1
|
Vieira de Mendonça H, Carvalho CDMD, Costa AG, Ribas MC, Euriques JF. Decade-long performance of constructed wetlands in the dairy industry following an aerated facultative pond. CHEMOSPHERE 2025; 376:144271. [PMID: 40073732 DOI: 10.1016/j.chemosphere.2025.144271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Long-term data are essential for decision-making in the operation of constructed wetlands; however, such data are scarce. In the present study, a subsurface flow CW system was monitored over a 10-year period for the treatment of wastewater from the dairy industry. Prior to the CW, an aerated facultative lagoon was operated, and its data were also included in the study. The integration of both natural treatment systems (Lagoon + CW) revealed synergy in the combined removal of pollutants and nutrients. Up until the seventh year of operation, the integration of the systems removed more than 98% of COD, BOD5, and TSS, as well as 99.8%, 96.5%, and 71.3% of oils and greases, ammoniacal nitrogen, and total phosphorus, respectively. Surfactants, oils, and greases were entirely removed. The presence of significant clogging and surface flow from the seventh year onwards led to a reduction in treatment efficiency, indicating that this is the maximum recommended operating time for CWs following an aerated facultative lagoon in the dairy industry. After this period, all substrates should be replaced.
Collapse
Affiliation(s)
- Henrique Vieira de Mendonça
- Post-graduate Program in Agricultural and Environmental Engineering / Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, Seropédica, Rio de Janeiro, RJ, 23890-000, Brazil.
| | - Camila da Motta de Carvalho
- Post-graduate Program in Agricultural and Environmental Engineering / Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, Seropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Anderson Gomide Costa
- Post-graduate Program in Agricultural and Environmental Engineering / Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, Seropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Maria Clara Ribas
- Post-graduate Program in Agricultural and Environmental Engineering / Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, Seropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Jorge Felipe Euriques
- Post-graduate Program in Agricultural and Environmental Engineering / Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, Seropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| |
Collapse
|
2
|
Xiao R, Tian C, Wang H, Zhang H, Chen H, Chou HH. Two-stage continuous cultivation of microalgae overexpressing cytochrome P450 improves nitrogen and antibiotics removal from livestock and poultry wastewater. BIORESOURCE TECHNOLOGY 2025; 418:131994. [PMID: 39694106 DOI: 10.1016/j.biortech.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Improper treatment of livestock and poultry wastewater (LPWW) rich in ammonium nitrogen (NH4-N) and antibiotics leads to eutrophication, and contributes to the risk of creating drug-resistant pathogens. The design-build-test-learn strategy was used to engineer a continuous process using Chlorella vulgaris to remove NH4-N and antibiotics. The optimized system removed NH4-N at a rate of 306 mg/L/d, degraded 99 % of lincomycin, and reduced the hydraulic retention time to 4 days. The physiological, metabolic, and genetic mechanisms used by microalgae to tolerate LPWW, remove NH4-N, and degrade antibiotics were elucidated. A new cytochrome P450 enzyme important for NH4-N and antibiotic removal was identified. Finally, application of synthetic biology improved the NH4-N removal rate to 470 mg/L/d, which is the highest removal rate using microalgae reported to date. This research contributes to the mechanistic understanding of wastewater detoxification by microalgae, and the goal of achieving a circular bioeconomy for nutrient and water recycling.
Collapse
Affiliation(s)
- Rui Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Chang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haijun Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Howard H Chou
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
3
|
de Oliveira KL, da Silva Oliveira JL, Moraes EA, dos Santos Pires Cavalcante KM, de Oliveira MLM, Alves CR. Cultivation of microalgae Chlorella vulgaris, Monoraphidium sp and Scenedesmus obliquus in wastewater from the household appliance industry for bioremediation and biofuel production. 3 Biotech 2024; 14:294. [PMID: 39529805 PMCID: PMC11550306 DOI: 10.1007/s13205-024-04142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Microalgae Chlorella vulgaris, Scenedesmus obliquus, and Monoraphidium sp were cultivated in effluent from the household appliance industry as an alternative medium for bioremediation due to the high variability of chemical and biological substances in wastewater. The experiments were carried out using biological effluent (BE), chemical effluent (CE), and a combination of the two (MIX). The results showed a maximum biomass yield of 1056 mg/L (± 0.216) in the BE cultivation of the microalga Scenedesmus obliquus, 969 mg/L (± 0.20) in the BE of the microalga Monoraphidium sp. and 468 mg/L (± 0.46) in the CE of Chlorella vulgaris. In addition, they showed N O 3 - removal (100%) in the CE and MIX for cultivation with Chlorella vulgaris and 100% BE and 75% MIX with Monoraphidium sp. For the P O 3 4 - (75.3%, 99% e 97.9%) in the cultures with C. vulgaris BE, CE, and MIX respectively, with Monoraphidium sp. 58% in BE and 42% in CE and MIX. With S. obliquus, 100% removal was observed in all 3 treatments. Metal removal was also observed. The C. vulgaris culture showed lipid contents of 16%, 12%, and 17% for BE, CE, and MIX, respectively. For Monoraphidium sp., 14.5% for BE, 16% for CE, and 14% for MIX. In the culture of S. obliquus, 17%, 15.5%, and 16.5% for BE, CE, and MIX, respectively.
Collapse
Affiliation(s)
- Kelly Lima de Oliveira
- Rede Nordeste de Biotecnologia, Laboratório de Conversão Energética e Inovação, State University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | - José Lucas da Silva Oliveira
- Departamento de Engenharia de Pesca, Laboratório de Planctologia, Federal University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | - Egídia Andrade Moraes
- Departamento de Engenharia de Pesca, Laboratório de Planctologia, Federal University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | | | - Mona Lisa Moura de Oliveira
- Centro de Ciências e Tecnologias, Laboratório de Conversão Energética e Inovação, State University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | - Carlúcio Roberto Alves
- Rede Nordeste de Biotecnologia, Laboratório de Conversão Energética e Inovação, State University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| |
Collapse
|
4
|
Abdalla SB, Moghazy RM, Hamed AA, Abdel-Monem MO, El-Khateeb MA, Hassan MG. Strain selection and adaptation of a fungal-yeast-microalgae consortium for sustainable bioethanol production and wastewater treatment from livestock wastewater. Microb Cell Fact 2024; 23:288. [PMID: 39438859 PMCID: PMC11495080 DOI: 10.1186/s12934-024-02537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
This study explores the potential of strain selection and adaptation for developing a fungi-yeast-microalgae consortium capable of integrated bioethanol production and livestock wastewater treatment. We employed a multi-stage approach involving isolation and strain selection/adaptation of these consortiums. The study started with screening some isolated fungi to grow on the cellulosic biomass of the livestock wastewater (saccharification) followed by a fermentation process using yeast for bioethanol production. The results revealed that Penicillium chrysogenum (Cla) and Saccharomyces cerevisiae (Sc) produced a remarkable 99.32 ppm of bioethanol and a concentration of glucose measuring 0.56 mg ml- 1. Following the impact of fungi and yeast, we diluted the livestock wastewater using distilled water and subsequently inoculated Nile River microalgae into the wastewater. The findings demonstrated that Chlorella vulgaris emerged as the dominant species in the microalgal community. Particularly, the growth rate reached its peak at a 5% organic load (0.105385), indicating that this concentration provided the most favorable conditions for the flourishing of microalgae. The results demonstrated the effectiveness of the microalgal treatment in removing the remaining nutrients and organic load, achieving a 92.5% reduction in ammonia, a 94.1% reduction in nitrate, and complete removal of phosphate (100%). The algal treatment also showed remarkable reductions in COD (96.5%) and BOD (96.1%). These findings underscore the potential of fungi, yeast, and Nile River microalgae in the growth and impact on livestock wastewater, with the additional benefit of bioethanol production.
Collapse
Affiliation(s)
- Salma B Abdalla
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Reda M Moghazy
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
| | - Mohamed O Abdel-Monem
- Faculty of Science, Botany and Microbiology Department, Benha University, Benha, Egypt
| | - Mohamad A El-Khateeb
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Mervat G Hassan
- Faculty of Science, Botany and Microbiology Department, Benha University, Benha, Egypt
| |
Collapse
|
5
|
de Mello Mattos C, Dos Santos MS, Santana J, de Carvalho DF, Massache A, Zonta E, Boas RV, Lucchetti L, Mendes M, de Mendonça HV. Pollution control and biodiesel production with microalgae: new perspectives on the use of flat panel photobioreactors regarding variation in volume application rate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58973-58987. [PMID: 39325130 DOI: 10.1007/s11356-024-35024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
In the present study, the microalga Arthrospira platensis DHR 20 was cultivated in vertical flat-plate photobioreactors (FPBRs) to bioremediate anaerobically digested cattle wastewater (ACWW) and used as a growth substrate. The final objective was to evaluate the properties of the oil extracted from this biomass to determine its potential for biodiesel production. The process was divided into five phases, varying the volume of the applied substrate: 1 L (Phase I), 5 L (Phase II), 10 L (Phase III), 15 L (Phase IV), and 20 L (Phase V). Dry biomass reached a maximum of 5.7 g L-1, and productivity peaked at 0.74 g L-1d-1. The highest rate of CO2 biofixation was 1213.5 mg L-1 day-1, showing good potential for purifying the air. The highest specific maximum growth rate (μmax) and the shortest doubling time (Dt) were found during Phase I. The removal of pollutants and nutrients during the experimental phases ranged from 65.8% to 87.1% for chemical oxygen demand (COD), 82.2% to 85.8% for total organic carbon (TOC), 91% to 99% for phosphate (PO43-), 62.5% to 93% for nitrate (NO3-), 90.4% to 99.7% for ammoniacal nitrogen (NH4+), and 86.5% to 98.5% for total nitrogen (TN). The highest lipid production recorded was 0.172 g L-1 day-1. The average cetane number recorded in Phase IV of 51 suggests that the fuel will ignite efficiently and consistently, providing smooth operation and potentially reducing pollutant emissions. The analysis of fatty acids revealed that the produced biodiesel has the potential to be used as an additive for other low-explosive biocombustibles, representing an innovative and sustainable approach that simultaneously offers bioremediation and carbon sequestration.
Collapse
Affiliation(s)
- Cecília de Mello Mattos
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Mônica Silva Dos Santos
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Jacob Santana
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Daniel Fonseca de Carvalho
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Assamo Massache
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Everaldo Zonta
- Institute of Agronomy, Department of Soils, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Renata Vilas Boas
- Institute of Technology Department of Chemical Engineering, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Leonardo Lucchetti
- Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041-250, Brazil
| | - Marisa Mendes
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
- Institute of Technology Department of Chemical Engineering, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil
| | - Henrique Vieira de Mendonça
- Institute of Technology Engineering Department, Federal Rural University of Rio de Janeiro, Campus SeropédicaSeropédica, Rio de Janeiro, RJ, 23890-000, Brazil.
| |
Collapse
|
6
|
Fayaz T, Rana SS, Goyal E, Ratha SK, Renuka N. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120723. [PMID: 38565028 DOI: 10.1016/j.jenvman.2024.120723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Soujanya S Rana
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Esha Goyal
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
7
|
Alavianghavanini A, Shayesteh H, Bahri PA, Vadiveloo A, Moheimani NR. Microalgae cultivation for treating agricultural effluent and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169369. [PMID: 38104821 DOI: 10.1016/j.scitotenv.2023.169369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia
| | - Hajar Shayesteh
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
8
|
Cheirsilp B, Maneechote W, Srinuanpan S, Angelidaki I. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. BIORESOURCE TECHNOLOGY 2023; 387:129620. [PMID: 37544540 DOI: 10.1016/j.biortech.2023.129620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are promising organisms that are rapidly gaining much attention due to their numerous advantages and applications, especially in biorefineries for various bioenergy and biochemicals. This review focuses on the microalgae contributions to Bio-Circular-Green (BCG) economy, in which zero-waste approaches for sustainable production and biorefineries of microalgal biomass are introduced and their possible integration is discussed. Firstly, overviews of wastewater upcycling and greenhouse gas capture by microalgae are given. Then, a variety of valuable products from microalgal biomass, e.g., pigments, vitamins, proteins/peptides, carbohydrates, lipids, polyunsaturated fatty acids, and exopolysaccharides, are summarized to emphasize their biorefinery potential. Techno-economic and environmental analyses have been used to evaluate sustainability of microalgal biomass production systems. Finally, key issues, future perspectives, and challenges for zero-waste microalgal biorefineries, e.g., cost-effective techniques and innovative integrations with other viable processes, are discussed. These strategies not only make microalgae-based industries commercially feasible and sustainable but also reduce environmental impacts.
Collapse
Affiliation(s)
- Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Chiang Mai Research Group for Carbon Capture and Storage, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Irini Angelidaki
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| |
Collapse
|
9
|
Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DVN, Bui XD, Vithanage M, Show PL. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. ENVIRONMENTAL RESEARCH 2023; 218:114948. [PMID: 36455634 DOI: 10.1016/j.envres.2022.114948] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
Collapse
Affiliation(s)
- Azalea Dyah Maysarah Satya
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Sara Kazemi Yazdi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yu-Shen Cheng
- College of Future, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan; Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road Section 3, Douliou, 64002, Yunlin, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Xuan Dong Bui
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang st., 550 000, Danang, Viet Nam
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Clem V, Mendonça HVD. Ozone reactor combined with ultrafiltration membrane: A new tertiary wastewater treatment system for reuse purpose. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115166. [PMID: 35525046 DOI: 10.1016/j.jenvman.2022.115166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
In the present research, a new technology using the application of ozone (O³) together with an ultrafiltration (UF) membrane was tested for the tertiary treatment of wastewater. The primary and secondary wastewater-treatment systems were a septic tank and anaerobic filter. The experiment was divided into two stages: the first including only the application of O3 in the reactor, and the second, inclusion of the UF membrane. During the first stage of the study, where only the ozone was applied, a time of 40 min was chosen, with removal levels for chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), total organic carbon (TOC), turbidity and ammonium (NH4+) of 39.5%, 45.4%, 32.4%, 44.85% and 68.4% being recorded. During stage 2, the UF membrane inside the reactor was activated after 40 min of ozonation. The values for the removal of COD, BOD5, TOC, turbidity, NH4+ and total phosphorus were 89.13%, 95.41%, 82%, 93.4%, 14.75% and 79.67%, respectively. The use of O3 + UF removed 100% of total coliforms and viruses from the secondary wastewater. In accordance with North American and European guidelines, the water resulting from the treatment process is fit for reuse. The operating costs can vary between 0.859 € m-3 and 2.440 € m-3 depending on the cost per kWh in each country. The experiments were conducted under batch-mode conditions, further evaluations about the real scale operation would require a previous pilot stage that would develop more tools for operations specifications and their costs. The results recorded here show that the performance of this new reactor design is effective in the tertiary treatment of wastewater, and should be available for use in the near future.
Collapse
Affiliation(s)
- Vitória Clem
- Post-graduate Program in Agricultural and Environmental Engineering - Institute of Technology /Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23890-000, Seropédica, Rio de Janeiro, RJ, Brazil
| | - Henrique Vieira de Mendonça
- Post-graduate Program in Agricultural and Environmental Engineering - Institute of Technology /Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23890-000, Seropédica, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors. ENERGIES 2022. [DOI: 10.3390/en15155357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This scientometric review and bibliometric analysis aimed to characterize trends in scientific research related to algae, photobioreactors and astaxanthin. Scientific articles published between 1995 and 2020 in the Web of Science and Scopus bibliographic databases were analyzed. The article presents the number of scientific articles in particular years and according to the publication type (e.g., articles, reviews and books). The most productive authors were selected in terms of the number of publications, the number of citations, the impact factor, affiliated research units and individual countries. Based on the number of keyword occurrences and a content analysis of 367 publications, seven leading areas of scientific interest (clusters) were identified: (1) techno-economic profitability of biofuels, bioenergy and pigment production in microalgae biorefineries, (2) the impact of the construction of photobioreactors and process parameters on the efficiency of microalgae cultivation, (3) strategies for increasing the amount of obtained lipids and obtaining biodiesel in Chlorella microalgae cultivation, (4) the production of astaxanthin on an industrial scale using Haematococcus microalgae, (5) the productivity of biomass and the use of alternative carbon sources in microalgae culture, (6) the effect of light and carbon dioxide conversion on biomass yield and (7) heterotrophy. Analysis revealed that topics closely related to bioenergy production and biofuels played a dominant role in scientific research. This publication indicates the directions and topics for future scientific research that should be carried out to successfully implement economically viable technology based on microalgae on an industrial scale.
Collapse
|
12
|
Gutiérrez-Casiano N, Hernández-Aguilar E, Alvarado-Lassman A, Méndez-Contreras JM. Removal of carbon and nitrogen in wastewater from a poultry processing plant in a photobioreactor cultivated with the microalga Chlorella vulgaris. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:620-633. [PMID: 35808869 DOI: 10.1080/10934529.2022.2096986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study evaluates the removal of COD and nitrogen from poultry wastewater in photobioreactors. Cell growth, the effect of light intensity (3200, 9800, and 12000 lux) and air flow (1.6, 3.2, and 4.8 L min-1) as a source of CO2 in bold basal medium and wastewater with different concentrations of COD were evaluated. The growth kinetics were modeled by using the Gompertz model and logistic model for both culture media. COD removals of up to 95% were achieved, and poultry wastewater was found to be a viable growing medium for Chlorella vulgaris. Finally, the wastewater met Mexican standards, and biomass was obtained with products valued as lipids (3.2 g lipid/100 g biomass) and proteins (342.94 mg L-1). The culture was found to have a dilatory behavior, and the rheological models of Ostwald de Waele, Ostwald de Waele linealized and Herschel Bulkley were utilized, showing a laminar behavior.
Collapse
Affiliation(s)
- Nayeli Gutiérrez-Casiano
- Instituto Tecnológico de Orizaba, División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Tecnológico Nacional de México, Mexico City, Mexico
- Facultad de Ciencias Químicas, Universidad Veracruzana, Veracruz, Mexico
| | | | - Alejandro Alvarado-Lassman
- Instituto Tecnológico de Orizaba, División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Tecnológico Nacional de México, Mexico City, Mexico
| | - Juan M Méndez-Contreras
- Instituto Tecnológico de Orizaba, División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Tecnológico Nacional de México, Mexico City, Mexico
| |
Collapse
|
13
|
de Mendonça HV, Otenio MH, Marchão L, Lomeu A, de Souza DS, Reis A. Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: The next step in sustainable production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153838. [PMID: 35176365 DOI: 10.1016/j.scitotenv.2022.153838] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Microalgae biofuel could be the next step in avoiding the excessive use of fossil fuels and reducing negative impacts on the environment. In the present study, two species of microalgae (Scenedesmus obliquus and Chlorella vulgaris) were used for biomass production, grown in dairy wastewater treated by activated sludge systems. The photobioreactors were operated in batch and in continuous mode. The dry biomass produced was in the range of 2.30 to 3.10 g L-1. The highest volumetric yields for lipids and carbohydrates were 0.068 and 0.114 g L-1 day-1. Maximum CO2 biofixation (750 mg L-1 day-1) was obtained in continuous mode. The maximum values for lipids (21%) and carbohydrates (39%) were recorded in the batch process with species Scenedesmus obliquus. In all of the experiments, the Linolenic acid concentration (C18:3) was greater than 12%, achieving satisfactory oxidative stability and good quality. Projected biofuel production could vary between 4,863,708 kg and 9,246,456 kg year-1 if all the dairy wastewater produced in Brazil were used for this purpose. Two hectares would be needed to produce 24,99 × 109 L year-1 of microalgae bioethanol, a far lower value than used in cultivating sugar cane. If all dairy wastewater generated annually in Brazil were used to produce microalgae biomass, it would be possible to obtain approximately 30,609 to 53,647 barrels of biodiesel per year. These data show that only by using dairy wastewater would biofuels be produced to replace 17% to 40% of the fossil fuels currently used in Brazil.
Collapse
Affiliation(s)
- Henrique Vieira de Mendonça
- Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23897-000, Seropédica, Rio de Janeiro, RJ, Brazil.
| | - Marcelo Henrique Otenio
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, 36038-330 Juiz de Fora, MG, Brazil
| | - Leonilde Marchão
- Chemistry Centre - Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Alice Lomeu
- Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23897-000, Seropédica, Rio de Janeiro, RJ, Brazil
| | - Denise Salvador de Souza
- Institute of Technology / Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23897-000, Seropédica, Rio de Janeiro, RJ, Brazil
| | - Alberto Reis
- National Laboratory of Energy and Geology, I.P. (LNEG), Bioenergy Unit, Campus Lumiar, 1649-038 Lisbon, Portugal
| |
Collapse
|
14
|
Goswami RK, Agrawal K, Verma P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
16
|
López-Sánchez A, Silva-Gálvez AL, Aguilar-Juárez Ó, Senés-Guerrero C, Orozco-Nunnelly DA, Carrillo-Nieves D, Gradilla-Hernández MS. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114612. [PMID: 35149401 DOI: 10.1016/j.jenvman.2022.114612] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.
Collapse
Affiliation(s)
- Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Óscar Aguilar-Juárez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | | |
Collapse
|
17
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Vadiveloo A, Foster L, Kwambai C, Bahri PA, Moheimani NR. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145853. [PMID: 33621869 DOI: 10.1016/j.scitotenv.2021.145853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 05/12/2023]
Abstract
The successful cultivation of microalgae in wastewater establishes a waste to profit scenario as it combines treatment of a waste stream with production of valuable end-products. Here, growth and nutrient removal efficiency of three different locally isolated microalgal cultures (Chlorella sp., Scenedesmus sp., and a mixed consortium) cultivated in anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE) was evaluated. No significant differences (P > 0.05) in specific growth rate and biomass productivity were recorded between Chlorella monocultures and the mixed culture grown in both effluents. Scenedesmus sp. monocultures was found incapable of growth in both ADMC and ADAE throughout the cultivation period resulting in the collapse of cultures and no further measurements on the growth, biomass production and nutrient removal efficiency of this alga in both effluent. Fq´/Fm´ values which represent the immediate photo-physiological status of microalgae found to be negatively inhibited when Scenedesmus sp. was grown in both effluents throughout the cultivation period. Fq´/Fm´ values of Chlorella sp. monocultures and the mixed cultures recovered back to normal (≈0.6) after an initial drop. Ammonium removal rates was found to be significantly higher (≈2 folds) for Chlorella sp. monocultures grown in both ADMC and ADAE when compared to the mixed cultures. Nonetheless, no significant differences were observed in the removal of phosphate for both cultures in the different effluents. The total protein and carbohydrate content of the biomass produced was similar for both microalgae cultures grown using ADAE and ADMC. However, chlorophyll a and total carotenoids content were found to be higher (P < 0.05) for the cultures grown in ADAE than ADMC. Overall, Chlorella sp. monoculture was the most efficient option for treating both ADMC and ADAE while simultaneously generating protein rich biomass (up to 49%) that can be potentially exploited as aquaculture feedstock.
Collapse
Affiliation(s)
- Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education School, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre of Water, Energy, Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Louise Foster
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education School, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Cherono Kwambai
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education School, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, College of Science, Health, Engineering and Education School, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre of Water, Energy, Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
19
|
de Souza DS, Valadão RC, de Souza ERP, Barbosa MIMJ, de Mendonça HV. Enhanced Arthrospira platensis Biomass Production Combined with Anaerobic Cattle Wastewater Bioremediation. BIOENERGY RESEARCH 2021; 15:412-425. [PMID: 33680280 PMCID: PMC7914118 DOI: 10.1007/s12155-021-10258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Microalgae biomasses offer important benefits regarding macromolecules that serve as promising raw materials for sustainable production. In the present study, the microalgae Arthrospira platensis DHR 20 was cultivated in horizontal photobioreactors (HPBR), with and without temperature control, in batch mode (6 to 7 days), with anaerobically digested cattle wastewater (ACWW) as substrate. High dry biomass concentrations were observed (6.3-7.15 g L-1). Volumetric protein, carbohydrate, and lipid productivities were 0.299, 0.135, and 0.108 g L-1 day-1, respectively. Promising lipid productivities per area were estimated between 22.257 and 39.446 L ha-1 year-1. High CO2 bio-fixation rates were recorded (875.6-1051 mg L-1 day-1), indicating the relevant potential of the studied microalgae to mitigate atmospheric pollution. Carbon concentrations in biomass ranged between 41.8 and 43.6%. ACWW bioremediation was satisfactory, with BOD5 and COD removal efficiencies of 72.2-82.6% and 63.3-73.6%. Maximum values of 100, 95.5, 92.4, 80, 98, and 94% were achieved concerning the removal of NH4 +, NO3 -, Pt, SO4 2-, Zn, and Cu, respectively. Total and thermotolerant coliform removals reached 99-99.7% and 99.7-99.9%. This microalgae-mediated process is, thus, promising for ACWW bioremediation and valuation, producing a microalgae biomass rich in macromolecules that can be used to obtain friendly bio-based products and bioenergy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12155-021-10258-4.
Collapse
Affiliation(s)
- Denise Salvador de Souza
- Institute of Technology/Engineering Department, Federal Rural University of Rio de Janeiro, Seropédica Campus, 23890-000, Seropédica, Rio de Janeiro, RJ Brazil
| | - Romulo Cardoso Valadão
- Institute of Technology/Food Technology Department, Federal Rural University of Rio de Janeiro, Seropédica Campus, 23890-000, Seropédica, Rio de Janeiro, RJ Brazil
| | - Edlene Ribeiro Prudêncio de Souza
- Institute of Technology/Food Technology Department, Federal Rural University of Rio de Janeiro, Seropédica Campus, 23890-000, Seropédica, Rio de Janeiro, RJ Brazil
| | - Maria Ivone Martins Jacintho Barbosa
- Institute of Technology/Food Technology Department, Federal Rural University of Rio de Janeiro, Seropédica Campus, 23890-000, Seropédica, Rio de Janeiro, RJ Brazil
| | - Henrique Vieira de Mendonça
- Institute of Technology/Engineering Department, Federal Rural University of Rio de Janeiro, Seropédica Campus, 23890-000, Seropédica, Rio de Janeiro, RJ Brazil
| |
Collapse
|
20
|
Zhang W, Zhao C, Cao W, Sun S, Hu C, Liu J, Zhao Y. Removal of pollutants from biogas slurry and CO 2 capture in biogas by microalgae-based technology: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28749-28767. [PMID: 32468373 DOI: 10.1007/s11356-020-09282-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Recent research interest has focused on microalgae cultivation for biogas slurry purification and biogas upgrading due to the requirement of high efficiency for nutrient uptake and CO2 capture, with economic feasibility and environmental benefits. Numerous studies have suggested that biogas slurry purification and biogas upgrading can occur simultaneously via microalgae-based technology. However, there is no comprehensive review on this technology with respect to the nutrient removal from biogas slurry and biogas upgrading. This article summarizes microalgal cultivation with biogas slurry and biogas from anaerobic digestion. The parameters, techniques, and modes of microalgae cultivation have been discussed in detail to achieve high efficiency in biogas slurry purification and biogas upgrading. In addition, the evaluation of energy efficiency and safety has also been explored. Compared with mono-cultivation of microalgae and co-cultivation of microalgae and bacteria, microalgae-fungi symbiosis has demonstrated greater development prospect and higher energy efficiency and the energy consumption for pollutants and CO2 removal were 14.2-39.0% · USD-1 and 19.9-23.3% · USD-1, respectively. Further, a sustainable recycling scheme is proposed for the purification of biogas slurry from anaerobic digestion process and biogas upgrading via microalgae-based technology.
Collapse
Affiliation(s)
- Wenguang Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, People's Republic of China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
21
|
Toro-Huertas EI, Franco-Morgado M, de Los Cobos Vasconcelos D, González-Sánchez A. Photorespiration in an outdoor alkaline open-photobioreactor used for biogas upgrading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:613-621. [PMID: 30833260 DOI: 10.1016/j.scitotenv.2019.02.374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
The rates of oxygenic and carbon fixation photosynthetic processes of a microalgae consortium were simultaneously evaluated under steady-state performance in an bench scale alkaline open-system exposed to outdoor conditions in Mexico City. A synthetic methane-free gaseous stream (SMGS) similar to biogas was used as inorganic carbon source and model of biogas upgrading. The microalgae CO2 fixation rates were calculated through a novel methodology based on an inorganic carbon mass balance under continuous scrubbing of a SMGS similar to biogas, where the influence of pH and temperature time-depended oscillations were successfully incorporated into the mass balances. The oxygenic activity and carbon fixation occurred at different non-stoichiometric rates during the diurnal phase, in average carbon fixation predominated over oxygen production (photosynthesis quotient PQ≈ 0.5 mol O2 mol-1 CO2) indicating photorespiration occurrence mainly under dissolved oxygen concentrations higher than 10 mg L-1. The oxygen and inorganic carbon mass balances demonstrated that photorespiration and endogenous respiration were responsible for losing up to 66% and 7% respectively of the biomass grew at diurnal periods under optimal conditions. In favoring photorespiration conditions, the microalgae biomass productivity (CO2 effectively captured) can be severely decreased. A kinetic mathematical model as a function of temperature and irradiance of the oxygenic photosynthetic activity indicated the optimal operation zone for this outdoor alkaline open-photobioreactor, where irradiance was found being the most influential parameter.
Collapse
Affiliation(s)
- Eliana Isabel Toro-Huertas
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Mariana Franco-Morgado
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel de Los Cobos Vasconcelos
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico City, Mexico.
| |
Collapse
|
22
|
Kumar AK, Sharma S, Patel A, Dixit G, Shah E. Comprehensive evaluation of microalgal based dairy effluent treatment process for clean water generation and other value added products. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:519-530. [PMID: 30666880 DOI: 10.1080/15226514.2018.1537248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The current study demonstrates a comprehensive investigation on clean water generation from raw dairy wastewater (RDW) using a robust microalgal strain, Ascochloris sp. ADW007 and its growth, biomass, and lipid productivities in outdoor conditions. Microalgal treatment studies were conducted in column photobioreactor (CPB) and flat-pate photobioreactor (FPB), where the volumetric algal biomass productivity in RDW was significantly increased in both CPB (0.284 ± 0.0017 g/L/d) and FPB (0.292 ± 0.0121 g/L/d) as compared to synthetic mediums viz., BG11 and TAP, respectively, with enhanced lipid content. Maximum lipid accumulation of 33.40% was obtained within 7 d growth. The volumetric and areal lipid productivities in CPB and FPB were 94 mg/L/d and 5.597 g/m2/d, and 98 mg/L/d and 9.754 g/m2/d, respectively. Chemiflocculation, filtration, and centrifugation techniques were employed for harvesting microalgal biomass. Among the flocculants, 0.08% (w/v) FeCl3 harvested >99% of algal cells within 5 min, while 0.03% (w/v) cetyl trimethyl ammonium bromide and 0.125% (w/v) sodium hydroxide harvested >96% of the cells in 30 and 60 min. After microalgal treatment, >80% of clean and odorless water was obtained with reduction in 94-96% of COD, 72-80% of nitrate and 80-97% of total phosphate, respectively. Highlights Utilization of 100% raw dairy wastewater without any treatment. Production of clean and odorless water for recycle and reuse. COD, nitrate and total phosphate reduction by 94-96%, 72-80%, and 80-97% after treatment. Microalgal treatment studies in simple column and flat-plate photobioreactors. Biomass and lipid production as other value added by-products.
Collapse
Affiliation(s)
- Adepu K Kumar
- a Bioconversion Technology Division , Sardar Patel Renewable Energy Research Institute , Anand , Gujarat , India
| | - Shaishav Sharma
- a Bioconversion Technology Division , Sardar Patel Renewable Energy Research Institute , Anand , Gujarat , India
| | - Aesha Patel
- a Bioconversion Technology Division , Sardar Patel Renewable Energy Research Institute , Anand , Gujarat , India
| | - Gaurav Dixit
- a Bioconversion Technology Division , Sardar Patel Renewable Energy Research Institute , Anand , Gujarat , India
| | - Ekta Shah
- a Bioconversion Technology Division , Sardar Patel Renewable Energy Research Institute , Anand , Gujarat , India
| |
Collapse
|
23
|
Zou Y, Xu X, Wang X, Yang F, Zhang S. Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved oxygen (DO) recycling. BIORESOURCE TECHNOLOGY 2018; 268:539-548. [PMID: 30121027 DOI: 10.1016/j.biortech.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
This study presents a new way to achieve energy neutral wastewater treatment based on a combined nitrification, anammox, and denitrification (SNAD) process and photobioreactor (PBR) configuration with external recycling instead of aeration, and without an additional carbon source, using fixed-film-activated sludge technology (IFAS). The SNAD-PBR process achieved total nitrogen (TN) and phosphorus removal efficiencies of 90 and 100%, respectively. In addition, dissolved oxygen (DO) was controlled in the range 0.4-1.2 mg/L by the introduction of an external recycling system. The presence of microalgae to serve as a carbon source in the SNAD reactor enabled the denitrifiers to survive. When the reflux ratio was 1:3, the lower COD/N protected the activity of the anammox bacteria, not suppressed by the heterotrophic denitrifiers. Microbial community analysis by Illumina MiSeq sequencing revealed that the new environment was more suitable for Candidatus Brocadia when a reflux system was introduced.
Collapse
Affiliation(s)
- Yu Zou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xiaojing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Shushen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|