1
|
Kirchen F, Fundneider T, Schäfer R, Grabbe U, Lackner S. Advanced micropollutant and phosphorus removal with superfine powdered activated carbon and pile cloth media filtration. WATER RESEARCH 2025; 273:123007. [PMID: 39765097 DOI: 10.1016/j.watres.2024.123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d50 = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d50 = 30.1 µm) was tested in combination with Pile Cloth Media Filtration (PCMF). sPAC was produced by ball milling PAC to a d50 of 1.0 µm. No difference was found between the grinding time or energy demand when grinding different raw materials. Different Pile Cloth Media (PCM) were investigated for sPAC retention. The Ultrafiber UF-10 demonstrated superior efficiency in removing sPAC and achieved a turbidity reduction of over 90 % and a total phosphorus concentration (TP) of 40 µg/L, outperforming Microfiber PES-14, which only achieved turbidity reductions of 50 - 80 % and TP concentrations of 80 µg/L. The contact time of sPAC and wastewater before the PCMF was between 0.5 and 8 min depending on the filter velocities (vF) (1.0 - 9.0 m/h). A contact time < 2 min in front of the PCMF and 6 - 8 mg sPAC/L was necessary for over 80 % removal of OMP across the entire WWTP. Flocculation and coagulation of sPAC with iron(III)chloride was essential for sufficient sPAC removal with PCMF. With dosage of 150 - 500 mg Fe3+/g AC and the use of UF-10, a residual concentration of sPAC in the PCMF effluent of < 0.2 mg/L was achieved. The energy requirement of the process, including the grinding process of the sPAC production, was around 27 Wh/m³ (vF = 5 m/h, sPAC = 10 mg/L).
Collapse
Affiliation(s)
- Franziska Kirchen
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany
| | | | - Randy Schäfer
- Mecana AG, Industriestrasse 39, 8864 Reichenburg, Switzerland
| | - Ulrich Grabbe
- Mecana AG, Industriestrasse 39, 8864 Reichenburg, Switzerland
| | - Susanne Lackner
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany.
| |
Collapse
|
2
|
Alias C, Feretti D, Zerbini I, Pedrazzani R, Domini M, Bertanza G. Toxicological and genotoxicological assessment of water extracts of sewage sludge and other biogenic wastes: A piece of the SLURP jigsaw puzzle. CHEMOSPHERE 2025; 374:144175. [PMID: 39983620 DOI: 10.1016/j.chemosphere.2025.144175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Given the considerable quantities of biogenic matrices employed in agricultural applications, there is growing concern about the potential negative effects resulting from the presence of harmful contaminants. The project "SLURP - SLUdge Recovery in Agriculture: Environment and Health Protection" planned a multi-stage approach in which the application of a wide battery of bioassays was proposed as an effective tool to measure the direct interaction of matrices with the different components of the ecosystem, from the molecular to the whole organism level. The aim of the present study, which is a part of the "SLURP" project, was to characterise the toxicological and genotoxicological properties of water extracts from biogenic wastes using several assays based on plant, bacterial and human cells. The aqueous extracts of four sewage sludges, a liming material, two manure slurries of swine and bovine origin, a digestate from bovine manure and a compost were chemically characterised for inorganic ions and heavy metals. Then the extracts were analysed using tests on A.cepa, C.sativus, L.sativum, S.typhimurium and human hepatoma cell line (HepG2) to assess toxicity (seed germination, root elongation, proliferation), mutagenicity and genotoxicity (primary DNA damage, chromosomal aberrations). The extracts exhibited chemical heterogeneity. Ammonia nitrogen, Ca2+, Fe and Zn were the most abundant elements. Toxic effects were caused on A.cepa and L.sativum by all extracts, while there were non-toxic effects on human cells. Genotoxic effects on A.cepa and L.sativum were instead caused by almost all the extracts, at least at the highest dose tested, while only four samples from one sewage sludge, liming material, digestate, and compost, caused DNA damage on human cells. None of the extracts induced mutagenic effects in S.typhimurium. A comprehensive interpretation of these results can only be achieved through the integrated evaluation of all eco-toxicological and chemical data obtained throughout the entire project.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy; MISTRAL-Interuniversity Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, University of Milano-Bicocca, University of Verona, Italy.
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy; MISTRAL-Interuniversity Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, University of Milano-Bicocca, University of Verona, Italy
| | - Marta Domini
- Department of Civil, Environmental, Architectural, Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural, Engineering and Mathematics, University of Brescia, Brescia, Italy; MISTRAL-Interuniversity Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, University of Milano-Bicocca, University of Verona, Italy
| |
Collapse
|
3
|
Dawas A, Rubin AE, Sand N, Ben Mordechay E, Chefetz B, Mordehay V, Cohen N, Radian A, Ilic N, Hubner U, Zucker I. Negligible adsorption and toxicity of microplastic fibers in disinfected secondary effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124377. [PMID: 38897276 DOI: 10.1016/j.envpol.2024.124377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Wastewater treatment plants play a crucial role in controlling the transport of pollutants to the environment and often discharge persistent contaminants such as synthetic microplastic fibers (MFs) to the ecosystem. In this study, we examined the fate and toxicity of polyethylene terephthalate (PET) MFs fabricated from commercial cloth in post-disinfection secondary effluents by employing conditions that closely mimic disinfection processes applied in wastewater treatment plants. Challenging conventional assumptions, this study illustrated that oxidative treatment by chlorination and ozonation incurred no significant modification to the surface morphology of the MFs. Additionally, experimental results demonstrated that both pristine and oxidized MFs have minimal adsorption potential towards contaminants of emerging concern in both effluents and alkaline water. The limited adsorption was attributed to the inert nature of MFs and low surface area to volume ratio. Slight adsorption was observed for sotalol, sulfamethoxazole, and thiabendazole in alkaline water, where the governing adsorption interactions were suggested to be hydrogen bonding and electrostatic forces. Acute exposure experiments on human cells revealed no immediate toxicity; however, the chronic and long-term consequences of the exposure should be further investigated. Overall, despite the concern associated with MFs pollution, this work demonstrates the overall indifference of MFs in WWTP (i.e., minor effects of disinfection on MFs surface properties and limited adsorption potential toward a mix of trace organic pollutants), which does not change their acute toxicity toward living forms.
Collapse
Affiliation(s)
- Anwar Dawas
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 85820, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Sand
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evyatar Ben Mordechay
- Department of Soil and Water Sciences, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Vered Mordehay
- Department of Soil and Water Sciences, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Nirit Cohen
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Nebojsa Ilic
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Uwe Hubner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany; Xylem Services GmbH, Boschstr. 4-14, Herford 32051, Germany
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Cesarini G, Spani F, Patricelli R, Quattrocchi CC, Colasanti M, Scalici M. Assessing teratogenic risks of gadolinium in freshwater environments: Implications for environmental health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116442. [PMID: 38728946 DOI: 10.1016/j.ecoenv.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 μg/l, 50 μg/l, 100 μg/l, 500 μg/l) and its commercial counterpart compound (Omniscan®; 100 μg/l, 500 μg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 μg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 μg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy; National Research Council-Water Research Institute (CNR-IRSA), Corso Tonolli 50, Verbania, Pallanza 28922, Italy
| | - Federica Spani
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21 - 00128, Italy.
| | - Raoul Patricelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, Trento 38122, Italy
| | - Marco Colasanti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, Palermo 90133, Italy
| |
Collapse
|
5
|
Bertanza G, Abbà A, Alias C, Amatucci A, Binelli A, Castiglioni S, Fossati M, Cruzeiro C, Torre CD, Domini M, Feretti D, Gilioli G, Magni S, Mazzoleni G, Menghini M, Pedrazzani R, Schroeder P, Simonetto A, Steimberg N, Ventura V, Vezzoli S, Zerbini I. To spread or not to spread? Assessing the suitability of sewage sludge and other biogenic wastes for agriculture reuse. MethodsX 2024; 12:102599. [PMID: 38379723 PMCID: PMC10876616 DOI: 10.1016/j.mex.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Sewage sludge (biosolids) management represents a worldwide issue. Due to its valuable properties, approximately one half of the EU production is recovered in agriculture. Nevertheless, growing attention is given to potential negative effects deriving from the presence of harmful pollutants. It is recognized that a (even very detailed) chemical characterization is not able to predict ecotoxicity of a mixture. However, this can be directly measured by bioassays. Actually, the choice of the most suitable tests is still under debate. This paper presents a multilevel characterization protocol of sewage sludge and other organic residues, based on bioassays and chemical-physical-microbiological analyses. The detailed description of the experimental procedure includes all the involved steps: the criteria for selecting the organic matrices to be tested and compared; the sample pre-treatment required before the analyses execution; the chemical, physical and microbiological characterisation; the bioassays, grouped in three classes (baseline toxicity; specific mode of action; reactive mode of action); data processing. The novelty of this paper lies in the integrated use of advanced tools, and is based on three pillars:•the direct ecosafety assessment of the matrices to be reused.•the adoption of innovative bioassays and analytical procedures.•the original criteria for data normalization and processing.
Collapse
Affiliation(s)
- Giorgio Bertanza
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
| | - Alessandro Abbà
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Carlotta Alias
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Viale Europa 11, Brescia I-25123, Italy
| | - Achille Amatucci
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Andrea Binelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano I-20133, Italy
| | - Sara Castiglioni
- Dipartimento Ambiente e Salute, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS. Via Mario Negri 2, Milano I-20156, Italy
| | - Marco Fossati
- Dipartimento Ambiente e Salute, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS. Via Mario Negri 2, Milano I-20156, Italy
| | - Catarina Cruzeiro
- Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, Neuherberg D-85764, Germany
| | - Camilla Della Torre
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano I-20133, Italy
| | - Marta Domini
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Donatella Feretti
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Viale Europa 11, Brescia I-25123, Italy
| | - Gianni Gilioli
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Stefano Magni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano I-20133, Italy
| | - Giovanna Mazzoleni
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia. Viale Europa 11, Brescia I-25123, Italy
| | - Michele Menghini
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia. Via Branze 38, Brescia I-25123, Italy
| | - Roberta Pedrazzani
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia. Via Branze 38, Brescia I-25123, Italy
| | - Peter Schroeder
- Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, Neuherberg D-85764, Germany
| | - Anna Simonetto
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Nathalie Steimberg
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia. Viale Europa 11, Brescia I-25123, Italy
| | - Vera Ventura
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Simona Vezzoli
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Ilaria Zerbini
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Viale Europa 11, Brescia I-25123, Italy
| |
Collapse
|
6
|
Sommaggio LRD, Mazzeo DEC, Malvestiti JA, Dantas RF, Marin-Morales MA. Influence of ozonation and UV/H 2O 2 on the genotoxicity of secondary wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170883. [PMID: 38354810 DOI: 10.1016/j.scitotenv.2024.170883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The implementation of novel wastewater treatment technologies, including Advanced Oxidation Processes (AOPs) such as ozonation and ultraviolet radiation (UV) combined with hydrogen peroxide (H2O2), can be a promising strategy for enhancing the quality of these effluents. However, during effluent oxidation AOPs may produce toxic compounds that can compromise the water reuse and the receiving water body. Given this possibility, the aim of this study was to evaluate the genotoxic potential of secondary effluents from two different Wastewater Treatment Plants (WWTP) that were subjected to ozonation or UV/H2O2 for periods of 20 (T1) and 40 (T2) minutes. The genotoxic potential was carried out with the Comet assay (for clastogenic damage) and the Micronucleus assay (for clastogenic and aneugenic damage) in HepG2/C3A cell culture (metabolizing cell line). The results of the comet assay revealed a significant increase in tail intensity in the Municipal WWTP (dry period) effluents treated with UV/H2O2 (T1 and T2). MN occurrence was noted across all treatments in both Pilot and Municipal WWTP (dry period) effluents, whereas nuclear buds (NBs) were noted for all Pilot WWTP treatments and UV/H2O2 treatments of Municipal WWTP (dry period). Moreover, the UV/H2O2 (T1) treatment of Municipal WWTP (dry period) exhibited a noteworthy incidence of multiple alterations per cell (MN + NBs). These findings imply that UV/H2O2 treatment demonstrates higher genotoxic potential compared to ozonation. Furthermore, seasonal variations can have an impact on the genotoxicity of the samples. Results of the study emphasize the importance of conducting genotoxicological tests using human cell cultures, such as HepG2/C3A, to assess the final effluent quality from WWTP before its discharge or reuse. This precaution is essential to safeguard the integrity of the receiving water body and, by extension, the biotic components it contains.
Collapse
Affiliation(s)
- Laís Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Universidade Federal de São Carlos (UFSCar), Araras, SP, Brazil.
| | - Jacqueline Aparecida Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
| | - Renato Falcão Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
7
|
Pipil H, Yadav S, Kumar S, Haritash AK. Synergistic potency of ultrasound and solar energy towards oxidation of 2,4-dichlorophenol: a chemometrics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8186-8209. [PMID: 38175510 DOI: 10.1007/s11356-023-31598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Industrial units based on chemical processes-the textile and paper industries-are major sources of chlorophenols in the environment, and chlorophenolic compounds persist within the environment for a long time with high toxicity levels. The photo-assisted Fenton's and photocatalysis processes were investigated for the degradation of chlorophenols in the present study. Response surface methodology was employed to get optimised conditions for photocatalysis and photo-Fenton process-governing factors, thus, yielding a profound removal efficiency. Under optimised conditions, with a photocatalyst dose of 0.2 g/L, oxidant concentration of 10.0 mM and pH 5.0, complete removal of 2,4-dichlorophenol (2,4-DCP) was observed in 210 minutes in photocatalytic treatment. In the case of the photo-Fenton process, at an H2O2 dose of 5.0 mM and Fe2+ concentration of 0.5 mM, the organic pollutant was eliminated within 5 minutes of reaction time under acidic conditions (pH 3.0). The RSM model reported the perfect fit of experimental data with the predicted response. Among different isotherm models, the Langmuir isotherm was the best fit. The process followed pseudo-first order rate kinetics among various kinetics models. For the obtained optimised conditions, sonication and solar energy-driven processes were incorporated to study enhanced mineralisation. The solar-assisted Fenton process reported maximum mineralisation (90%) and cost-effective ($0.01/litre for 100 mg/L 2,4-DCP) treatment among different hybrid oxidation processes. The work provides insight into harnessing the naturally available solar energy, reducing the overall treatment cost and opting for a sustainable treatment method.
Collapse
Affiliation(s)
- Harsh Pipil
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| | - Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India.
| | - Sunil Kumar
- Research and Development, Solaris Chemtech Industries, Bhuj, Gujarat, 370001, India
| | - Anil Kumar Haritash
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
8
|
Padilla Suarez EG, Pugliese S, Galdiero E, Guida M, Libralato G, Saviano L, Spampinato M, Pappalardo C, Siciliano A. Multigenerational tests on Daphnia spp.: a vision and new perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122629. [PMID: 37775025 DOI: 10.1016/j.envpol.2023.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multigenerational toxicity testing is a valuable tool for understanding the long-term effects of contaminants on aquatic organisms. This review focuses on the use of multigenerational tests with Daphnia, a widely used model organism in aquatic toxicological studies. The review highlights the importance of studying multiple generations to assess Daphnia spp. reproductive, growth, and physiological responses to various contaminants. We discuss the outcomes of multigenerational tests involving different contaminants, including nanoparticles, pesticides, and pharmaceuticals. The results reveal that multigenerational exposure can lead to transgenerational effects, where the impacts of contaminants are observed in subsequent generations even after the initial exposure has ceased. These transgenerational effects often manifest as reproduction, growth, and development alterations. Furthermore, we emphasize the need for standardized protocols in multigenerational testing to ensure comparability and reproducibility of results across studies. We also discuss the implications of multigenerational testing for ecological risk assessment, as it provides a more realistic representation of the long-term effects of contaminants on populations and ecosystems. Overall, this review highlights the significance of multigenerational tests with Daphnia in advancing our understanding of the ecological impacts of contaminants. Such tests provide valuable insights into the potential risks associated with long-term exposure to pollutants and contribute to the development of effective mitigation strategies for aquatic ecosystems.
Collapse
Affiliation(s)
| | - S Pugliese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - E Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - M Guida
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - G Libralato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - L Saviano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Spampinato
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - C Pappalardo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A Siciliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Zhang J, Sun W, Shi C, Li W, Liu A, Guo J, Zheng H, Zhang J, Qi S, Qu C. Investigation of organochlorine pesticides in the Wang Lake Wetland, China: Implications for environmental processes and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165450. [PMID: 37451441 DOI: 10.1016/j.scitotenv.2023.165450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wang Lake Wetland is an important habitat for many fish and migratory birds. To explore the effect of periodic hydrological changes on the transfer and ecological risk of OCPs in the multimedia system of the wetland, eight sampling sites were selected for collecting soil (SS), sediment (SD) and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM) samples during low- and high-flow periods. The results indicated that OCPs are pervasive in the various media of Wang Lake Wetland, and there was a significant temporal variability in concentration of ∑23OCPs in the SPM samples. Several OCPs exist certain ecological risks to aquatic organisms, but higher level of OCPs do not always equal to higher ecological risk. The residues of OCPs are largely attributed to their historical use, but recent inputs of some of them are still non-ignorable. The relatively higher values of organic carbon normalized partition coefficient (KOC) for SPM-W (KOC(SPM-W)) were obtained, which reflected the more frequent exchange of OCPs in the SPM samples. The sediment of the Wang Lake Wetland is likely to be a sink for several OCPs with high n-octanol/water partition coefficient (KOW) (e.g., DDTs and its metabolites), and high-temperature and rainfall-driven changes may promote the migration of OCPs with low KOW to the DP.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen Sun
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Ao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahua Guo
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Hesong Zheng
- Huangshi City Network Lake Wetland Nature Reserve Administration, Huangshi 435200, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
10
|
Qi R, Xiao G, Miao J, Zhou Y, Li Z, He Z, Zhang N, Song A, Pan L. Toxicity assessment and detoxification metabolism of sodium pentachlorophenol (PCP-Na) on marine economic species: a case study of Moerella iridescens and Exopalaemon carinicauda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113587-113599. [PMID: 37851259 DOI: 10.1007/s11356-023-30438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Sodium pentachlorophenol (PCP-Na) is widespread in the marine environment; however, its impact on marine organisms remains under-researched. Moerella iridescens and Exopalaemon carinicauda are marine species of economic importance in China and under threat from PCP-Na pollution. Thus, this study aimed to assess the toxicity and detoxification metabolism of PCP-Na on M. iridescens and E. carinicauda. The study revealed that the 96 h median lethal concentration (LC50) of PCP-Na for M. iridescens and E. carinicauda were 9.895 mg/L and 14.143 mg/L, respectively. A species sensitivity distribution (SSD) for PCP-Na was developed specifically for marine organisms, determining a hazardous concentration to 5% of the species (HC5) of 0.047 mg/L. During the sub-chronic exposure period, PCP-Na accumulated significantly in M. iridescens and E. carinicauda, with highest concentrations of 41.22 mg/kg in the soft tissues of M. iridescens, 42.58 mg/kg in the hepatopancreas of E. carinicauda, and only 0.85 mg/kg in the muscle of E. carinicauda. Furthermore, the study demonstrated that detoxifying metabolic enzymes and antioxidant defense system enzymes of E. carinicauda responded stronger to PCP-Na compared to M. iridescens, suggesting that E. carinicauda may possess a stronger detoxification capacity. Notably, five biomarkers were identified and proposed for monitoring and evaluating PCP-Na contamination. Overall, the results indicated that M. iridescens and E. carinicauda exhibit greater tolerance to PCP-Na than other marine species, but they are susceptible to accumulating PCP-Na in their tissues, posing a significant health risk. Consequently, conducting aquatic health risk assessments in areas with potential PCP-Na contamination is strongly recommended.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, 325005, Wenzhou, People's Republic of China
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Yueyao Zhou
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Zhiheng He
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Aimin Song
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
11
|
Albarano L, De Rosa I, Santaniello I, Montuori M, Serafini S, Toscanesi M, Trifuoggi M, Lofrano G, Guida M, Libralato G. Synergistic, antagonistic, and additive effects of naphthalene, phenanthrene, fluoranthene and benzo(k)fluoranthene on Artemia franciscana nauplii and adult. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122286. [PMID: 37524240 DOI: 10.1016/j.envpol.2023.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe and can be highly toxic for the marine environment. This research investigated the short-term (48 h of exposure) effects of PAHs mixtures on the nauplii and adult of crustacean Artemia franciscana considering the impact in term of toxicity and changes in gene expression. Results showed that all combinations caused additive or synergic effects with the exception of naphthalene + phenanthrene (NAP + PHE; Combination Index (CI) = 22.3), while naphthalene + benzo(k)fluoranthene (NAP + BkF; CI = 7.8) mixture evidenced an antagonistic effect. Real-time qPCR showed that all mixtures impacted the expression level of the five known genes involved in Artemia stress response. The effects of PAHs at environmental concentrations on both adult and nauplii suggested the need for further investigations about the impact of such contaminants on the marine biota considering that crustaceans can accumulate PAHs at concentrations comparable to those assessed in the present study.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy.
| | - Ilaria De Rosa
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Ilaria Santaniello
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Montuori
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Sara Serafini
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Maria Toscanesi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Marco Trifuoggi
- Dipartiment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135, Rome, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| |
Collapse
|
12
|
Adewumi AJ, Laniyan TA. Contamination, ecological, and human health risks of heavy metals in water from a Pb-Zn-F mining area, North Eastern Nigeria. JOURNAL OF WATER AND HEALTH 2023; 21:1470-1488. [PMID: 37902203 PMCID: wh_2023_132 DOI: 10.2166/wh.2023.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In Nigeria, artisanal mining has become a serious issue. In the Nigerian mining region of Arufu Pb-Zn-F, this study assessed the level of pollution, ecological hazards, and health risks related to the presence of metals in the water. In the dry and rainy seasons, 36 water samples (20 from the ground, 10 from the surface, and six from the mine) were gathered. Samples were examined for the presence of heavy metals such as Cr, Co, Ni, Cu, Zn, As, Cd, and Pb. Other than Cu, Zn, As, Cd, Sb, and Cd (surface water, dry season), which were below the acceptable norm, all water samples had metals over the suggested limits. Heavy metals from nearby mining activities polluted the water, according to contamination evaluations utilizing the contamination factor (CF). Metals in the water may pose very significant ecological dangers, according to ecological risk assessments. The evaluation of human health risks revealed that both adults and children in the region are susceptible to carcinogenic and non-carcinogenic health hazards since the hazard index (HI) values for both indices were above 1 × 10-5 and above 1, respectively. This report emphasizes the need for monitoring mining operations in the nation to safeguard public health.
Collapse
Affiliation(s)
- Adeniyi JohnPaul Adewumi
- Department of Geological Sciences, Achievers University, PMB 1030, Owo, Ondo State, Nigeria E-mail:
| | | |
Collapse
|
13
|
Ding Y, Qin F, Guo J, Gong D, Li Q, Wang X, Tan X, Liu H, Huang Z. Visible-light-driven Oxygen Vacancy and Carbon Doping of C@TiO 2-x Photocatalyst for Enhanced Pollutants Degradation Performance. Chemphyschem 2023; 24:e202300183. [PMID: 37285235 DOI: 10.1002/cphc.202300183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Oxygen Vacancy (OVs) and carbon doping of the photocatalyst body will significantly enhance the photocatalytic efficiency. However, synchronous regulation of these two aspects is challenging. In this paper, a novel C@TiO2-x photocatalyst was designed by coupling the surface defect and doping engineering of titania, which can effectively remove rhodamine B (RhB) and has a relatively high performance with wide pH range, high photocatalytic activity and good stability. Within 90 minutes, the photocatalytic degradation rate of RhB by C@TiO2-x (94.1 % at 20 mg/L) is 28 times higher than that of pure TiO2 . Free radical trapping experiments and electron spin resonance techniques reveal that superoxide radicals (⋅O2- ) and photogenerated holes (h+ ) play key roles in the photocatalytic degradation of RhB. This study demonstrates the possibility of regulating photocatalysts to degrade pollutants in wastewater based on an integrated strategy.
Collapse
Affiliation(s)
- Yifan Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Fanghong Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Jialin Guo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Danming Gong
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Qiufei Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiangyi Wang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiuniang Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Haibo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| |
Collapse
|
14
|
Saviano L, Brouziotis AA, Suarez EGP, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Spica VR, Lofrano G, Libralato G. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023; 28:6185. [PMID: 37687014 PMCID: PMC10488708 DOI: 10.3390/molecules28176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.
Collapse
Affiliation(s)
- Lorenzo Saviano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- CeSMA Advanced Metrological and Technological Service Center, University of Naples Federico II, 80126 Naples, Italy
| | - Donatella Del Bianco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Maurizio Carotenuto
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| |
Collapse
|
15
|
Wahab RA, Omar TFT, Nurulnadia MY, Rozulan NNA. Occurrence, distribution, and risk assessment of parabens in the surface water of Terengganu River, Malaysia. MARINE POLLUTION BULLETIN 2023; 192:115036. [PMID: 37207388 DOI: 10.1016/j.marpolbul.2023.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient < 1). In conclusion, parabens are present in the river, but their levels are too low to pose risks to aquatic organisms.
Collapse
Affiliation(s)
- Rohaya Abd Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Yusoff Nurulnadia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Najaa Nur Atiqah Rozulan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
16
|
Albarano L, Toscanesi M, Trifuoggi M, Guida M, Lofrano G, Libralato G. In situ microcosm remediation of polyaromatic hydrocarbons: influence and effectiveness of Nano-Zero Valent Iron and activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3235-3251. [PMID: 35943650 PMCID: PMC9892105 DOI: 10.1007/s11356-022-22408-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Nano-zero-valent iron (nZVI) and activated carbon (AC) addition are ongoing techniques for the remediation of hydrophobic organic compound-contaminated sediment and water, but with still unexplored eco(toxico)logical implications, especially when applied in situ. In this study, we investigated AC and nZVI as remediation methods for marine contaminated sediment and water, including chemical and toxicity (Artemia franciscana survival and genotoxicity) surveys. The removal efficiency of AC and nZVI (about 99%) was similar in both sediment and seawater, while the survival of nauplii and adults was mainly impacted by nZVI than AC. At the molecular level, the nZVI-addition induced down-regulation in the expression of two stress and one developmental genes, whereas AC was able to up-regulated only one gene involved in stress response. Results suggested that the use of AC is safer than nZVI that requires further investigation and potential optimization to reduce secondary undesired effects.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Toscanesi
- Dipartimento Di Scienze Chimiche, Università Degli Studi Di Napoli Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Marco Trifuoggi
- Dipartimento Di Scienze Chimiche, Università Degli Studi Di Napoli Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
17
|
Pistocchi A, Andersen HR, Bertanza G, Brander A, Choubert JM, Cimbritz M, Drewes JE, Koehler C, Krampe J, Launay M, Nielsen PH, Obermaier N, Stanev S, Thornberg D. Treatment of micropollutants in wastewater: Balancing effectiveness, costs and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157593. [PMID: 35914591 DOI: 10.1016/j.scitotenv.2022.157593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this contribution, we analyse scenarios of advanced wastewater treatment for the removal of micropollutants. By this we refer to current mainstream, broad spectrum processes including ozonation and sorption onto activated carbon. We argue that advanced treatment requires properly implemented tertiary (nutrient removal) treatment in order to be effective. We review the critical aspects of the main advanced treatment options, their advantages and disadvantages. We propose a quantification of the costs of implementing advanced treatment, as well as upgrading plants from secondary to tertiary treatment when needed, and we illustrate what drives the costs of advanced treatment for a set of standard configurations. We propose a cost function to represent the total costs (investment, operation and maintenance) of advanced treatment. We quantify the implications of advanced treatment in terms of greenhouse gas emissions. Based on the indicators of total toxic discharge, toxicity at the discharge points and toxicity across the stream network discussed in Pistocchi et al. (2022), we compare costs and effectiveness of different scenarios of advanced treatment. In principle the total toxic load and toxicity at the points of discharge could be reduced by about 75 % if advanced treatment processes were implemented virtually at all wastewater treatment plants, but this would entail costs of about 4 billion euro/year for the European Union as a whole. We consider a "compromise" scenario where advanced treatment is required at plants of 100 thousand population equivalents (PE) or larger, or at plants between 10 and 100 thousand PE if the dilution ratio at the discharge point is 10 or less. Under this scenario, the length of the stream network exposed to high toxicity would not increase significantly compared to the previous scenario, and the other indicators would not deteriorate significantly, while the costs would remain at about 1.5 billion Euro/year. Arguably, costs could be further reduced, without a worsening of water quality, if we replace a local risk assessment to generic criteria of plant capacity and dilution in order to determine if a WWTP requires advanced treatment.
Collapse
Affiliation(s)
- A Pistocchi
- European Commission, Joint Research Centre, Ispra, Italy.
| | - H R Andersen
- Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | - J Krampe
- TU Wien, Institute for Water Quality and Resource Management, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
18
|
Lv Z, Dong F, Zhang W, Chen S, Zheng F, Zhou L, Liu M, Huo T. Determination of Persistent Organic Pollutants (POPs) in Atmospheric Gases and Particles by Solid-Phase Extraction (SPE) and Gas Chromatography–Tandem Mass Spectrometry (GC–MS/MS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2144873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Zhenzhen Lv
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, China
| | - Wen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shanyu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Fei Zheng
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Lin Zhou
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Mingxue Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
19
|
Yang F, van Herwerden D, Preud’homme H, Samanipour S. Collision Cross Section Prediction with Molecular Fingerprint Using Machine Learning. Molecules 2022; 27:6424. [PMID: 36234961 PMCID: PMC9572128 DOI: 10.3390/molecules27196424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
High-resolution mass spectrometry is a promising technique in non-target screening (NTS) to monitor contaminants of emerging concern in complex samples. Current chemical identification strategies in NTS experiments typically depend on spectral libraries, chemical databases, and in silico fragmentation tools. However, small molecule identification remains challenging due to the lack of orthogonal sources of information (e.g., unique fragments). Collision cross section (CCS) values measured by ion mobility spectrometry (IMS) offer an additional identification dimension to increase the confidence level. Thanks to the advances in analytical instrumentation, an increasing application of IMS hybrid with high-resolution mass spectrometry (HRMS) in NTS has been reported in the recent decades. Several CCS prediction tools have been developed. However, limited CCS prediction methods were based on a large scale of chemical classes and cross-platform CCS measurements. We successfully developed two prediction models using a random forest machine learning algorithm. One of the approaches was based on chemicals' super classes; the other model was direct CCS prediction using molecular fingerprint. Over 13,324 CCS values from six different laboratories and PubChem using a variety of ion-mobility separation techniques were used for training and testing the models. The test accuracy for all the prediction models was over 0.85, and the median of relative residual was around 2.2%. The models can be applied to different IMS platforms to eliminate false positives in small molecule identification.
Collapse
Affiliation(s)
- Fan Yang
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM-UMR5254), E2S UPPA, CNRS, 64000 Pau, France
| | - Denice van Herwerden
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hugues Preud’homme
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM-UMR5254), E2S UPPA, CNRS, 64000 Pau, France
| | - Saer Samanipour
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- UvA Data Science Center, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
20
|
Sharma M, Mandal MK, Pandey S, Kumar R, Dubey KK. Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Heterostructured Cu 2O-TiO 2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines. ACS OMEGA 2022; 7:33572-33586. [PMID: 36157782 PMCID: PMC9494644 DOI: 10.1021/acsomega.2c04576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
This study first reports on the tetracycline photodegradation with the synthesized heterostructured titanium oxide nanotubes coupled with cuprous oxide photocatalyst. The large surface area and more active sites on TiO2 nanotubes with a reduced band gap (coupling of Cu2O) provide faster photodegradation of tetracycline under visible light conditions. Cytotoxicity experiments performed on the RAW 264.7 (mouse macrophage) and THP-1 (human monocytes) cell lines of tetracycline and the photodegraded products of tetracycline as well as quenching experiments were also performed. The effects of different parameters like pH, photocatalyst loading concentration, cuprous oxide concentration, and tetracycline load on the photodegradation rate were investigated. With an enhanced surface area of nanotubes and a reduced band gap of 2.58 eV, 1.5 g/L concentration of 10% C-TAC showed the highest efficiency of visible-light-driven photodegradation (∼100% photodegradation rate in 60 min) of tetracycline at pH 5, 7, and 9. The photodegradation efficiency is not depleted up to five consecutive batch cycles. Quenching experiments confirmed that superoxide radicals and hydroxyl radicals are the most involved reactive species in the photodegradation of tetracycline, while valance band electrons are the least involved reactive species. The cytotoxicity percentage of tetracycline and its degraded products on RAW 264.7 (-0.932) as well as THP-1 (-0.931) showed a negative correlation with the degradation percentage with a p-value of 0.01. The toxicity-free effluent of photodegradation suggests the application of the synthesized photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Manisha Sharma
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Mrinal Kanti Mandal
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Shailesh Pandey
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Ravi Kumar
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess
Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New
Delhi 110067, India
| |
Collapse
|
21
|
Qi R, Pan L, Liu T, Li Z. Source risk, ecological risk, and bioeffect assessment for polycyclic aromatic hydrocarbons (PAHs) in Laizhou Bay and Jiaozhou Bay of Shandong Peninsula, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56705-56726. [PMID: 35347599 DOI: 10.1007/s11356-022-19778-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
In order to incorporate the contribution of pollution sources to ecological risks into environmental monitoring, positive matrix factorization-risk quotient (PMF-RQ) was used to quantify the contribution of different PAH sources to ecological risks, which indicated that the unburned petroleum, vehicular emissions, and diesel combustion were the main sources of PAHs in Laizhou Bay and Jiaozhou Bay, and they were caused by petrochemical industry, maritime shipping, and urban traffic exhaust as the major sources of PAHs for ecological risk. Meanwhile, integrated biomarker response (IBR) and multi-biomarker pollution index (MPI) suggested that September was the most polluted month for PAHs in Laizhou Bay and Jiaozhou Bay and the pollution in Laizhou Bay was significantly higher than that in Jiaozhou Bay. This research was dedicated to explore the monitoring pattern for PAH pollution from the source to bioeffects, and it may have contributed a scientific support to monitoring and governance of marine PAH pollution.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| | - Tong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
22
|
Jesus F, Tremblay LA. Key Challenges to the Effective Management of Pollutants in Water and Sediment. TOXICS 2022; 10:toxics10050219. [PMID: 35622633 PMCID: PMC9146552 DOI: 10.3390/toxics10050219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Fátima Jesus
- CESAM and Department of Environment and Planning, University of Aveiro, Santiago Campus, 3810-193 Aveiro, Portugal
- Correspondence: (F.J.); (L.A.T.)
| | - Louis A. Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
- Correspondence: (F.J.); (L.A.T.)
| |
Collapse
|
23
|
Chen Y, Xie H, Junaid M, Xu N, Zhu Y, Tao H, Wong M. Spatiotemporal distribution, source apportionment and risk assessment of typical hormones and phenolic endocrine disrupting chemicals in environmental and biological samples from the mariculture areas in the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150752. [PMID: 34619214 DOI: 10.1016/j.scitotenv.2021.150752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The present work studied the levels, distribution, potential sources, ecological and human health risks of typical hormones and phenolic endocrine disrupting chemicals (EDCs) in the mariculture areas of the Pearl River Delta (PRD), China. The environmental levels of 11 hormones (6 estrogens, 4 progestogens, and 1 androgen) and 2 phenolic EDCs were quantified in various matrices including water, sediment, cultured fish and shellfish. Ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry analyses showed that all the 13 target compounds were detected in biotic samples, whereas 10 were detected in water and sediment, respectively. The total concentrations ranged from 35.06-364.53 ng/L in water and 6.31-29.30 ng/g in sediment, respectively. The average contaminant levels in shellfish (Ostrea gigas, Mytilus edulis and Mimachlamys nobilis) were significantly higher than those in fish (Culter alburnus, Ephippus orbis and Ephippus orbis). Source apportionment revealed that the pollution of hormones and phenolic EDCs in PRD mariculture areas was resulted from the combination of coastal anthropogenic discharges and mariculture activities. The hazard quotient values of the contaminants were all less than 1, implying no immediate human health risk. Overall, the present study is of great significance for scientific mariculture management, land-based pollution control, ecosystem protection, and safeguarding human health.
Collapse
Affiliation(s)
- Yupeng Chen
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haiwen Xie
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Muhammad Junaid
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Youchang Zhu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minghung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
24
|
Černá T, Ezechiáš M, Semerád J, Grasserová A, Cajthaml T. Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127108. [PMID: 34523467 DOI: 10.1016/j.jhazmat.2021.127108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Mixture toxicity, including agonistic and antagonistic effects, is an unrevealed environmental problem. Estrogenic endocrine disruptors are known to cause adverse effects for aquatic biota, but causative chemicals and their contributions to the total activity in sewage sludge remain unknown. Therefore, advanced analytical methods, a yeast bioassay and mixture toxicity models were concurrently applied for the characterization of 8 selected sludges with delectable estrogenic activity (and 3 sludges with no activity as blanks) out of 25 samples from wastewater treatment plants (WWTPs). The first applied full logistic model adequately explained total activity by considering the concentrations of the monitored compounds. The results showed that the activity was primarily caused by natural estrogens in municipal WWTP sludge. Nevertheless, activity in a sample originating from a car-wash facility was dominantly caused by partial agonists - nonylphenols - and only a model enabling prediction of all dose-response curve parameters of the final mixture curve explained these results. Antiestrogenic effects were negligible, and effect-directed analysis identified the causative chemicals.
Collapse
Affiliation(s)
- Tereza Černá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Martin Ezechiáš
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic.
| |
Collapse
|
25
|
Gallego-Ríos SE, Peñuela GA, Martínez-López E. Updating the use of biochemical biomarkers in fish for the evaluation of alterations produced by pharmaceutical products. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103756. [PMID: 34662733 DOI: 10.1016/j.etap.2021.103756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of toxic effects in stressful environmental conditions can be determined through the imbalance between exogenous factors (environmental contaminants) and enzymatic and non-enzymatic defenses in biological systems. The use of fish for the identification of alterations in biochemical biomarkers provides a comprehensive vision of the effects that pharmaceutical products cause in the aquatic ecosystem, as they are organisms with high sensitivity to contaminants, filtering capacity, and potential for environmental toxicology studies. A wide range of pharmaceuticals can stimulate or alter a variety of biochemical mechanisms, such as oxidative damage to membrane lipids, proteins, and changes in antioxidant enzymes. This review includes a summary of knowledge of the last 20 years, in the understanding of the different biochemical biomarkers generated by exposure to pharmaceuticals in fish, which include different categories of pharmaceutical products: NSAIDs, analgesics, antibiotics, anticonvulsants, antidepressants, hormones, lipid regulators and mixtures. This review serves as a tool in the design of studies for the evaluation of the effects of pharmaceutical products, taking into account the most useful biomarkers, type of matrix, enzyme alterations, all taking the pharmaceutical group of interest.
Collapse
Affiliation(s)
- Sara E Gallego-Ríos
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia.
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia
| | - Emma Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain
| |
Collapse
|
26
|
Wang YK, Wang XC, Ma XY. Micropollutants and biological effects as control indexes for the operation and design of shallow open-water unit ponds to polish domestic effluent. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126306. [PMID: 34126380 DOI: 10.1016/j.jhazmat.2021.126306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Additional control indexes should be considered for the operation and design of post-treatment systems, as the wastewater treatment objectives are developing toward protecting the safety of ecological environments. In this study, two control indexes were selected and examined systematically in pilot-scale shallow open-water unit (SOWU) ponds for domestic effluent polishing: micropollutants and biotoxicities. The total risk quotient (RQTotal ≤ 1) and effect-based trigger value (EBT) were set as the thresholds for known micropollutants and biological effects, respectively. The results showed that RQTotal of micropollutants (n = 46) could be mitigated to an acceptable level and the luminescent bacteria toxicity was in compliance with the EBT after SOWU polishing in the warm season. The reduction of micropollutants and biotoxicities in the SOWUs both fit the k-C* model well (R2 > 0.9) in the warm and cold seasons. Finally, the k-C* model integrated with the control indexes was developed to design the SOWU dimensions, and the results indicated that a pond area of 21.7-108.5 m2 was required for every 1 m3/d of effluent when micropollutants were set as the control index, while a pond area of 3.6-18.2 m2 was required when luminescent bacteria toxicity was set as the control index.
Collapse
Affiliation(s)
- Yongkun K Wang
- Xi'an University of Architecture and Technology; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China
| | - Xiaochang C Wang
- Xi'an University of Architecture and Technology; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China
| | - Xiaoyan Y Ma
- Xi'an University of Architecture and Technology; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Shaanxi Key Laboratory of Environmental Engineering, Xi'an 710055, China.
| |
Collapse
|
27
|
Hu J, Liu J, Lv X, Yu L, Lan S, Li Y, Yang Y. Assessment of epigenotoxic profiles of Dongjiang River: A comprehensive of chemical analysis, in vitro bioassay and in silico approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:116961. [PMID: 33823309 DOI: 10.1016/j.envpol.2021.116961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
This research explored the occurrence, epigenetic toxic profiling and main toxic pollutants of POPs in surface water of Dongjiang River, southern China. The concentrations of selected POPs including polycyclic aromatic hydrocarbons (PAHs), endocrine disrupting chemicals (EDCs), phthalate esters (PAEs) and polybrominated diphenyl ethers (PBDEs) of surface water from 18 sites were investigated. ∑16PAHs and ∑4EDCs were at a moderate level, while ∑6PAEs and ∑6PBDEs had low pollution levels. PAHs, EDCs and PAEs showed higher concentrations in dry season than those in wet season, and the loading of selected POPs in tributaries was higher than those in mainstream due to intensive manufactures and lower runoff volume. Moreover, activities of DNA methyltransferase (DNMT)1, histone deacetylase (HDAC2, HDAC8) were confirmed to be sensitive indicators for epigenetic toxicity. The DNMT1-mediated epigenetic equivalency toxicity of organic extracts in Dongjiang River were more serious than those of HDAC2 and HDAC8. Correlation analysis shown binding affinity between POPs and DNMT1, HDAC2 and HDAC8 could be regarded as toxic equivalency factors. Risk assessment suggested that 4-nonylphenol and bisphenol A were the largest contributors to epigenetic risk. This study is the first attempt to quantify epigenetic toxicity and epigenetic risk evaluation of river water.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Jinhuan Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Shanhong Lan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yan Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China.
| |
Collapse
|
28
|
Bibak M, Sattari M, Tahmasebi S, Kafaei R, Sorial GA, Ramavandi B. Trace and Major Elements Concentration in Fish and Associated Sediment-Seawater, Northern Shores of the Persian Gulf. Biol Trace Elem Res 2021; 199:2717-2729. [PMID: 32894397 DOI: 10.1007/s12011-020-02370-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
The concentration of 19 metal and non-metal elements in two fishes (Liza subviridis and Sphyraena jello) and associated sediment-seawater from the northern part of the Persian Gulf was measured. The samples were gathered from two industrial ports, one commercial port, and one residential port. The metal accumulation in the muscle and liver of fishes was evaluated. Nickel (mean 362.07-712.83 μg/g) and chromium (mean 470.00-691.47 μg/g) in sediment and zinc (mean 9.01-31.15 μg/L) and arsenic (mean 18.22-22.14 μg/L) in seawater had the most abundancy among studied elements. The accumulation of elements in S. jello (a pelagic species) was higher than L. subviridis (a demersal species). For both species, major elements of S and Mg and trace elements of Fe, Al, Si, Zn, and Cu showed highest accumulation. Also, fish samples from Emam Hassan Port were more contaminated than other stations. Ecological indexes values have revealed a low to moderate elemental pollution of sediment and fish samples in the north part of the Persian Gulf.
Collapse
Affiliation(s)
- Mehdi Bibak
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Marine Biology, the Caspian Basin Research Center, University of Guilan, Rasht, Iran
| | - Saeid Tahmasebi
- Department of Statistics, Persian Gulf University, Bushehr, Iran
| | - Raheleh Kafaei
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George A Sorial
- Environmental Engineering Program, Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
29
|
Bertanza G, Boniotti J, Ceretti E, Feretti D, Mazzoleni G, Menghini M, Pedrazzani R, Steimberg N, Urani C, Viola GCV, Zerbini I, Ziliani E. Environmental Footprint of Wastewater Treatment: A Step Forward in the Use of Toxicological Tools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136827. [PMID: 34202094 PMCID: PMC8297069 DOI: 10.3390/ijerph18136827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/02/2022]
Abstract
The assessment of the actual impact of discharged wastewater on the whole ecosystem and, in turn, on human health requires the execution of bioassays. In effect, based on the chemical characterization alone, the synergistic/antagonistic effect of mixtures of pollutants is hardly estimable. The aim of this work was to evaluate the applicability of a battery of bioassays and to suggest a smart procedure for results representation. Two real wastewater treatment plants were submitted to analytical campaigns. Several baseline toxicity assays were conducted, together with tests for the determination of endocrine activity, genetic toxicity and carcinogenicity of wastewater. A “traffic light” model was adopted for an easy-to-understand visualization of the results. Although the legal prescriptions of chemical parameters are fully complied with, bioassays show that a certain biological activity still residues in the treated effluents. Moreover, influent and effluent responses are not always appreciably different. Some tests employing human cells were revealed to be only partially adequate for environmental applications. An interesting and helpful development of the present approach would consist in the estimation of biological equivalents of toxicity, as shown for the estrogenic compound 17-β-estradiol.
Collapse
Affiliation(s)
- Giorgio Bertanza
- DICATAM—Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; (G.B.); (M.M.)
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
| | - Jennifer Boniotti
- DSCS—Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Elisabetta Ceretti
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Donatella Feretti
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Giovanna Mazzoleni
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DSCS—Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Michele Menghini
- DICATAM—Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; (G.B.); (M.M.)
| | - Roberta Pedrazzani
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DIMI—Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3715505; Fax: +39-030-3702448
| | - Nathalie Steimberg
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DSCS—Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Chiara Urani
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DISAT—Department of Earth and Environmental Sciences, University of Milan—Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy
| | - Gaia Claudia Viviana Viola
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Ilaria Zerbini
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Emanuele Ziliani
- DICAr—Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 1, I-27100 Pavia, Italy;
| |
Collapse
|
30
|
Mannina G, Alliet M, Brepols C, Comas J, Harmand J, Heran M, Kalboussi N, Makinia J, Robles Á, Rebouças TF, Ni BJ, Rodriguez-Roda I, Victoria Ruano M, Bertanza G, Smets I. Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework. BIORESOURCE TECHNOLOGY 2021; 329:124828. [PMID: 33621928 DOI: 10.1016/j.biortech.2021.124828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Joaquim Comas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | - Marc Heran
- IEM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nesrine Kalboussi
- Université de Carthage, Institut National ds Sciences Appliquées et de Technologie & Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de Modélisation Mathématique et Numérique dans les sciences d'ingénieur, Tunis, Tunisia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ángel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | | | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ignasi Rodriguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - María Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Giorgio Bertanza
- Departament of Civil, Environmental, Architectural Engineering and Mathematics, Brescia University, via Branze 43, 25123 Brescia, Italy
| | - Ilse Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, 3001 Heverlee, Belgium
| |
Collapse
|
31
|
Liu ZH, Dang Z, Liu Y. Legislation against endocrine-disrupting compounds in drinking water: essential but not enough to ensure water safety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19505-19510. [PMID: 33620688 DOI: 10.1007/s11356-021-12901-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Since the last several decades, there has been a growing concern on the presence of endocrine-disrupting compounds (EDCs) in potable water due to their negative impacts on public health of mankind. As such, more and more EDCs have been regulated in many national drinking water quality standards. Given this situation, this work attempted to deliberately offer new insights into some remaining scientific challenges, i.e., (1) what should the allowable EDC concentration be in drinking water?; (2) should the main chlorinated byproducts of EDCs be regulated in potable water?; and (3) what concentration should be regulated for each chlorinated EDC? It is expected that these could help to better design the water quality regulations for EDCs.
Collapse
Affiliation(s)
- Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
32
|
Huang Z, Hua P, Wang Z, Li R, Dong L, Hu BX, Zhang J. Environmental behavior and potential driving force of bisphenol A in the Elbe River: A long-term trend study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143251. [PMID: 33187702 DOI: 10.1016/j.scitotenv.2020.143251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
As an endocrine disruptor, a deep understanding of the environmental behavior and potential driving force of bisphenol A (BPA) is helpful for developing a mitigation strategy and reducing the exposure risk to the public. Based on long-term monitoring data from 2004 to 2016, this study systematically evaluated the long-term trend, periodic characteristics, and potential risks of BPA in the Elbe River in the state of Saxony, Germany. Multiple advanced statistical approaches were employed for data mining. Pettitt's test was used to determine the main change points of BPA that occurred from 2008 to 2011. The Mann-Kendall test showed a decreasing trend in BPA concentrations (slope: -0.087 to -0.112, P < 0.05) over the past 13 years, particularly in the wet seasons (slope: -0.730 to -0.038, P < 0.05). Wavelet analysis revealed similar periodicities of BPA among stations (which experienced 4-5 oscillations in the first major period). The ARIMA model forecasted the mean BPA concentration as ranging from 9 to 41 ng L-1 in the subsequent 3 months, which was similar to that in the last 3 months (20-42 ng L-1). Besides, the highest hazard quotients (>0.3) were documented for Chironomus riparius, Oryzias latipes, Potamopyrgus antipodarum, and Hydra vulgar, which indicates that BPA may threaten their growth and development. The hazard index values for non-cancer risk of BPA no greater than 6.47 × 10-9 (HQ far below 1), which suggests that BPA did not pose a significant threat to human health. Because BPA pollution is closely related to industrial activities, a long-term decline in BPA concentrations could be attributed to the reduced number of factories, limited discharge, and improved decontamination efficiency. However, the minimal change in the BPA concentration in the near future could reflect periodic fluctuations.
Collapse
Affiliation(s)
- Zhenyu Huang
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China
| | - Pei Hua
- School of Environment, South China Normal University, University Town, 510006 Guangzhou, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, 510006 Guangzhou, China
| | - Zhenyu Wang
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ruifei Li
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Liang Dong
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China
| | - Bill X Hu
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China; Green Development Institute of Zhaoqing, 526000 Zhaoqing, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 510632 Guangzhou, China
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, 510632 Guangzhou, China; Green Development Institute of Zhaoqing, 526000 Zhaoqing, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 510632 Guangzhou, China.
| |
Collapse
|
33
|
Rashid SS, Liu YQ. Comparison of life cycle toxicity assessment methods for municipal wastewater treatment with the inclusion of direct emissions of metals, PPCPs and EDCs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143849. [PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 05/20/2023]
Abstract
The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
Collapse
Affiliation(s)
- Siti Safirah Rashid
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
34
|
Zheng M, Ping Q, Wang L, Dai X, Li Y, Snyder SA. Pretreatment using UV combined with CaO 2 for the anaerobic digestion of waste activated sludge: Mechanistic modeling for attenuation of trace organic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123484. [PMID: 32731117 DOI: 10.1016/j.jhazmat.2020.123484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Trace organic contaminants (TOrCs) in waste active sludge (WAS) have caused many concerns due to their recalcitrance and detriment to the performance of anaerobic digestion (AD). In this study, UV (2 h) combined with calcium peroxide (CaO2, 0.1 g g-1-VSS (VSS, volatile suspended solid) was proposed as a suitable sludge pretreatment to enhance the AD performance with an increase in the production of maximum total short-chain fatty acids (421.3 %) and methane (119.2 %). Meanwhile, above 50 % removal efficiency for 19 detected TOrCs was achieved. UV and CaO2 had a synergistic effect on the subsequent AD of WAS. Both UV and Ca(OH)2 produced by CaO2 played important roles in the dissolution of WAS and the subsequent AD, while UV-direct and OH-indirect photolysis accounted for TOrCs attenuation. In order to predict TOrCs attenuation by UV/CaO2 treatment, a TOrCs photolysis model was tentatively established using carbamazepine as an indicator. This predictive model expressed a good prediction with adj-R2 = 0.94, and the difference of predicted and measured values was within 27.3 %. This work evaluates a sludge pretreatment for simultaneously TOrCs attenuation and methane accumulation, laying foundation for promotion of sludge resource recycling.
Collapse
Affiliation(s)
- Ming Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
35
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Ma XY, Dong K, Tang L, Wang Y, Wang XC, Ngo HH, Chen R, Wang N. Investigation and assessment of micropollutants and associated biological effects in wastewater treatment processes. J Environ Sci (China) 2020; 94:119-127. [PMID: 32563475 DOI: 10.1016/j.jes.2020.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Currently, the wastewater treatment plants (WWTPs) attempt to achieve the shifting from general pollution parameters control to reduction of organic micropollutants discharge. However, they have not been able to satisfy the increasing ecological safety needs. In this study, the removal of micropollutants was investigated, and the ecological safety was assessed for a local WWTP. Although the total concentration of 31 micropollutants detected was reduced by 83% using the traditional biological treatment processes, the results did not reflect chemicals that had poor removal efficiencies and low concentrations. Of the five categories of micropollutants, herbicides, insecticides, and bactericides were difficult to remove, pharmaceuticals and UV filters were effectively eliminated. The specific photosynthesis inhibition effect and non-specific bioluminescence inhibition effect from wastewater were detected and evaluated using hazardous concentration where 5% of aquatic organisms are affected. The photosynthesis inhibition effect from wastewater in the WWTP was negligible, even the untreated raw wastewater. However, the bioluminescence inhibition effect from wastewater which was defined as the priority biological effect, posed potential ecological risk. To decrease non-specific biological effects, especially of macromolecular dissolved organic matter, overall pollutant reduction strategy is necessary. Meanwhile, the ozonation process was used to further decrease the bioluminescence inhibition effects from the secondary effluent; ≥ 0.34 g O3/g DOC of ozone dose was recommended for micropollutants elimination control and ecological safety.
Collapse
Affiliation(s)
- Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ke Dong
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Tang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongkun Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Rong Chen
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
37
|
Morin‐Crini N, Staelens J, Loiacono S, Martel B, Chanet G, Crini G. Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hemp‐based felt. III. Real discharge waters. J Appl Polym Sci 2020. [DOI: 10.1002/app.48823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nadia Morin‐Crini
- UMR 6249 Chrono‐EnvironnementUniversité Bourgogne Franche‐Comté, 16 Route de Gray Besançon 25000 France
| | - Jean‐Noël Staelens
- UMET UMR 8207, Ingénierie des Systèmes PolymèresUniversité de Lille Villeneuve d'Ascq 59655 France
| | - Sonia Loiacono
- UMR 6249 Chrono‐EnvironnementUniversité Bourgogne Franche‐Comté, 16 Route de Gray Besançon 25000 France
| | - Bernard Martel
- UMET UMR 8207, Ingénierie des Systèmes PolymèresUniversité de Lille Villeneuve d'Ascq 59655 France
| | - Gilles Chanet
- Eurochanvre, 7 Route de Dijon Arc‐les‐Gray 70100 France
| | - Grégorio Crini
- UMR 6249 Chrono‐EnvironnementUniversité Bourgogne Franche‐Comté, 16 Route de Gray Besançon 25000 France
| |
Collapse
|
38
|
Rizzo L, Gernjak W, Krzeminski P, Malato S, McArdell CS, Perez JAS, Schaar H, Fatta-Kassinos D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136312. [PMID: 32050367 DOI: 10.1016/j.scitotenv.2019.136312] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 05/09/2023]
Abstract
Conventional urban wastewater treatment plants (UWTPs) are poorly effective in the removal of most contaminants of emerging concern (CECs), including antibiotics, antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs). These contaminants result in some concern for the environment and human health, in particular if UWTPs effluents are reused for crop irrigation. Recently, stakeholders' interest further increased in Europe, because the European Commission is currently developing a regulation on water reuse. Likely, conventional UWTPs will require additional advanced treatment steps to meet water quality limits yet to be officially established for wastewater reuse. Even though it seems that CECs will not be included in the proposed regulation, the aim of this paper is to provide a technical contribution to this discussion as well as to support stakeholders by recommending possible advanced treatment options, in particular with regard to the removal of CECs and ARB&ARGs. Taking into account the current knowledge and the precautionary principle, any new or revised water-related Directive should address such contaminants. Hence, this review paper gathers the efforts of a group of international experts, members of the NEREUS COST Action ES1403, who for three years have been constructively discussing the efficiency of the best available technologies (BATs) for urban wastewater treatment to abate CECs and ARB&ARGs. In particular, ozonation, activated carbon adsorption, chemical disinfectants, UV radiation, advanced oxidation processes (AOPs) and membrane filtration are discussed with regard to their capability to effectively remove CECs and ARB&ARGs, as well as their advantages and drawbacks. Moreover, a comparison among the above-mentioned processes is performed for CECs relevant for crop uptake. Finally, possible treatment trains including the above-discussed BATs are discussed, issuing end-use specific recommendations which will be useful to UWTPs managers to select the most suitable options to be implemented at their own facilities to successfully address wastewater reuse challenges.
Collapse
Affiliation(s)
- Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Pawel Krzeminski
- Section of Systems Engineering and Technology, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Sixto Malato
- Plataforma Solar de Almería (CIEMAT), Carretera de Senés, km. 4, Tabernas, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Universitiy of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Jose Antonio Sanchez Perez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Universitiy of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain; Department of Chemical Engineering, University of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain
| | - Heidemarie Schaar
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/2261, 1040 Vienna, Austria
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas, International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|
39
|
Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2020. [DOI: 10.1007/978-1-0716-0150-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Leris I, Kalogianni E, Tsangaris C, Smeti E, Laschou S, Anastasopoulou E, Vardakas L, Kapakos Y, Skoulikidis NT. Acute and sub-chronic toxicity bioassays of Olive Mill Wastewater on the Eastern mosquitofish Gambusia holbrooki. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:48-57. [PMID: 30884344 DOI: 10.1016/j.ecoenv.2019.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Olive oil production generates large volumes of wastewaters mostly in peri-Mediterranean countries with adverse impacts on the biota of the receiving aquatic systems. Few studies have however documented its toxicity on aquatic species, with an almost total lack of relative studies on fish. We assessed the acute and sub-chronic OMW toxicity, as well as the acute and sub-chronic behavioural, morphological and biochemical effects of OMW exposure on the mosquitofish Gambusia holbrooki. LC50 values of the acute bioassays ranged from 7.31% (24 h) to 6.38% (96 h). Behavioural symptoms of toxicity included hypoactivity and a shift away from the water surface, coupled with a range of morphological alterations, such as skin damage, excessive mucus secretion, hemorrhages, fin rot and exophhalmia, with indications also of gill swelling and anemia. Biochemical assays showed that OMW toxicity resulted in induction of catalase (CAT) and inhibition of acetylcholinesterase (AChE) activities. The implications of our results at the level of environmental policy for the sustainable management of the olive mill industry, i.e. the effective restriction of untreated OMW disposal of in adjacent waterways, as well as the implementation of new technologies that reduce their impact (detoxification and/or revalorization of its residues) are discussed.
Collapse
Affiliation(s)
- Ioannis Leris
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Eleni Kalogianni
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece.
| | - Catherine Tsangaris
- Hellenic Centre for Marine Research, Institute of Oceanography, Anavissos, 19013 Attica, Greece
| | - Evangelia Smeti
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Sofia Laschou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Evangelia Anastasopoulou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Leonidas Vardakas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Yiannis Kapakos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Nikolaos Th Skoulikidis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| |
Collapse
|