1
|
Gao R, Jiang Z, Wu X, Cai Z, Sang N. Metabolic regulation of tumor cells exposed to different oxygenated polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167833. [PMID: 37839476 DOI: 10.1016/j.scitotenv.2023.167833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of polycyclic aromatic derivatives with oxygen-containing functional groups that induce oxidative stress and mutations. However, studies of the carcinogenic and metabolic effects of OPAHs are limited. In this study, we analyzed the carcinogenic effects of four different OPAHs and found that 9-fluorenone (FLO), 9,10-anthraquinone (AQ), and 7,12-benz(a)anthraquinone (BAQ) promoted cell invasion and metastasis via epithelial-mesenchymal transition (EMT) and induced endothelial cell angiogenesis by affecting the expression of vascular endothelial growth factor (VEGF), angiopoietin (ANG), and platelet-derived growth factor (PDGF), whereas 1,8-naphthalic anhydride (NAD) did not show significant carcinogenic effects. In addition, combined with metabolomic analysis, we found that the tumor-promoting effects of different OPAHs were related to their effects on the metabolome, especially the metabolism of glutathione related to oxidative stress. These results provide an experimental basis for studying the carcinogenic and metabolic effects of OPAHs, and an important reference for comprehensively assessing the ecological and health risks of this compounds.
Collapse
Affiliation(s)
- Rui Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, PR China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zihao Jiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, PR China
| | - Xiuyu Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihong Cai
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
2
|
Feng Q, Liu H, Dai W, Cao Y, Shen M, Liu Y, Qi W, Chen Y, Guo X, Zhang Y, Li L, Zhou B, Li J. Comparison of chemical composition and acidity of size-resolved inorganic aerosols at the top and foot of Mt. Hua, Northwest China: The role of the gas-particle distribution of ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166985. [PMID: 37704142 DOI: 10.1016/j.scitotenv.2023.166985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Aerosol pH is not only a diagnostic indicator of secondary aerosol formation, but also a key factor in the specific chemical reaction routes that produce sulfate and nitrate. To understand the characteristics of aerosol acidity in the Mt. Hua, the chemical fractions of water-soluble inorganic ions in the atmospheric PM2.5 and size-resolved particle at the top and foot of Mt. Hua in summer 2020 were studied. The results showed the mass concentrations of PM2.5 and water-soluble ions at the foot were 2.0-2.6 times higher than those at the top. The secondary inorganic ions, i.e., SO42-, NO3-, and NH4+ (SNA) were 56 %-61 % higher by day than by night. SO42- was mainly distributed in the fine particles (Dp < 2.1 μm). NO3- showed a unimodal size distribution (peaking at 0.7-1.1 μm) at the foot and a bimodal (0.7-1.1 μm and 4.7-5.8 μm) size distribution at the top. At the top site, the distribution of NO3- in coarse particles (> 2.1 μm) was mainly attributed to the gaseous HNO3 volatilized from fine particles reacting with cations in coarse particles to form non-volatile salts (such as Ca(NO3)2). The pH values of PM2.5 were 2.7 ± 1.3 and 3.3 ± 0.42 at the top and foot, respectively. NH4+/NH3(g) plays a decisive role in stabilizing aerosol acidity. In addition, the increase of the liquid water content (LWC) at the foot facilitates the gas-particle conversion of NH3, while the H+ concentration was diluted, resulting in a decrease in acidity at the foot. NH4+/NH3 had good linear correlations with SO42-, NO3-, and LWC during the daytime at both sites, indicating that SO42-, NO3-, and LWC together affect the gas-particle distribution of ammonia by day: however, the effect of LWC at night was not evident.
Collapse
Affiliation(s)
- Qiao Feng
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Haijiao Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yue Cao
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Minxia Shen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Yali Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Weining Qi
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yukun Chen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Guo
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yifan Zhang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Lu Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Bianhong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China.
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China.
| |
Collapse
|
3
|
Huang H, He Z, Li M, Zhou Y, Zhang J, Jin X, Chen J. Influence of exposure history on the particle retention capacity and physiological responses of Euonymus japonicus Thunb. var. aurea-marginatus Hort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120593. [PMID: 36336181 DOI: 10.1016/j.envpol.2022.120593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Green plants in urban environments experience cyclical particulate matter stress. And this history of exhaust exposure may generate stress memory in plants, which may alter their subsequent response. Studies combining urban pollution characteristics and stress memory are limited. Therefore, we selected E. japonicus var. aurea-marginatus, a common urban greening tree species in the Yangtze River Delta, and conducted an experiment in three periods: the initial pollution period (S1: 28 days), the recovery period (R: 14 days) and the secondary pollution period (S2: 28 days). The experimental design consisted of an elevated pollution treatment (173 μg•cm-3) and an ambient control (34 μg•cm-3) with three replicates. In S2, the net total particle retention and saturated particle retention decreased by 11.5% and 19.3%, respectively, while PM10 and PM2.5 did not change significantly. E. japonicus var. aurea-marginatus exhibited recovery of chlorophyll levels, slower degradation of carotenoid, faster accumulation of ASA, lower accumulation of MDA, reduced activity of SOD under the second pollution period, and the period had a significant effect on the physiological indicators. Collectively, the effect of autoexhaust exposure history on the particle retention capacity of selected plant varied across particle sizes, and stress memory may confer plant resistance to recurrent exhaust pollution via combined regulations of physiological responses. Fine particles which pose a great risk to human health arise predominantly from vehicular traffic and energy production. So, E. japonicus tends to play a stabilising role in particle retention in industrial, traffic and residential areas.
Collapse
Affiliation(s)
- Hanhan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Zhengxuan He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Ming Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Yuanhong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Jing Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Xinjie Jin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China.
| |
Collapse
|
4
|
Yang M, Jalava P, Wang XF, Bloom MS, Leskinen A, Hakkarainen H, Roponen M, Komppula M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu YJ, Dong GH. Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157382. [PMID: 35843314 DOI: 10.1016/j.scitotenv.2022.157382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sources and chemical components of urban air particles exhibit seasonal variations that may affect their hazardousness to human health. Our aims were to investigate winter and spring variation in particulate matter (PM) sources, components and toxicological responses of different PM size fractions from samples collected in Guangzhou, China. Four size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, and PM0.2) were collected separately during winter (December 2017 and January 2018) and spring (March 2018). All PM samples were analyzed for chemical components and characterized by source. RAW 264.7 macrophages were exposed to four doses of PM samples for 24 h. Cytotoxicity, oxidation, cell cycle, genotoxicity and inflammatory parameters were tested. PM concentrations were higher in the winter samples and caused more severe cytotoxicity and oxidative damage than to PM in the spring samples. PM in winter and spring led to increases in cell cycle and genotoxicity. The trends of size-segregated PM components were consistent in winter and spring samples. Metallic elements and PAHs were found in the largest concentrations in winter PM, but ions were found in the largest concentrations in spring PM. metallic elements, PAHs and ions in size-segregated PM samples were associated with most toxicological endpoints. Soil dust and biomass burning were the main sources of PM in winter, whereas traffic exhaust and biomass burning was the main source with of spring PM. Our results suggest that the composition of PM samples from Guangzhou differed during winter and spring, which led to strong variations in toxicological responses. The results demonstrate the importance of examining a different particle sizes, compositions and sources across different seasons, for human risk assessment.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Xu C, Gao L, Lyu Y, Qiao L, Huang D, Liu Y, Li D, Zheng M. Molecular characteristics, sources and environmental risk of aromatic compounds in particulate matter during COVID-2019: Nontarget screening by ultra-high resolution mass spectrometry and comprehensive two-dimensional gas chromatography. ENVIRONMENT INTERNATIONAL 2022; 167:107421. [PMID: 35868078 DOI: 10.1016/j.envint.2022.107421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Aromatic compounds, including many polycyclic aromatic hydrocarbons (PAHs), are suspected carcinogens and may originate from different sources. To investigate the impact of anthropogenic emission reductions on unknown aromatic compounds in particulate matter, we collected samples during the pre-COVID period in 2020, the COVID-19 lockdown period in 2020, and the same period as the lockdown in 2019. Besides the 16 PAHs, other aromatic compounds were analyzed by Fourier transform ion cyclotron resonance mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Four main compound classes were identified: CH, CHO, CHNO, and CHOS. Hierarchical cluster analysis showed the aromatic compounds varied during the different periods. Compared with before the pandemic, the relative abundances of aromatic compounds with low degrees of unsaturation and long alkyl chains (e.g., alkylbenzenes) increased. These compounds probably mainly arose from fossil fuel combustion and petrochemical industry emissions. The CHO compounds, which were dominated by those with high degrees of oxidation, might originate from secondary organic aerosols. Aromatic aldehydes (e.g., cyclamen aldehyde) and benzoates (e.g., 2-ethylhexyl benzoate) probably with high toxicity deserve more attention. During lockdown, nitro derivatives of condensed PAHs were the main CHNO compounds, and the numbers of homologs decreased perhaps because of significant reductions in NOx and PAHs. CHOS compounds with long carbon chains and low degrees of unsaturation were predominant and the numbers of homologs increased. Five compounds (e.g. 1,3-dimethyl pyrene) were predicted to possibly exhibit persistent and bio-accumulated by EPI Suite model, which need further research. The results provide insight on aromatic compounds and their source appointment in atmospheric particulate matter.
Collapse
Affiliation(s)
- Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Bejing 100012, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Yibing Lyu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Bejing 100012, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
6
|
Zhang Q, Li Z, Wei P, Wang Q, Tian J, Wang P, Shen Z, Li J, Xu H, Zhao Y, Dang X, Cao J. Insights into the day-night sources and optical properties of coastal organic aerosols in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154663. [PMID: 35318062 DOI: 10.1016/j.scitotenv.2022.154663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Organic aerosols (OAs) in particulate matter with an aerodynamic diameter of smaller than 2.5 μm (PM2.5) can affect the atmospheric radiation balance through varying molecular structure and light absorption of the aerosols. In this study, daytime and nighttime PM2.5 mass, and contents of OA including nitrated aromatic compounds (NACs), polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes were measured from April 11th to May 15th, 2017, at the coastal Sanya, China. The average concentration of 18 total quantified PAHs (∑PAHs) was 2.08 ± 1.13 ng·m-3, which was 2.8 and 12 times higher than that of ∑NACs and hopanes, while was 7.5 times lower that of n-alkanes. Combustion-derived PAHs contributed 74% to the ∑PAHs. This finding, in addition to a high benzo[a]pyrene/(benzo[a]pyrene+benzo[e]pyrene) ratio, indicates that the PAHs mainly derived from fresh fuel combustion during the sampling periods. Furthermore, dramatic day-night differences were observed in the loadings of total NACs, PAHs, and n-alkanes, which had a high coefficient of divergence values of 0.67, 0.47, and 0.32, respectively. Moreover, hopanes exhibited similar variation as well. The proportion of dimethyl-nitrophenol (DM-NP), dinitrophenol (DNP), and nitrosalicylic acid (NSA) in PM2.5 were higher in the daytime than at nighttime, suggesting the co-influence of primary emissions and secondary formation related to biomass combustion. The positive matrix factorization (PMF) model revealed that motor vehicle and biomass burning emissions were the two main pollution sources in the daytime, contributing 51.7% and 24.6%, respectively, of the total quantified OAs. The proportion of industrial coal combustion emissions was higher at nighttime (20.6%) than in daytime (10%). Both the PAHs and NACs displayed light absorbing capacities among OAs compounds over Sanya City, and thus their influence on solar radiation must be considered in the future control policies.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ziyi Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Wei
- School of Geography and Environment, Shandong Normal University, Jinan 250358, PR China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Jie Tian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ping Wang
- Hainan Tropical Ocean University, Sanya 572022, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youzhi Zhao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiaoqing Dang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
7
|
Hu C, Liu C, Hu N, Hong J, Ai X. Government environmental control measures on CO 2 emission during the 2014 Youth Olympic Games in Nanjing: Perspectives from a top-down approach. J Environ Sci (China) 2022; 113:165-178. [PMID: 34963526 DOI: 10.1016/j.jes.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/14/2023]
Abstract
Strict air pollution control measures were conducted during the Youth Olympic Games (YOG) period at Nanjing city and surrounding areas in August 2014. This event provides a unique chance to evaluate the effect of government control measures on regional atmospheric pollution and greenhouse gas emissions. Many previous studies have observed significant reductions of atmospheric pollution species and improvement in air quality, while no study has quantified its synergism on anthropogenic CO2 emissions, which can be co-reduced with air pollutants. To better understand to what extent these pollution control measures have reduced anthropogenic CO2 emissions, we conducted atmospheric CO2 measurements at the suburban site in Nanjing city from 1st July to 30th September 2014 and 1st August to 31st August 2015, obvious decrease in atmospheric CO2 was observed between YOG and the rest period. By coupling the a priori emission inventory with atmospheric transport model, we applied the scale factor Bayesian inversion approach to derive the posteriori CO2 emissions in YOG period and regular period. Results indicate CO2 emissions from power industry decreased by 45%, and other categories also decreased by 16% for manufacturing combusting, and 37% for non-metallic mineral production. Monthly total anthropogenic CO2 emissions were 9.8 (±3.6) × 109 kg/month CO2 for regular period and decreased to 6.2 (±1.9) × 109 kg/month during the YOG period in Nanjing city, with a 36.7% reduction. When scaling up to whole Jiangsu Province, anthropogenic CO2 emissions were 7.1 (±2.4) × 1010 kg/month CO2 for regular period and decreased to 4.4 (±1.2) × 1010 kg/month CO2 during the YOG period, yielding a 38.0% reduction.
Collapse
Affiliation(s)
- Cheng Hu
- College of Biology and the Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information, Science & Technology, Nanjing 210044, China.
| | - Cheng Liu
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution/School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China.
| | - Ning Hu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information, Science & Technology, Nanjing 210044, China
| | - Jun Hong
- National Key Laboratory on Electromagnetic Environmental Effects and Electro-Optical Engineering, Army Engineering University, Nanjing 210022, China
| | - Xinyue Ai
- College of Biology and the Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Fan X, Liu C, Yu X, Wang Y, Song J, Xiao X, Meng F, Cai Y, Ji W, Xie Y, Peng P. Insight into binding characteristics of copper(II) with water-soluble organic matter emitted from biomass burning at various pH values using EEM-PARAFAC and two-dimensional correlation spectroscopy analysis. CHEMOSPHERE 2021; 278:130439. [PMID: 33836401 DOI: 10.1016/j.chemosphere.2021.130439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation-emission matrix (EEM) -PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237-239 nm and 307-309 nm) > moderate wavelength (267-269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM-PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.
Collapse
Affiliation(s)
- Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China; Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu, 233400, China.
| | - Chao Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xufang Yu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yan Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xin Xiao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yue Xie
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
9
|
Wang T, Rovira J, Sierra J, Blanco J, Chen SJ, Mai BX, Schuhmacher M, Domingo JL. Characterization of airborne particles and cytotoxicity to a human lung cancer cell line in Guangzhou, China. ENVIRONMENTAL RESEARCH 2021; 196:110953. [PMID: 33667474 DOI: 10.1016/j.envres.2021.110953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 05/21/2023]
Abstract
Air pollution by airborne particles is a serious health problem worldwide. The present study was aimed at investigating the concentrations and composition of total suspended particles (TSPs) and PM2.5 at various industrial/commercial sites of Guangzhou, a megacity of Southern China. Major and trace elements, ions and carbonaceous fraction were determined and main components were calculated. In addition, in order to assess the potential toxic on the respiratory system of these PM, cytotoxicity of size-fractionated particles (PM10-5.6, PM5.6-3.3, PM3.3-1.1, PM1.1-0.43) for a human lung cancer cell line (A549) was also investigated. Correlations between PM constituents and toxicity were assessed. Median levels of TSPs and PM2.5 in industrial/commercial sites were 206 and 57.7 μg/m3, respectively. Nickel, Cu, Mo, Mn, Pb, and Ti were the most abundant metals in TSPs and PM2.5. Industrial activities and coal combustion were the most important sources of carbonaceous particles in the zone. MTT assays showed that PM10-5.6 and PM1.1-0.43 had the highest and the lowest cytotoxicity to A549 cell lines, respectively. Inhalable particles around the manufacturing of metal facilities and formal waste treatment plants showed a high cytotoxicity to A549 cell lines. In general terms, no significant correlations were found between main components of PM and toxicity. However, W showed a significant correlation with cell viability.
Collapse
Affiliation(s)
- Tao Wang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - Jordi Sierra
- Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Av. Joan XXIII S/n, 08028, Barcelona, Catalonia, Spain
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - She-Jun Chen
- Environmental Research Institute, South China Normal University, Guangzhou, 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Marta Schuhmacher
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
10
|
Wang P, Shen J, Zhu S, Gao M, Ma J, Liu J, Gao J, Zhang H. The aggravated short-term PM 2.5-related health risk due to atmospheric transport in the Yangtze River Delta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116672. [PMID: 33581630 DOI: 10.1016/j.envpol.2021.116672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Severe fine particulate matter (PM2.5) pollution and the associated health risks remain pressing issues in the Yangtze River Delta (YRD), although significant efforts have been made locally, such as the Clean Air Action since 2013. Regional transport is an important contributor to high PM2.5 levels during haze episodes in the YRD, but its impact on human health is rarely analyzed. In this study, we evaluate the short-term PM2.5-related health risks and associated economic losses due to different source regions by estimating daily mortality based on model results in the YRD. The results show that regional transport induces significant health risks in the YRD during haze days, contributing over 60% of daily premature mortality in Shanghai and Nanjing (major cities in the YRD). Moreover, in Hangzhou and Jiaxing, regional transport's contribution can be as high as 70%. The total daily mean economic loss in the YRD is estimated as 526.8 million Chinese Yuan (approximately 81.4 million U.S. dollar) in winter of 2015 and 2016, accounting for 1.4% of the daily averaged gross domestic product (GDP) of the YRD. Emission control (in accordance with the 13th Five-year Energy Conservation and Emission Reduction Plan) is an effective way to reduce health risks in the YRD, reducing premature deaths during haze days by 12-33%. More stringent emission control measures are suggested for further reduce PM2.5-related health risks.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, China
| | - Juanyong Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengqiang Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, 999077, China
| | - Jinlong Ma
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingsi Gao
- Engineering Technology Development Center of Urban Water Recycling, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Hongliang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| |
Collapse
|
11
|
Hu J, Bao Y, Zhu Y, Osman R, Shen M, Zhang Z, Wang L, Cao S, Li L, Wu Q. The Preliminary Study on the Association Between PAHs and Air Pollutants and Microbiota Diversity. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:321-332. [PMID: 32897393 DOI: 10.1007/s00244-020-00757-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to investigate the association among polycyclic aromatic hydrocarbons (PAHs) exposure and air pollutants and the diversity of microbiota. Daily average concentrations of six common air pollutants were obtained from China National Environmental Monitoring Centre. The PAHs exposure levels were evaluated by external and internal exposure detection methods, including monitoring atmospheric PAHs and urinary hydroxyl-polycyclic aromatic hydrocarbon (OH-PAH) metabolite levels. We analyzed the diversity of environmental and commensal bacterial communities with 16S rRNA gene sequencing and performed functional enrichment with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Correlation analysis and logistic regression modeling were conducted to evaluate the relationship of PAHs levels with air pollutants and microbial diversity. Correlation analysis found that the concentrations of atmospheric PAHs were significantly positively correlated with those of PM10, NO2, and SO2. There also was a positive correlation between the abundance of the genus Micrococcus (Actinobacteria) and high molecular weight PAHs, and Bacillus, such as genera and low molecular weight PAHs in the atmosphere. Logistic regression showed that the level of urinary 1-OHPyrene was associated with childhood asthma after sex and age adjustment. The level of urinary 1-OHPyrene was significantly positively correlated with that of PM2.5 and PM10. In addition, the level of 1-OHPyrene was positively correlated with oral Prevotella-7 abundance. Functional enrichment analysis demonstrated that PAHs exposure may disturb signaling pathways by the imbalance of commensal microbiota, such as purine metabolism, pyrimidine metabolites, lipid metabolism, and one carbon pool by folate, which may contribute to public health issues. Our results confirmed that atmospheric PAHs and urinary 1-OHPyrene were correlated with part of six common air pollutants and indicated that PAHs pollution may alter both environmental and commensal microbiota communities associated with health-related problems. The potential health and environmental impacts of PAHs should be further explored.
Collapse
Affiliation(s)
- Jinye Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuling Bao
- Department of Respiratory, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China
| | - Yuqi Zhu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ranagul Osman
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengfan Shen
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Li Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shuyuan Cao
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Wang X, Liu E, Lin Q, Liu L, Yuan H, Li Z. Occurrence, sources and health risks of toxic metal(loid)s in road dust from a mega city (Nanjing) in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114518. [PMID: 32283466 DOI: 10.1016/j.envpol.2020.114518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
Potential toxic metal(loid)s (PTMs) in road dust are a major concern in relation to urban environmental quality. Identifying pollution hotspots and sources of PTMs is an essential prerequisite for pollution control and management. Herein, the concentrations, pollution and potential health risks of 8 PTMs (As, Cd, Co, Cu, Hg, Mo, Pb and Zn) in road dust from the highly urbanized areas of Nanjing were studied. Spatial occurrences and sources of PTMs were explored using geostatistics, principal component analysis (PCA) and local Moran's index. The contamination factor (CF) results showed that Co was mainly natural in origin, while the other PTMs were polluted, with average CFs ranging from 1.4 to 11.0 as follows: Hg > Mo > Cd > Cu > Pb > Zn > As, indicating moderate to very high contamination. Except for Co and Hg, the other PTMs were heavily loaded on PC1, which explained 44.72% of the total variance. Combining the statistical results and distributions of potential sources, we deduced that industrial emissions dominated the spatial patterns of all polluted PTMs in road dust, which showed high levels in the northern parts of the study region and generally decreasing levels southwards. Moreover, Pb and Zn in the south-central area and Cd in the north-central area displayed hotspots, with maximum CFs of 5.5 (Pb), 4.2 (Zn) and 16.2 (Cd), which were related to additional automotive and railway braking emissions, respectively. The resuspension of legacy pesticides in soil is likely responsible for the As pollution hotspot in the southwestern part. Despite the high anthropogenic contributions (27% for As and 68-88% for the other metals) to the PTMs in road dust, their noncarcinogenic and carcinogenic health risks were rarely found for children and adults based on the values of the hazard index and carcinogenic risk index. However, attention still should be paid to the pollution hotspots in the northern region.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China.
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China
| | - Lin Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China
| | - Hezhong Yuan
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, PR China
| | - Zijun Li
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China
| |
Collapse
|
13
|
Rönkkö TJ, Hirvonen MR, Happo MS, Leskinen A, Koponen H, Mikkonen S, Bauer S, Ihantola T, Hakkarainen H, Miettinen M, Orasche J, Gu C, Wang Q, Jokiniemi J, Sippula O, Komppula M, Jalava PI. Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. ENVIRONMENTAL RESEARCH 2020; 185:109360. [PMID: 32222629 DOI: 10.1016/j.envres.2020.109360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Ambient particulate matter (PM) is a leading global environmental health risk. Current air quality regulations are based on airborne mass concentration. However, PM from different sources have distinct chemical compositions and varied toxicity. Connections between emission control measures, air quality, PM composition, and toxicity remain insufficiently elucidated. The current study assessed the composition and toxicity of PM collected in Nanjing, China before, during, and after an air quality intervention for the 2014 Youth Olympic Games. A co-culture model that mimics the alveolar epithelium with the associated macrophages was created using A549 and THP-1 cells. These cells were exposed to size-segregated inhalable PM samples. The composition and toxicity of the PM samples were influenced by several factors including seasonal variation, emission sources, and the air quality intervention. For example, we observed a size-dependent shift in particle mass concentrations during the air quality intervention with an emphasized proportion of smaller particles (PM2.5) present in the air. The roles of industrial and fuel combustion and traffic emissions were magnified during the emission control period. Our analyses revealed that the PM samples demonstrated differential cytotoxic potencies at equal mass concentrations between sampling periods, locations, and time of day, influenced by variations in the predominant emission sources. Coal combustion and industrial emissions were the most important sources affecting the toxicological responses and displayed the least variation in emission contributions between the sampling periods. In conclusion, emission control mitigated cytotoxicity and oxidative stress for particles larger than 0.2 μm, but there was inadequate evidence to determine if it was the key factor reducing the harmful effects of PM0.2.
Collapse
Affiliation(s)
- Teemu J Rönkkö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Maija-Riitta Hirvonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko S Happo
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; Ramboll Finland Oy, Oppipojankuja 6, FI-70780, Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Hanna Koponen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Santtu Mikkonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Stefanie Bauer
- German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Tuukka Ihantola
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henri Hakkarainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mirella Miettinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jürgen Orasche
- German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany; Joint Mass Spectrometry Center, Cooperation Group Comprehensive Molecular Analytics, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Cheng Gu
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Qin'geng Wang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Jorma Jokiniemi
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Olli Sippula
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; University of Eastern Finland, Department of Chemistry, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi I Jalava
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
14
|
Liu W, Xu Y, Zhao Y, Liu Q, Yu S, Liu Y, Wang X, Liu Y, Tao S, Liu W. Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113046. [PMID: 31454587 DOI: 10.1016/j.envpol.2019.113046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Parent polycyclic aromatic hydrocarbons (PPAHs) in the ambient air of the coastal cities near the Bohai and Yellow Seas were measured over a full year. The range and geometric average of total PPAH29 (29 species) were 5.16-1.22 × 103 and 118 ng/m3, respectively, with 77 ± 14% in a gaseous phase. The 16 priority components accounted for 90 ± 4% of the total mass concentration. The incremental life cancer risk (ILCR) via inhalation exposure to the PPAHs (3.17 × 10-4) was underestimated by 80%, as only the priority PPAHs were considered. The air concentrations of PPAHs in the Bohai Sea area were generally higher (p < 0.01) than those in the Yellow Sea area. A significant increase (p < 0.01) in the levels of PPAHs and large fractions of high molecular weight (HMW) components were observed in winter. Absorption by particulate organic carbon dominated in gas-particle partitioning of the PPAHs, and the seasonal variations in gas-particle partitioning of the low and moderate molecular weight compounds were more noticeable relative to the HMW species. In summer, significantly higher concentrations of PPAHs were found in the daytime than during nighttime, while the opposite case occurred in winter (p < 0.05). The positive matrix factorization (PMF) results indicated greater contributions of coal and biomass combustion to the PPAH emissions in the coastal cities of the Bohai Sea area compared with the Yellow Sea area. The burning of coal and biomass served as the main source of PPAHs in winter, while traffic exhaust was the dominant source in other seasons. The potential source contribution function (PSCF) revealed the important impacts of the external inputs on the local PPAHs via air mass transport. The contributions of the resolved emission sources to the ILCR were clearly different from those of the mass concentrations, indicating the necessity for source-oriented risk assessments.
Collapse
Affiliation(s)
- WeiJian Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YunSong Xu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YongZhi Zhao
- Center for Environmental Engineering Assessment, Qiqihar, Heilongjiang Province 161005, China
| | - QingYang Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - ShuangYu Yu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Exploring the Spatial Variation Characteristics and Influencing Factors of PM2.5 Pollution in China: Evidence from 289 Chinese Cities. SUSTAINABILITY 2019. [DOI: 10.3390/su11174751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Haze pollution has become an urgent environmental problem due to its impact on the environment as well as human health. PM2.5 is one of the core pollutants which cause haze pollution in China. Existing studies have rarely taken a comprehensive view of natural environmental conditions and socio-economic factors to figure out the cause and diffusion mechanism of PM2.5 pollution. This paper selected both natural environmental conditions (precipitation (PRE), wind speed (WIN), and terrain relief (TR)) and socio-economic factors (human activity intensity of land surface (HAILS), the secondary industry's proportion (SEC), and the total particulate matter emissions of motor vehicles (VE)) to analyze the effects on the spatial variation of PM2.5 concentrations. Based on the spatial panel data of 289 cities in China in 2015, we used spatial statistical methods to visually describe the spatial distribution characteristics of PM2.5 pollution; secondly, the spatial agglomeration state of PM2.5 pollution was characterized by Moran’s I; finally, several regression models were used to quantitatively analyze the correlation between PM2.5 pollution and the selected explanatory variables. Results from this paper confirm that in 2015, most cities in China suffered from severe PM2.5 pollution, and only 17.6% of the sample cities were up to standard. The spatial agglomeration characteristics of PM2.5 pollution in China were particularly significant in the Beijing–Tianjin–Hebei region. Results from the global regression models suggest that WIN exerts the most significant effects on decreasing PM2.5 concentration (p < 0.01), while VE is the most critical driver of increasing PM2.5 concentration (p < 0.01). Results from the local regression model show reliable evidence that the relation between PM2.5 concentrations and the explanatory variables varied differently over space. VE is the most critical factor that influences PM2.5 concentrations, which means controlling motor vehicle pollutant emissions is an effective measure to reduce PM2.5 pollution in Chinese cities.
Collapse
|
16
|
Li Y, Xu H, Wang J, Ho SSH, He K, Shen Z, Ning Z, Sun J, Li L, Lei R, Zhang T, Lei Y, Yang L, Cao Y, Cao J. Personal exposure to PM 2.5-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China: Characteristics and health implication. CHEMOSPHERE 2019; 227:53-62. [PMID: 30981970 DOI: 10.1016/j.chemosphere.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 05/03/2023]
Abstract
Domestic solid fuels combustion produces a mass of fine particulate matter (PM2.5). PM2.5-bound organics, including polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs (OPAHs), phthalate esters (PAEs) and hopanes, were quantified in indoor, outdoor and personal exposure samples collected in rural Guanzhong Basin, China. The average concentration of total quantified PAHs in personal exposure samples was 310 ± 443 ng m-3, 1.5 times of those of indoor (211 ± 120 ng m-3) and outdoor (189 ± 115 ng m-3). Similar observations were found for the OPAHs and PAEs, i.e., much higher concentrations were seen in personal exposure samples. Hopanes average personal exposure concentration (13 ± 9.7 ng m-3) was comparable to indoors (15 ± 9.7 ng m-3) and outdoors (13 ± 9.6 ng m-3). Among four common heating ways applied in Chinese dwelling, the highest exposure levels to PAHs, OPAHs and PAEs were found for indoor coal chunks stoves. Concentration under electric power was 1.2-4.5 folds lower than those with solid fuels in this study, proved to be the cleanest energy for the household heating. The exposures to PM2.5 on cell viabilities were also investigated. The largest reduction of 70% on cell viabilities was seen for indoor coal chunks stove housewives, indicating that the emissions from coal combustion had the greatest cytotoxic effects. The results evidenced that the heating ways in rural area could greatly impact on the housewife health in northwestern China. Advanced heating technology and protection should be conducted to reduce the personal exposures to PM2.5 from domestic solid fuel combustions.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Jinhui Wang
- NICU, Xi'an Children's Hospital, Xi'an, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
| | - Kailai He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Ronghui Lei
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yongxiao Cao
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|