 1432 Ås, Norway.
| | - Dag Markus Eide
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway; Centre for Environmental Radioactivity (CoE CERAD), 1432 Ås, Norway
| | - Lisa M Rossbach
- Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Centre for Environmental Radioactivity (CoE CERAD), 1432 Ås, Norway
| | - Ole Christian Lind
- Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Centre for Environmental Radioactivity (CoE CERAD), 1432 Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Centre for Environmental Radioactivity (CoE CERAD), 1432 Ås, Norway
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management (MINA) Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Centre for Environmental Radioactivity (CoE CERAD), 1432 Ås, Norway
| |
Collapse
|
23
|
Song Y, Xie L, Lee Y, Brede DA, Lyne F, Kassaye Y, Thaulow J, Caldwell G, Salbu B, Tollefsen KE. Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135912. [PMID: 31846819 DOI: 10.1016/j.scitotenv.2019.135912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Biosciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Fern Lyne
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Newcastle University, Newcastle upon Tyne, UK
| | - Yetneberk Kassaye
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Jens Thaulow
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | | | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
24
|
Calin MR, Radulescu I, Ion AC, Capra L, Almasan ER. Investigations on chemical composition and natural radioactivity levels from salt water and peloid used in pelotherapy from the Techirghiol Lake, Romania. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:513-529. [PMID: 31363944 DOI: 10.1007/s10653-019-00382-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The work presents the historical evolution, objectives, goals, concepts, chemical and radiometric methods, results and conclusions for salt waters and natural peloids used in pelotherapy. This study assesses chemical composition, natural radioactivity concentrations and the radiological hazard in peloid and salt water samples, from ten places in the Techirghiol Lake from Romania. Pelotherapy is a very important procedure, and thus, the materials used for this purpose must be well characterized to guaranty safety use. Concentrations of elements such as Sr, Ba, Mn, Fe, Sb, Zn, Cu, Pb, Ti, Ni, Cr, As have been measured using ICP-OES analytical technique. The natural radionuclides such as 238U, 226Ra, 232Th and 40K have been determined by gamma-ray spectrometry. The average activity concentrations were of 0.48 ± 0.10 Bq/kg for 238U, 0.60 ± 0.10 Bq/kg for 226Ra, 0.30 ± 0.08 Bq/kg for 232Th and 17.5 ± 1.3 Bq/kg for 40K for salt water samples. Also, the mean activity concentrations for peloids were: 5.70 ± 1.00 Bq/kg for 238U, 6.85 ± 1.60 Bq/kg for 232Th, 15.3 ± 3.7 Bq/kg for 226Ra and 95.8 ± 5.5 Bq/kg for 40K. The results from this study contribute to the identification of possible contaminants in the salt water and peloid, and their association with the potential ecological and human health risk. In this context, of using salt water and peloid in a relatively long treatment period, several radiological indices have been calculated, to determine if the radionuclide's content can be also harmful to human health. The assessment indicates that humans are not exposed to concentrations of metal contaminants higher than the international recommended values.
Collapse
Affiliation(s)
- M R Calin
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN HH, 30 Reactorului Str., P.O. Box MG-6, 077125, Bucharest-Magurele, Romania
| | - I Radulescu
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN HH, 30 Reactorului Str., P.O. Box MG-6, 077125, Bucharest-Magurele, Romania.
| | - A C Ion
- Department of Analytical Chemistry and Environmental Engineering, University Polytechnic, Bucharest, 6 Polizu, Str. No. 1-7, 011061, Bucharest, Romania
| | - L Capra
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University Polytechnic, Bucharest, Romania
| | - E R Almasan
- Techirghiol Balneary and Recovery Sanatorium, 34 Victor Climescu Str., 906100, Techirghiol, Romania
| |
Collapse
|
25
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Ole Christian Lind
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Deborah Helen Oughton
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|