1
|
Souza EJDS, Fomba KW, Anaya SGM, Schepanski K, Freire SM, Materić D, Reemtsma T, Herrmann H. Particle-bound mercury in Saharan dust-loaded particulate matter in Cabo Verde. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137053. [PMID: 39793387 DOI: 10.1016/j.jhazmat.2024.137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Particle-bound mercury (PBM) concentrations in particulate matter (PM), PM10 and PM2.5, were investigated during dust and non-dust events at urban and rural sites in Cabo Verde, Africa. During dust events, PBM averaged 35.2 pg m-3 (PM10) and 16.1 pg m-3 (PM2.5) compared to 15.9 pg m-3 (PM10) and 1.21 pg m-3 (PM2.5) during non-dust events representing 2.21- and 13.3-fold increases, respectively. The PM10/PM2.5 PBM ratio was 2.19 during dust and 13.1 in non-dust events, highlighting the role of coarse particles during non-dust periods. Air mass trajectories and elemental markers associate PBM sources to mineral dust, mining, oceanic emissions, and biomass burning. Health risk assessment indicates higher inhalation risk compared to dermal or ingestion pathways. By comparing the PBM concentrations during dust and non-dust events, for PM10, dust and long-range transport contributed about 63 % to the average PBM concentration in urban and 52 % in the rural areas and enriched PBM levels in PM2.5 by about 84 % (urban) and 94 % (rural). This result indicates that fine-mode PM is significantly enriched with PBM during dust events, elevating exposure risks and associated health impacts.
Collapse
Affiliation(s)
| | | | | | - Kerstin Schepanski
- Institute of Meteorology, Free University of Berlin, Berlin 12165, Germany
| | | | - Dušan Materić
- Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany.
| |
Collapse
|
2
|
Kumar A, Agarwal R, Kumar K, Chayal NK, Kumar G, Kumar R, Ali M, Srivastava A, Aryal S, Pandey T, Verma KS, Kumar D, Gajbhiye RL, Dhingra S, Pothuraju N, Peraman R, Bishwapriya A, Nandan R, Sharma A, Singh M, Ghosh AK. Mercury poisoning in women and infants inhabiting the Gangetic plains of Bihar: risk assessment. BMC Public Health 2025; 25:1275. [PMID: 40186162 PMCID: PMC11971891 DOI: 10.1186/s12889-025-22336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Mercury is a persistent, bio-accumulative, and hazardous contaminant. When released into the environment, it accumulates in water sediments, converting it to poisonous methylmercury that enters the food chain. The present study was carried out in habitations from the 11 districts of Bihar (India). In the study, n = 224 lactating women and their infants n = 172 infants participated. After obtaining the written informed consent, their breast milk, urine, and blood were collected for mercury estimation. The breastmilk content was measured in n = 181 subjects, in which 74% women had their breastmilk higher than the WHO permissible limit (< 1.7 μg/L), while 26% of the women had their breast milk below the permissible limit. The blood mercury content showed that 19% subjects had mercury content above the permissible limit [20 μg/L]. In urine mercury estimation, 49% women had mercury content above the permissible limit [10 μg/L], while, 51% women had the mercury content below the permissible limit. In the child's urine, 54% infants had their mercury content in urine above the permissible limit [10 μg/L] while 46% infants had content below the permissible limit. The study indicates that 20% of infants had the complete accumulation of mercury in their body which is highly toxic for them. However, the mercury content in the food (wheat) had the contamination with in the permissible limit [100 μg/kg]. There was a significant correlation found between the breastmilk and child's urine and mother's urine. The HQ study also correlates the mercury poisoning effect with 100% of the mother's and 66% of the infants exceeding the limit of non-carcinogenic risk. The Monte Carlo and multivariate study correlates the high health risk in the studied population due to mercury poisoning. The entire study concludes that population inhabitation in the Gangetic plains of Bihar are exposed to mercury poisoning which may be due to geogenic or anthropogenic sources. But, the levels of mercury contamination above the permissible limit could lead to neurogenerative changes in the lactating mothers and their infants. To control the present problem medical intervention is immediately required.
Collapse
Affiliation(s)
- Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India.
| | | | - Kanhaiya Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | - Govind Kumar
- Indian Institute of Technology- Bombay, Mumbai, Maharashtra, India
| | - Rajiv Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Abhinav Srivastava
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Siddhant Aryal
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | | | | | - Rahul Laxman Gajbhiye
- National Institute of Pharmaceutical Education and Research , Hajipur, Vaishali, Bihar, India
| | - Sameer Dhingra
- National Institute of Pharmaceutical Education and Research , Hajipur, Vaishali, Bihar, India
| | - Naresh Pothuraju
- National Institute of Pharmaceutical Education and Research , Hajipur, Vaishali, Bihar, India
| | - Ramalingam Peraman
- National Institute of Pharmaceutical Education and Research , Hajipur, Vaishali, Bihar, India
| | | | - Ranbir Nandan
- Department of Geology, Patna University, Patna, Bihar, India
| | - Ashok Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Manisha Singh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| |
Collapse
|
3
|
Ynalvez RA, Rangel RA, Gutierrez JA. Mercury toxicity resulting from enzyme alterations- minireview. Biometals 2025; 38:357-370. [PMID: 39820948 DOI: 10.1007/s10534-025-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Mercury is widely known for its detrimental effects on living organisms, whether in its elemental or bonded states. Recent comparative studies have shed light on the biochemical implications of mercury ingestion, both in low, persistent concentrations and in elevated acute dosages. Studies have presented models that elucidate how mercury disrupts healthy cells. Mercury's unique ability to interfere with crucial enzymatic processes at deposition sites is a vital feature of these models. The strong affinity for the sulfhydryl moieties of enzyme catalytic sites leads to enzyme inactivation through permanent covalent modifications. This inactivation can have catastrophic effects on an organism's metabolic functions. Moreover, it has been found that mercury's binding to sulfhydryl moieties is highly nonspecific and can occur in various ways. This review aimed to explore the effects of mercury on a broad spectrum of enzymes with a specific focus on how these alterations can detrimentally affect several metabolic pathways.
Collapse
Affiliation(s)
- Ruby A Ynalvez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, USA.
| | - Rene A Rangel
- Paul L Foster School of Medicine, Texas Tech Health Sciences Center El Paso, El Paso, TX, USA
| | - Jose A Gutierrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
5
|
Amin A, Saadatakhtar M, Mohajerian A, Marashi SM, Zamanifard S, Keshavarzian A, Molaee P, Keshmiri MS, Nikdoust F. Mercury-Mediated Cardiovascular Toxicity: Mechanisms and Remedies. Cardiovasc Toxicol 2025; 25:507-522. [PMID: 39904862 DOI: 10.1007/s12012-025-09966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Mercury is a significant environmental pollutant and public health threat, primarily recognized for its neurotoxic effects. Increasing evidence also highlights its harmful impact on the cardiovascular system, particularly in adults. Exposure to mercury through contaminated soil, air, or water initiates a cascade of pathological events that lead to organ damage, including platelet activation, oxidative stress, enhanced inflammation, and direct injury to critical cells such as cardiomyocytes and endothelial cells. Endothelial activation triggers the upregulation of adhesion molecules, promoting the recruitment of leukocytes and platelets to vascular sites. These interactions activate both platelets and immune cells, creating a pro-inflammatory, prothrombotic environment. A key outcome is the formation of platelet-leukocyte aggregates (PLAs), which exacerbate thromboinflammation and endothelial dysfunction. These processes significantly elevate cardiovascular risks, including thrombosis and vascular inflammation. This study offers a comprehensive analysis of the mechanisms underlying mercury-induced cardiotoxicity, focusing on oxidative stress, inflammation, and cellular dysfunction.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Khoramabad, Iran
| | | | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Somayeh Zamanifard
- Department of Cardiology, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Mohammad Sadegh Keshmiri
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farahnaz Nikdoust
- Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
6
|
Khan S, Muhammad M, Alosaimi EH, Al-Saidi HM, Algethami JS, Alhamami MAM. Ultrasensitive Fluorimetric Detection of Hg 2+ Using a Thiourea-Based Chemosensor. J Fluoresc 2025:10.1007/s10895-025-04193-2. [PMID: 40000550 DOI: 10.1007/s10895-025-04193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
In this work we have successfully designed and synthesized a fluorescence "turn-on" chemosensor, TS-1. The structure of TS-1 was thoroughly investigated using 1H NMR, FT-IR, and fluorescence spectroscopy was used for confirming its suitability for sensing applications. TS-1 exhibited a significant fluorescence enhancement upon binding with Hg2+ in a MeOH/H2O (5:95, v/v) solvent system, demonstrating high selectivity when tested against various competing metal ions, including Pb2+, Ca2+, Na+, Zn2+, Al3+, Cu2+, Ni2+, Mg2+, Cd2+, Mn2+, Co2+, Cr3+, Ag+, and K+. The sensing mechanism of TS-1 was explored in detail using fluorescence spectroscopy and Job's plot analysis. The results indicated the formation of a strong complex between TS-1 and Hg2+ ions, leading to the disruption of a photoinduced electron transfer (PET) process resulting in fluorescence enhancement. TS-1 demonstrated exceptional sensitivity, with a detection limit as low as 0.0029 µg mL-1, making it highly suitable for detecting trace levels of Hg2+ in aqueous media. The robust performance of TS-1 highlights its potential as an effective chemosensor for the detection of Hg2+. To validate the practical applicability of TS-1, recovery experiments were conducted using environmental and agricultural samples spiked with Hg2+ ions. The method achieved impressive recovery ranging from 93.00 ± 0.14% to 104.00 ± 0.54%, confirming its accuracy and reliability across diverse sample matrices.
Collapse
Affiliation(s)
- Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha, P.O Box 511, Bisha, 61922, Saudi Arabia
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran, 11001, Saudi Arabia
- Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran, 11001, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran, 11001, Saudi Arabia
| |
Collapse
|
7
|
Jiao SY, Li GP, Zhu KH, Jia X, Zhang HQ, Zhang LX, Liu YG. A novel reaction-based fluorescent probe with a nanomolar sensitivity for detection of Hg(II) and its multiple application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125203. [PMID: 39342722 DOI: 10.1016/j.saa.2024.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
An easily synthesized reaction-based probe for the fluorescence detection of Hg2+ ions using was reported. The designed probe exhibited "turn-on" fluorescence response towards Hg2+ ions via deprotection of the thiocarbonate-protecting group to alcohol in the HEPES/EtOH=8:2 (v/v, 5 mM, pH 7.4). The investigation results of probe Bzp-1 properties for Hg2+ detection indicated that probe Bzp-1 has satisfactory high selectivity and sensitivity. The detection limit of Bzp-1 for Hg2+ was found to be 4.2 nM. The recognition mechanism of Bzp-1 for Hg2+ was confirmed by ESI-MS. Moreover, the probe Bzp-1 has been successfully used to rapidly detect trace amounts of hazardous Hg2+ ions in real samples such as tap water, seafood and soil with good recoveries and less the relative standard deviations. Moreover, the Bzp-1 can also be used for fluorescence imagining of Hg2+ in living cells.
Collapse
Affiliation(s)
- Shu-Yan Jiao
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China.
| | - Gong-Pei Li
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Ke-Hua Zhu
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Xu Jia
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Hui-Qin Zhang
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Liu-Xue Zhang
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Yong-Gang Liu
- School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| |
Collapse
|
8
|
Dan F, Tang Q, Chen X, Liu L. Imino and Benzimidazolinyl Functionalized pyrano[2,3-b] Quinoline as a Dual-Responsive Probe for Detection of Mercury ion and Phosgene. J Fluoresc 2025:10.1007/s10895-024-04052-6. [PMID: 39903390 DOI: 10.1007/s10895-024-04052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
A dual-responsive probe 8-N, N-diethylamino-3-(1H-benzoimidazol-2-yl)-2H-pyrano[2,3-b]quinoline-2-imino (PQI), pyrano[2,3-b]quinoline as fluorophore, two nitrogen atoms as receptor sites, was developed for the colorimetric and fluorescence detection of Hg2+ and COCl2 in different solvents. PQI showed good recognition ability for Hg2+ via the absorbance decrease, fluorescence quenching by the formation of PQI-Hg2+ complex in MeOH/H2O (4/1, V/V). In addition, PQI could specifically react with COCl2 via intramolecular cyclization to form a cyclic urea product, which exhibited absorption and fluorescence emission changes, and then realized the detection of COCl2. Moreover, the optical responses of PQI to Hg2+ and COCl2 featured high selectivity, fast response (within 30 s), and low detection limit (73 nM for Hg2+ and 25 nM for COCl2, respectively). Furthermore, PQI could detect Hg2+ in real water samples with good recoveries and small relative standard deviations, and could be prepared as a PQI-loaded test strip to monitor gaseous COCl2 in an in-site, real-time, highly sensitive manner, demonstrating the practicability of PQI in Hg2+ and gaseous COCl2 detection.
Collapse
Affiliation(s)
- Feijun Dan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Qian Tang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China.
| | - Xin Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Speroni S, Polizzi E. Green Dentistry: State of the Art and Possible Development Proposals. Dent J (Basel) 2025; 13:38. [PMID: 39851612 PMCID: PMC11764173 DOI: 10.3390/dj13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Objectives: The objective of this narrative literature review was to highlight all dental procedures attributable to sectoral waste and to consider possible alternatives in line with the concept of sustainable development. Methods: An extensive search of electronic databases, including the Cochrane Oral Health Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, PubMed, EMBASE, and Google Scholar. Search words included 'Green Dentistry', 'Dental Pollution', 'Pollutants and Dentistry', 'Disinfectants and Dentistry', and 'High-tech Dentistry'. All of them allowed an assessment of the impact of dental practice on the external environment, and new frontiers currently applied or possibly applicable for green dentistry were included in the study. Non-full-text papers, animal studies, studies in languages other than English, and studies not related to the topic under consideration were excluded. Results: According to the inclusion criteria, 76 papers were selected for the study. The topics analyzed were the impact of dental practice on the outdoor environment, currently applied and potentially applicable principles of green dentistry, and the 'Four Rs' model (Rethink, Reduce, Reuse, and Recycle). Conclusions: With the limitations of the present study, the concept of green dentistry could be applicable provided that the measures already taken to reduce indoor and outdoor risk factors are continued and improved.
Collapse
Affiliation(s)
- Stefano Speroni
- Department of Dentistry, Dental School, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Elisabetta Polizzi
- Chair Center for Oral Hygiene and Prevention, Department of Dentistry, Dental School, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
10
|
Guimarães KLA, do Nascimento Andrade SJ, Liscano-Carreño AA, de Oliveira RB, Rodrigues LR. Systematic Review and Spatiotemporal Assessment of Mercury Concentration in Fish from the Tapajós River Basin: Implications for Environmental and Human Health. ACS ENVIRONMENTAL AU 2025; 5:86-100. [PMID: 39830718 PMCID: PMC11741060 DOI: 10.1021/acsenvironau.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025]
Abstract
This study reviews the literature on mercury (Hg) pollution in the Tapajós River basin from 1992 to 2022, focusing on the bioaccumulation in fish and the associated health risks to humans via ingesting contaminated species. Variability in Hg bioaccumulation was analyzed from both spatial (sub-basins) and ecological (trophic levels) perspectives. Mercury concentrations in fish muscle tissue and spatial differences in Hg levels were analyzed using nonparametric Kruskal-Wallis ANOVA and mapped with Inverse Distance Weighting. Additionally, a risk assessment of mercury contamination was conducted using the Target Hazard Quotient (THQ) and Maximum Safe Consuming Quantity (MSCQ) indices. Results indicate that Hg contamination is pervasive across the basin, with piscivorous fish showing the highest Hg levels, particularly in the middle Tapajós, upper Tapajs óand Teles Pires sub-basins, identified as contamination hotspots. Piscivorous species exhibited high Target Hazard Quotients (THQ), suggesting health risks for local consumers. The MSCQ values indicated that 75% of the fish species analyzed should be consumed in quantities lower than the current consumption daily average to avoid health risks.
Collapse
Affiliation(s)
- Karen L. Auzier Guimarães
- Programa
de Pós-Graduação em Biodiversidade e Biotecnologia
(REDE BIONORTE), Instituto de Saúde Coletiva (ISCO), Universidade Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé,
CEP, 68040-255 Santarém, Pará, Brazil
- Laboratório
de Genética & Biodiversidade (LGBio), Instituto de Ciências
da Educação (ICED), Universidade
Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé, CEP: 68040-255 Santarém, Pará, Brazil
| | - Sarah J. do Nascimento Andrade
- Laboratório
de Genética & Biodiversidade (LGBio), Instituto de Ciências
da Educação (ICED), Universidade
Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé, CEP: 68040-255 Santarém, Pará, Brazil
| | - Ahieska A. Liscano-Carreño
- Programa
de Pós-Graduação em Biodiversidade e Biotecnologia
(REDE BIONORTE), Instituto de Saúde Coletiva (ISCO), Universidade Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé,
CEP, 68040-255 Santarém, Pará, Brazil
- Laboratório
de Genética & Biodiversidade (LGBio), Instituto de Ciências
da Educação (ICED), Universidade
Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé, CEP: 68040-255 Santarém, Pará, Brazil
- Departamento
de Biología, Universidad de Oriente
(UDO), Avenida Universidad,
s/no, 6101 Cumaná, Sucre, Venezuela
| | - Ricardo B. de Oliveira
- Laboratório
de Bioprospecção e Biologia Experimental, Instituto
de Ciências da Educação (ICED), Universidade Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé,
CEP, 68040-255 Santarém, Pará, Brazil
| | - Luís R.
Ribeiro Rodrigues
- Programa
de Pós-Graduação em Biodiversidade e Biotecnologia
(REDE BIONORTE), Instituto de Saúde Coletiva (ISCO), Universidade Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé,
CEP, 68040-255 Santarém, Pará, Brazil
- Laboratório
de Genética & Biodiversidade (LGBio), Instituto de Ciências
da Educação (ICED), Universidade
Federal do Oeste do Pará (UFOPA), Rua Vera Paz, s/no, Salé, CEP: 68040-255 Santarém, Pará, Brazil
| |
Collapse
|
11
|
Panchenko PA, Efremenko AV, Polyakova AS, Feofanov AV, Ustimova MA, Fedorov YV, Fedorova OA. Application of RET Approach for Ratiometric Response Enhancement of ICT Fluorescent Hg 2+ Probe based on Crown-containing Styrylpyridinium Dye. Chem Asian J 2024; 19:e202400777. [PMID: 39312207 DOI: 10.1002/asia.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Indexed: 11/09/2024]
Abstract
Styrylpyridinium dye bearing azadithia-15-crown-5 ether receptor group SP and 4-alkoxy-1,8-naphthalimide fluorophore were linked using copper-catalyzed azide-alkyne cycloaddition click reaction to afford dyad compound NI-SP. Chemosensor NI-SP exhibited selective ratiometric fluorescent response to the presence of Hg2+ in aqueous solution due to the interplay between resonance energy transfer (RET) and intramolecular charge transfer (ICT) processes occurred upon excitation. The observed switching of the ratio of emission intensities in the blue and red channels R was higher than in the case of monochromophoric styrylpyridine derivative SP showing ratiometric response based on ICT mechanism only. Biological studies revealed that NI-SP penetrates into human lung adenocarcinoma A549 cells and accumulates in cytoplasm and lysosomes. When cells were pre-incubated with mercury (II) perchlorate, the ratio R was increased 2.6 times, which enables detection of intracellular Hg2+ ions and their quantitative analysis in the 0.7-6.0 μM concentration range.
Collapse
Affiliation(s)
- Pavel A Panchenko
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, Moscow, 125047, Russia
| | - Anastasija V Efremenko
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - Anna S Polyakova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Alexey V Feofanov
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gori 1/12, Moscow, 119234, Russia
| | - Maria A Ustimova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Yuri V Fedorov
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Olga A Fedorova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, Moscow, 125047, Russia
| |
Collapse
|
12
|
Flores-Calla SS, Villanueva-Salas JA, Diaz-Rodriguez K, Gonzales-Condori EG. Removal of Lead, Cadmium, and Mercury in Monometallic and Trimetallic Aqueous Systems Using Chenopodium album L. SCIENTIFICA 2024; 2024:6842159. [PMID: 39697621 PMCID: PMC11655145 DOI: 10.1155/sci5/6842159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/10/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
The presence of heavy metals in water represents a risk to the life of all species on the planet. Phytoremediation is an effective alternative to remove heavy metals from contaminated aqueous environments. In the present research, Chenopodium album L. was examined for the remediation of waters contaminated with Cd, Pb, and Hg. Studies were carried out in waters containing each metal separately (monometallic aqueous systems) and in mixtures (trimetallic aqueous systems). First, the adaptation of Chenopodium album to different concentrations of Hoagland's nutrient solution (HNS) was evaluated, then, a phytotoxicity study was carried out to determine the appropriate concentrations of each metal to test the tolerance of the plant during the accumulation study, and finally, the bioaccumulation capacity of Chenopodium album for Cd, Pb, and Hg was evaluated. Chenopodium album showed tolerance to levels of 5 mg/L Hg and 10 mg/L Cd and Pb in 25% HNS. The bioaccumulation tests showed that Chenopodium album can remediate Cd, Pb, and Hg contaminated waters in both monometallic and trimetallic aqueous systems. These findings suggest important future applications in the food industry for the production of Chenopodium album as we demonstrate that this species adapts and grows in hydroponic media. In particular, the ability of Chenopodium album to adapt to extreme conditions could be exploited for further studies on phytoremediation of heavy metals in river water, irrigation water, wastewater, effluents, and mine tailings.
Collapse
Affiliation(s)
- Susan S. Flores-Calla
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - José A. Villanueva-Salas
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Karla Diaz-Rodriguez
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Elvis G. Gonzales-Condori
- Grupo de Investigación en Biotecnología y Ciencia de Los Alimentos, Universidad Tecnológica del Perú, Av. Tacna y Arica 160, Arequipa, Peru
| |
Collapse
|
13
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
14
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Siwe H, Aerssens A, Flour MV, Ternest S, Van Simaey L, Verstraeten D, Kalmar AF, Leroux-Roels I, Meuleman P, Cools P. Microbiological evaluation of ultraviolet C light-emitting diodes for disinfection of medical instruments. Heliyon 2024; 10:e37281. [PMID: 39296042 PMCID: PMC11407951 DOI: 10.1016/j.heliyon.2024.e37281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Background Despite the many guidelines for reprocessing of medical instruments, challenges persist such as microbial resistance to biocides, corrosive effects on materials, and time-consuming reprocessing procedures. Ultraviolet (UV) C light-emitting diode (LED) chambers might provide a solution but the integration in healthcare is still in its infancy. Here, we evaluated the efficacy of a novel ZAPARAY™ UVC LED chamber as a time and energy-efficient alternative for reprocessing of medical instruments for which current disinfection protocols exhibit limitations. Methods We verified the disinfection efficacy of the UVC LED chamber on a Petri dish and contaminated several medical devices with Staphylococcus aureus ATCC 25923. The bacterial reduction was assessed after 5 min of UVC LED exposure. Additionally, we investigated the impact of rinsing before UVC exposure. Results We demonstrated a bacterial reduction of 9 log10 on a Petri dish. Non-rinsed dental tools exhibited varied reduction levels ranging from a 3.23 log10 to a 6.25 log10 reduction. Rinsing alone yielded an average reduction of 2.7 log10 and additional UVC exposure further reduced the bacterial load by an average of 3.65 log10. We showed an average 4.90 log10 reduction on thermistors, 2 log10 or less on orthodontic pliers, and no reduction on handpieces. Conclusions This study demonstrates that UVC LED chambers may be used as a standardized substitute for specific (manual) disinfection procedures of certain medical devices, offering a time-efficient and more sustainable alternative. However, its use should be preceded by efficacy testing for each specific type of instrument.
Collapse
Affiliation(s)
- Hannah Siwe
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
- Research and Development, eLEDricity, Hundelgemsesteenweg 446A, 9820, Merelbeke, Belgium
| | - Annelies Aerssens
- Department of Infection Control, Ghent University Hospital, Corneel Heymanslaan 10, entrance 12, Clinical Building 12E, 9000, Ghent, Belgium
| | - Mieke V Flour
- Research and Development, eLEDricity, Hundelgemsesteenweg 446A, 9820, Merelbeke, Belgium
| | - Silke Ternest
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
- Department of Infection Control, Ghent University Hospital, Corneel Heymanslaan 10, entrance 12, Clinical Building 12E, 9000, Ghent, Belgium
| | - Leen Van Simaey
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| | - Duncan Verstraeten
- Research and Development, eLEDricity, Hundelgemsesteenweg 446A, 9820, Merelbeke, Belgium
| | - Alain F Kalmar
- Department of Electronics and Information Systems, IBiTech, Ghent University, Technologiepark-Zwijnaarde 126, 9052, Ghent, Belgium
| | - Isabel Leroux-Roels
- Department of Infection Control, Ghent University Hospital, Corneel Heymanslaan 10, entrance 12, Clinical Building 12E, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| | - Piet Cools
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| |
Collapse
|
16
|
Zhang D, Xu F, Li J, Zhang R, Xia J. Bifunctional materials based on poly(3-aminocarbazole) for efficient and highly selective detection and adsorption of Hg 2+ in water. CHEMOSPHERE 2024; 363:142841. [PMID: 39004148 DOI: 10.1016/j.chemosphere.2024.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Herein, two poly(3-aminocarbazole) derivatives containing imidazole N-type acceptor were synthesized and reported, which are named PCPI and PCBI respectively. The fluorescence spectrum shows that PCPI (Em = 498 nm) and PCBI (Em = 398 nm) both have a strong fluorescence emission. It is worth noting that PCPI has a larger stokes shift of 153 nm, which is beneficial for improving the sensitivity of the sensor and enhancing its anti-interference ability. As expected, our experimental results indicate that both PCPI and PCBI can cause a specific response of "fluorescence OFF" to Hg2+ compared with other ions. And PCPI and PCBI both have excellent detection capabilities for Hg2+, with detection limits of 69.8 nM and 11.4 nM respectively. Moreover, PCBI exhibits excellent absorption of Hg2+ with a maximum absorption capacity of 477.8 mg/g at 20 °C. It indicates that PCBI can be used as a functional material for the detection and removal of Hg2+ in water.
Collapse
Affiliation(s)
- Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Feng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China
| | - Jianing Li
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Rui Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Instituted and Technology, Wuhan, 400073, Hubei, PR China.
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
17
|
Anemana TA, Buri M, Tay C. Iodide- and electrochemical assisted removal of mercury by Cirsium arvense from gold tailings in the Amansie West District, Ghana. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2266-2277. [PMID: 39120257 DOI: 10.1080/15226514.2024.2386302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Mercury (Hg) pollution in Ghana through mining has become a serious environmental challenge. This study investigates the potential of Cirsium arvense to photostabilize Hg using electrokinetic current with or without an iodide solution in gold mine tailings heavily contaminated through mining activities in southern Ghana. An initial Hg concentration of 9.60 mg/kg using cold vapor atomic absorption spectrometry (CVAAS) was determined. The biological absorption coefficient, bioconcentration factor, and translocation factor of Hg have been presented. Cirsium arvense therefore had a higher bioconcentration factor (BCF) of 2.6-5.15 mg/kg, and a transfer factor (TF) of 0.24-0.36 indicating a higher efficiency for phytostabilization. Both the rate and time of extractions of Hg from the tailings by Cirsium arvense are efficiently improved in the combined electric current and iodide treatment. Plant and electric current combined treatment and plant and iodide combined treatment had only 60 and 50% phytostabilization rates, respectively. The combined plant, iodide, and electric current treatment has proven to be superior with about >90% Hg removal rate. Therefore, the combined plant, iodide, and electric current treatment resulted in a higher Hg removal efficiency by Cirsium arvense in a shorter period due to higher solubilization rate and electromigration effects on Hg species.
Collapse
Affiliation(s)
| | - Mohammed Buri
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| | - Collins Tay
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| |
Collapse
|
18
|
Ngwenya S, Mashau NS, Mudau AG, Mhlongo SE, Traoré AN. Community Perceptions on Health Risks Associated With Toxic Chemical Pollutants in Kwekwe City, Zimbabwe: A Qualitative Study. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241260487. [PMID: 39132207 PMCID: PMC11316267 DOI: 10.1177/11786302241260487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024]
Abstract
Globally, environmental pollution continues to be a significant public health problem, and according to the World Health Organisation, pollution-induced deaths account for 23% of deaths yearly, which could be prevented if people lived in healthier environments. Despite implementing multilateral agreements and international treaties such as the Bamako, Basel, Rotterdam, Minamata, and Stockholm conventions, the United Nations Sustainable Development Goals, and national laws, toxic pollutants remain a serious environmental and public health problem in low-income countries. In the specific context of Kwekwe City, an industrial and mining area in Zimbabwe, where environmental and pollution-induced health problems associated with industries have been widely reported, this study was conducted in close collaboration with the local community. The study aimed to assess community members' perceptions regarding health risks associated with potentially toxic elements and cyanide pollution in Kwekwe City. An explorative cross-sectional study was conducted with key stakeholders and industrial settlements' residents. Face-to-face interviews with key informants and focus group discussions with residents and workers were used to gather data. A thematic approach was utilised in data analysis. Study participants, who played a crucial role in the research process, perceived that industrial pollution principally linked to cyanide, mercury and chromium posed significant environmental and health risks. This participatory approach in risk perception assessment is critical in providing insight into the scope of the problem and formulating intervention strategies. However, given that qualitative study results lack generalisability and replicability, quantitative studies need to be undertaken to determine environmental levels of toxic chemical pollutants as a complementary and validative measure.
Collapse
Affiliation(s)
- Sheunesu Ngwenya
- Department of Public Health, Faculty of Health Sciences, University of Venda, Thohoyandou, South Africa
| | - Ntsieni Stella Mashau
- Department of Public Health, Faculty of Health Sciences, University of Venda, Thohoyandou, South Africa
| | - Azwinndini Gladys Mudau
- Department of Public Health, Faculty of Health Sciences, University of Venda, Thohoyandou, South Africa
| | - Sphiwe Emmanuel Mhlongo
- Department of Earth Sciences, Faculty of Science Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Afsatou Ndama Traoré
- Department of Biochemistry and Microbiology, Faculty of Science Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
19
|
Deng W, Li S, Zhou M, Zheng M, Wang P, An Y. Ratiometric peptide-based fluorescent probe with large Stokes shift for detection of Hg 2+ and S 2- and its applications in cells imaging and smartphone-assisted recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124306. [PMID: 38640624 DOI: 10.1016/j.saa.2024.124306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this work, a new ratiometric fluorescent probe DKA was synthesized based on the double sides of lysine backbone conjugated with alanine and dansyl groups. DKA exhibited fluorescence ratiometric response for Hg2+ with high sensitivity (13.4 nM), specific selectivity (only Hg2+), strong anti-interference ability (no interference), fast recognition (within 60 s) and wide pH range (5-10). The stoichiometry of binding of DKA and Hg2+ was determined to be 1:1 via Job's plot, ESI-HRMS and 1HNMR titration analysis. Subsequently, the in situ formation of DKA-Hg2+ complex was used for highly selective detection of S2- as a novel fluorescence "on-off" probe, and the lowest detection limit for S2- was 12.9 nM. In addition, DKA possessed excellent cells permeation and low toxicity, and fluorescence imaging of Hg2+ and S2- was performed in living Hacat cells. Most importantly, the digital imaging using a smartphone color recognition APP indicated that DKA could semi-quantitatively and visually detected Hg2+ and S2- without expensive equipment.
Collapse
Affiliation(s)
- Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
20
|
Takemura K, Iwasaki W, Morita N, Ohmagari S, Takaki Y, Fukaura H, Kikunaga K. Determination of Low Concentrations of Mercury Based on the Electrodeposition Time. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:981. [PMID: 38869606 PMCID: PMC11173952 DOI: 10.3390/nano14110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Soil plays a crucial role in human health through its impact on food and habitation. However, it often contains toxic heavy metals, with mercury being particularly hazardous when methylated. Currently, high-sensitivity, rapid detection of mercury is achievable only through electrochemical measurements. These measurements require pretreatment of the soil sample and the preparation of a calibration curve tailored to the sample's condition. In this study, we developed a method to determine the environmental standard value of mercury content in soil by significantly reducing the pretreatment process. Our approach involves analyzing current peaks from electrodeposition times using specific electrodes and solvent settings. This method demonstrates low error rates under low concentration conditions and can detect mercury levels as low as 0.5 ppb in soil leachate and reagent dilution series. This research facilitates the determination of low mercury concentrations in solutions containing various soil micro-compounds without the need for calibration curves.
Collapse
Affiliation(s)
- Kenshin Takemura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu 841-0052, Saga, Japan; (W.I.); (N.M.); (S.O.); (K.K.)
| | - Wataru Iwasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu 841-0052, Saga, Japan; (W.I.); (N.M.); (S.O.); (K.K.)
| | - Nobutomo Morita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu 841-0052, Saga, Japan; (W.I.); (N.M.); (S.O.); (K.K.)
| | - Shinya Ohmagari
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu 841-0052, Saga, Japan; (W.I.); (N.M.); (S.O.); (K.K.)
| | - Yasunori Takaki
- Sakamoto Lime Industry Co., Ltd., 273-1 Simo, Tamana 865-0013, Kumamoto, Japan; (Y.T.); (H.F.)
| | - Hitomi Fukaura
- Sakamoto Lime Industry Co., Ltd., 273-1 Simo, Tamana 865-0013, Kumamoto, Japan; (Y.T.); (H.F.)
| | - Kazuya Kikunaga
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu 841-0052, Saga, Japan; (W.I.); (N.M.); (S.O.); (K.K.)
| |
Collapse
|
21
|
Li Z, Wu Z, Bo S, Chi J, Cui X, He W, Cui X, Liu Y, Zhao Y, Tong Y. Role of low-proportion, hydrophobic dissolved organic matter components in inhibiting methylmercury uptake by phytoplankton. CHEMOSPHERE 2024; 358:142104. [PMID: 38653399 DOI: 10.1016/j.chemosphere.2024.142104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Uptake of methylmercury (MeHg), a potent neurotoxin, by phytoplankton is a major concern due to its role as the primary pathway for MeHg entry into aquatic food webs, thereby posing a significant risk to human health. While it is widely believed that the MeHg uptake by plankton is negatively correlated with the concentrations of dissolved organic matter (DOM) in the water, ongoing debates continue regarding the specific components of DOM that exerts the dominant influence on this process. In this study, we employed a widely-used resin fractionation approach to separate and classify DOM derived from algae (AOM) and natural rivers (NOM) into distinct components: strongly hydrophobic, weakly hydrophobic, and hydrophilic fractions. We conduct a comparative analysis of different DOM components using a combination of spectroscopy and mass spectrometry techniques, aiming to identify their impact on MeHg uptake by Microcystis elabens, a prevalent alga in freshwater environments. We found that the hydrophobic components had exhibited more pronounced spectral characteristics associated with the protein structures while protein-like compounds between hydrophobic and hydrophilic components displayed significant variations in both distributions and the values of m/z (mass-to-charge ratio) of the molecules. Regardless of DOM sources, the low-proportion hydrophobic components usually dominated inhibition of MeHg uptake by Microcystis elabens. Results inferred from the correlation analysis suggest that the uptake of MeHg by the phytoplankton was most strongly and negatively correlated with the presence of protein-like components. Our findings underscore the importance of considering the diverse impacts of different DOM fractions on inhibition of phytoplankton MeHg uptake. This information should be considered in future assessments and modeling endeavors aimed at understanding and predicting risks associated with aquatic Hg contamination.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; School of Resources and Environment, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shao Bo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Xiaomei Cui
- Key Laboratory of Biodiversity and Eco-Environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Biodiversity and Eco-Environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
22
|
Gayathri J, Roniboss A, Sivalingam S, Sangeetha Selvan K. Electrochemical sensing of Hg(ii) in chicken liver and snail shell extract samples using novel modified SDA/MWCNT electrodes. RSC Adv 2024; 14:16056-16068. [PMID: 38769970 PMCID: PMC11103563 DOI: 10.1039/d4ra00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Heavy metal ions (Hg(ii)) were detected in fresh chicken liver and snail shell extract samples using novel synthesised SDA/MWCNT-modified electrodes. The synthesized N,N'-bis(salicylaldehyde)-1,2-diaminobenzene (SDA) ligand was characterized via FT-IR, 1H-NMR, and 13C-NMR spectroscopy. The hydroxyl and imine functional groups present in SDA act as active sites and bind to the MWCNT surface. The surface morphology of the modified SDA/MWCNT electrode exhibited a star-like crystal structure and the preconcentration of Hg(ii)-SDA/MWCNTs lead to a crystal cloud structure, as characterized by SEM with EDX. The enhancement of current and conductance of the SDA/MWCNT- and MWCNT-modified electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The conductance (σ) values for the MWCNT- and SDA/MWCNT-modified electrodes are 234.1 × 10-5 S cm-1 and 358.4 × 10-5 S cm-1, respectively, as determined by electrochemical impedance spectroscopy. Consequently, an electrochemical sensor with outstanding performance in terms of reproducibility, stability and anti-interference ability was fabricated. The stripping analysis of Hg(ii) was performed using square wave anodic stripping voltammetry (SWASV) and cyclic voltammetry (CV). Using SWASV, a linear range of Hg(ii) response was found to be 1.3 to 158 μg L-1, and the limit of detection (LOD) was 0.24 μg L-1. Finally, the results of the recovered value of Hg(ii) in freshly prepared chicken liver and snail shell extract samples by SWASV were compared with the atomic absorption spectroscopy (AAS) results.
Collapse
Affiliation(s)
- Jayagopi Gayathri
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - A Roniboss
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Sivakumar Sivalingam
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Kumar Sangeetha Selvan
- Department of Chemistry, Anna Adarsh College for Women Anna Nagar Chennai Tamil Nadu 600040 India
| |
Collapse
|
23
|
Erdemir S, Malkondu S, Oguz M, Kocak A. Monitoring Hg 2+ ions in food and environmental matrices using a novel ratiometric NIR fluorescent sensor via carbonothioate-deprotection reaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123859. [PMID: 38537802 DOI: 10.1016/j.envpol.2024.123859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Mercury toxicity and its environmental impact are significant concerns for public health and environmental protection. Therefore, the development of effective, rapid, and reliable detection methods for trace levels of Hg2+ is crucial. Herein, a cyanine dye bearing a carbonothioate group is reported as a potential NIR fluorescent probe for Hg2+ detection. The spectral properties of the free probe have been characterized by the presence and absence of a series of analytes. The addition of Hg2+ leads to significant changes in the fluorescence signal with distinct red coloration compared to other competing analytes, indicating that the probe is highly selective for Hg2+. The fluorescence quantum yield increases from 0.073 to 0.315. The detection limit is 0.10 μM, indicating the high sensitivity of the probe to low Hg2+ levels. The most prominent sensing features of the probe include NIR fluorescence, low cytotoxicity, ratiometric fluorescence response, and fast response compared to most of the currently available fluorescent probes. In addition, the probe can detect Hg2+ in actual samples such as foodstuff, soil, water, and live cells. Bioimaging studies have demonstrated that the present probe is highly efficient in targeting mitochondria and possesses good imaging abilities for detecting Hg2+ in cells. Therefore, these results suggest that it can be proposed as a powerful NIR fluorescent probe for the highly sensitive detection of Hg2+.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey.
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey
| | - Ahmet Kocak
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey
| |
Collapse
|
24
|
Zhang C, Nie S, Liu C, Zhang Y, Guo J. A Fluorescent Probe for Hg 2+ Specific Recognition Based on Xanthene and its Application in Food Detection and Cell Imaging. J Fluoresc 2024:10.1007/s10895-024-03711-y. [PMID: 38652359 DOI: 10.1007/s10895-024-03711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The mercury-loving unit aminothiourea was introduced into the xanthene fluorophore to synthesized the probe molecule NXH. NXH has a specific response to Hg2+, and with the addition of (0 ~ 50 µM) Hg2+, the fluorescence intensity of the probe solution was quenched from 2352 a.u. to about 308 a.u. NXH exhibited excellent detection performance of high sensitivity (LOD = 96.3 nM), real-time response (105 s), wide pH range (2.1 ~ 9.3), and strong anti-interference ability for Hg2+. At the same time, NXH has wide range of applications for Hg2+ detection, which can fluorescence imaging of Hg2+ in Hela cells and tea samples, and can also be made into Hg2+ detection test paper.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China.
| | - Shiru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| |
Collapse
|
25
|
Zhou M, Zheng M, Wang P, An Y. A novel ratiometric peptide-based fluorescent probe for sequential detection of Hg 2+ and S 2- ions and its application in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123829. [PMID: 38176191 DOI: 10.1016/j.saa.2023.123829] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
A new ratiometric peptide-based fluorescent probe DWPH was designed and synthesized, comprising dansyl fluorophore as a fluorescent dye, and tripeptide backbone (Trp-Pro-His-NH2) as a recognition group. The addition of Hg2+ caused the maximum emission peak of DWPH to blue shift from 560 nm to 510 nm. DWPH exhibited large Stokes shift (230 nm), satisfactory water solubility (100 % aqueous medium), good selectivity (only Hg2+), high sensitivity (24.6 nM), rapid response (within 50 s) and strong anti-interference ability for Hg2+ detection over a wide pH range (7-11). Additionally, the complex DWPH-Hg2+ as a relay response probe could also be applied to S2- according to displacement approach. Notably, the detection limit for S2- was calculated as 23.3 nM, exhibiting that DWPH showed great potential for environmental monitoring and bioimaging. In addition, DWPH were successfully used to determine Hg2+ and S2- in living cells and zebrafish based on excellent permeability and low cytotoxicity. What's more, the gradient concentration color changes of Hg2+ and S2- were combined with the smartphone APP to obtain red-green-blue (RGB) values, thus enabling rapid semi-quantitative detection of Hg2+ and S2- without expensive instruments.
Collapse
Affiliation(s)
- Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
26
|
Ma BC, Guo Y, Lin YR, Zhang J, Wang XQ, Zhang WQ, Luo JG, Chen YT, Zhang NX, Lu Q, Hui CY. High-throughput screening of human mercury exposure based on a low-cost naked eye-recognized biosensing platform. Biosens Bioelectron 2024; 248:115961. [PMID: 38150800 DOI: 10.1016/j.bios.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Whole-cell biosensors could be helpful for in situ disease diagnosis. However, their use in analyzing biological samples has been hindered by unstable responses, low signal enhancement, and growth inhibition in complex media. Here, we offered a solution by building a visual whole-cell biosensor for urinary mercury determination. With deoxyviolacein as the preferred signal for the mercury biosensor for the first time, it enabled the quantitative detection of urinary mercury with a favorable linear range from 1.57 to 100 nM. The biosensor can accurately diagnose urine mercury levels exceeding the biological exposure index with 95.8% accuracy. Thus, our study provided a biosensing platform with great potential to serve as a stable, user-friendly, and high-throughput alternative for the daily monitoring or estimating of urinary mercury.
Collapse
Affiliation(s)
- Bing-Chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Yi-Ran Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Juan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 828 Xinmin Street, Changchun, 130021, China
| | - Xiao-Qiang Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Wen-Qi Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Jin-Gan Luo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Yu-Ting Chen
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China
| | - Nai-Xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Qing Lu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| |
Collapse
|
27
|
An Y, Li B, Yu Y, Zhou Y, Yi J, Li L, Sun Y, Qiang Z, Liu Y, Wang P. A rapid and specific fluorescent probe based on aggregation-induced emission enhancement for mercury ion detection in living systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133331. [PMID: 38142657 DOI: 10.1016/j.jhazmat.2023.133331] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Mercury is a harmful heavy metal that seriously threatens the environment and organisms. In this study, we combined the aggregation-induced emission mechanism and the advantages of peptides to design a novel tetraphenylene (TPE)-based peptide fluorescent probe, TPE-Cys-Pro-Gly-His (TPE-CPGH), in which the sulfhydryl group of Cys in the peptide chain and the imidazolium nitrogen provided by His were used to mimic the Hg2+ binding site of metalloproteins. The β-fold formed by Pro-Gly was used to promote the spatial coordination of the probe with Hg2+ and the formation of the coordination complex aggregates, these changes led to the "turn on" response to Hg2+. The detection of Hg2+ by TPE-CPGH not only showed high specificity and sensitivity (LOD=46.2 nM), but also had the advantages of fast response and applicability for detection over a wide pH range. Additionally, TPE-CPGH effectively detected Hg2+ in environmental samples, living cells and organisms due to its low cytotoxicity, high water solubility and cell membrane permeability. More interestingly, TPE-CPGH was also mitigated Hg2+ exposure-induced oxidative stress toxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Yong An
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Bo Li
- Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China
| | - Yongzhi Yu
- Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China
| | - Yucen Zhou
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Jianfeng Yi
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Lepeng Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Yongqiang Sun
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Zhengze Qiang
- Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China.
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, PR China.
| |
Collapse
|
28
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
29
|
Webster AM, Pinion D, Pineda E, Aboueisha H, Hussein MH, Fawzy MS, Toraih EA, Kandil E. Elucidating the link between thyroid cancer and mercury exposure: a review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12841-12855. [PMID: 38273084 PMCID: PMC10881592 DOI: 10.1007/s11356-024-32031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a widely distributed and bioavailable metal of public health concern, with many known human toxicities, but data regarding mercury's influence on thyroid cancer (TC) is scarce. Mercury is known to impact several molecular pathways implicated in carcinogenesis, and its proclivity for bioaccumulation in the thyroid suggests a potential modulatory effect. We conducted a literature/systematic review of studies between 1995-2022 intending to define better and establish relationships between these two entities, congregate the evidence for mercury's potential role in thyroid carcinogenesis, and identify populations of interest for further study. Insufficient evidence precludes definitive conclusions on dietary mercury as a TC risk factor; however, several common mechanisms affected by mercury are crucial for TC development, including biochemical, endocrine, and reactive oxygen species effects. Quantitative analysis revealed associations between TC risk and mercury exposure. In three mercury studies, average urine levels were higher in TC patients, with a mean difference of 1.86 µg/g creatinine (95% CI = 0.32-3.41). In two studies investigating exposure to elevated mercury levels, the exposed group exhibited a higher risk of developing TC, with a relative risk of 1.90 (95% CI = 1.76-2.06). In three thyroid tissue studies, mercury levels (ppm) were higher in TC patients, averaging 0.14 (0.06-0.22) in cancerous cases (N = 178) and 0.08 (0.04-0.11) in normal thyroids (N = 257). Our findings suggest an association between mercury exposure and TC risk, implying a possible predisposing factor. Further research is necessary to reveal the clinical relevance of dietary and environmental mercury exposures in TC pathogenesis.
Collapse
Affiliation(s)
- Alyssa M Webster
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Dylan Pinion
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Eric Pineda
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hadeel Aboueisha
- Medical Education Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammad H Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Unit of Medical Research and Postgraduate Studies, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
30
|
Barbosa NV, Aschner M, Tinkov AA, Farina M, da Rocha JBT. Should ebselen be considered for the treatment of mercury intoxication? A minireview. Toxicol Mech Methods 2024; 34:1-12. [PMID: 37731353 PMCID: PMC10841883 DOI: 10.1080/15376516.2023.2258958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Mercury is a ubiquitous environmental contaminant and can be found in inorganic (Hg0, Hg+ and Hg2+) and organic forms (chiefly CH3Hg+ or MeHg+). The main route of human, mammals and bird exposure occurs via predatory fish ingestion. Occupational exposure to Hg0 (and Hg2+) can also occur; furthermore, in gold mining areas the exposure to inorganic Hg can also be high. The toxicity of electrophilic forms of Hg (E+Hg) is mediated by disruption of thiol (-SH)- or selenol (-SeH)-containing proteins. The therapeutic approaches to treat methylmercury (MeHg+), Hg0 and Hg2+ are limited. Here we discuss the potential use of ebselen as a potential therapeutic agent to lower the body burden of Hg in man. Ebselen is a safe drug for humans and has been tested in clinical trials (for instance, brain ischemia, noise-induce hearing loss, diabetes complications, bipolar disorders) at doses varying from 400 to 3600 mg per day. Two clinical trials with ebselen in moderate and severe COVID are also approved. Ebselen can be metabolized to an intermediate with -SeH (selenol) functional group, which has a greater affinity to electrophilic Hg (E+Hg) forms than the available thiol-containing therapeutic agents. Accordingly, as observed in vitro and rodent models in vivo, Ebselen exhibited protective effects against MeHg+, indicating its potential as a therapeutic agent to treat MeHg+ overexposure. The combined use of ebselen with thiol-containing molecules (e.g. N-acetylcysteine and enaramide)) is also commented, because they can have synergistic protective effects against MeHg+.
Collapse
Affiliation(s)
- Nilda V. Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
32
|
Nyamato GS. Perspectives and prospects of chelation extraction of heavy metals from wastewater: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:47-61. [PMID: 37452533 PMCID: wst_2023_182 DOI: 10.2166/wst.2023.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Heavy metals' contamination of water resources is a global environmental issue due to their detrimental effects on human health. To safeguard humans and the environment, toxic heavy metals must be removed from contaminated water because they cannot be broken down. Diverse technologies are employed to reduce the levels of heavy metals in wastewater. However, these technologies suffer from being either costly or ineffective, particularly when the effluent has extremely low residual amounts. This review outlines the main accomplishments and promising future directions for solvent extraction as one of the potential methods of extracting heavy metals from water, utilizing literature reports. In addition to reviewing some of the commercial chelating reagents now in use, this article also discusses some of the obnoxious effects on human health that are associated with exposure to heavy metals.
Collapse
Affiliation(s)
- George Simba Nyamato
- Department of Physical Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya E-mail:
| |
Collapse
|
33
|
Miao J, Feng S, Dou S, Ma Y, Yang L, Yan L, Yu P, Wu Y, Ye T, Wen B, Lu P, Li S, Guo Y. Association between mercury exposure and lung function in young adults: A prospective cohort study in Shandong, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162759. [PMID: 36907407 DOI: 10.1016/j.scitotenv.2023.162759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Mercury has been associated with many adverse health outcomes. However, limited studies have explored the association between blood mercury concentrations and lung function. OBJECTIVE To examine the association between blood mercury concentrations and lung function among young adults. METHODS We conducted a prospective cohort study among 1800 college students based on the Chinese Undergraduates Cohort in Shandong, China during August 2019 and September 2020. Lung function indicators including forced vital capacity (FVC, ml), forced expiratory volume in 1 s (FEV1, ml) and peak expiratory flow (PEF, ml) were collected with a spirometers (Chestgraph Jr. HI-101, Chest M.I., Tokyo, Japan). The blood mercury concentration was measured using inductively coupled plasma mass spectrometry. We divided participants into low (≤25 percentiles), intermediate (25-75 percentiles), and high (≥75 percentile) subgroups according to blood mercury concentrations. The multiple linear regression model was used to examine the associations between blood mercury concentrations and lung function changes. Stratification analyses by sex and fish consumption frequency were also conducted. RESULTS The results showed that each 2-fold increase in blood mercury concentrations was significantly associated with -70.75 ml [95 % confidence interval (CI): -122.35, -19.15] change in FVC, -72.68 ml (95%CI: -120.36, -25.00) in FEV1, and -158.06 ml (95%CI: -283.77, -32.35) in PEF. The effect was more pronounced among participants with high blood mercury and male participants. Participants who consumed fish more than once a week more likely to be affected by mercury. CONCLUSION Our study indicated that blood mercury was significantly associated with decreased lung function in young adults. It is necessary to implement corresponding measures to reduce the effect of mercury on the respiratory system, especially for men and people who consumed fish more than once a week.
Collapse
Affiliation(s)
- Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Yang Ma
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Pei Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Wu P, Zhang Y. Toward a Global Model of Methylmercury Biomagnification in Marine Food Webs: Trophic Dynamics and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6563-6572. [PMID: 37045790 DOI: 10.1021/acs.est.3c01299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Marine fish is an excellent source of nutrition but also contributes the most to human exposure to methylmercury (MMHg), a neurotoxicant that poses significant risks to human health on a global scale and is regulated by the Minamata Convention. To better predict human exposure to MMHg, it is important to understand the trophic transfer of MMHg in the global marine food webs, which remains largely unknown, especially in the upper trophic level (TL) biota that is more directly relevant to human exposure. In this study, we couple a fish ecological model and an ocean methylmercury model to explore the influencing factors and mechanisms of MMHg transfer in marine fish food webs. Our results show that available MMHg in the zooplankton strongly determines the MMHg in fish. Medium-sized fish are critical intermediaries that transfer more than 70% of the MMHg circulating in food webs. Grazing is the main factor to control MMHg concentrations in different size categories of fish. Feeding interactions affected by ecosystem structures determine the degree of MMHg biomagnification. We estimate a total of 6.1 metric tons of MMHg potentially digested by the global population per year through marine fish consumption. The model provides a useful tool to quantify human exposure to MMHg through marine fish consumption and thus fills a critical gap in the effectiveness evaluation of the convention.
Collapse
Affiliation(s)
- Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
35
|
Yadav V, Manjhi A, Vadakedath N. Mercury remediation potential of mercury-resistant strain Rheinheimera metallidurans sp. nov. isolated from a municipal waste dumping site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114888. [PMID: 37075645 DOI: 10.1016/j.ecoenv.2023.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
A novel mercury-resistant bacterium, designated strain DCL_24T, was isolated from the legacy waste at the Daddu Majra dumping site in Chandigarh, India. It showed resistance up to 300 µM of inorganic mercury (mercuric chloride). The isolate was found to be a Gram-negative, facultative anaerobic, motile, and rod-shaped bacterium that can grow at 4 - 30 °C (optimum 25 °C), pH 6.0 - 12.0 (optimum 7.0), and 0 - 4.0 % (w/v) NaCl (optimum 0.5 - 2.0 %). The 16 S rRNA gene-based phylogenetic analysis showed that DCL_ 24 T shared a 97.53 % similarity with itsºlosest type strain Rheinheimera muenzenbergensis E-49T. Insilico DNA-DNA hybridization and average nucleotide identity values were found to be 18.60 % and 73.77 %, respectively, between the genomes of DCL_24T and R. muenzenbergensis E-49T. The strain DCL_24T has 44.33 DNA G+C content (mol %). Based on the phenotypic, chemotaxonomic, and genotypic data, the strain DCL_24T represents a novel species within the genus Rheinheimera, for which the name Rheinheimera metallidurans sp. nov is proposed. The type strain is DCL_24T (MTCC13203T = NBRC115780T = JCM 35551 T). The isolate was found to volatilize and remove mercury efficiently, as demonstrated by X-ray film and dithizone-based colorimetric methods. Around 92 % of mercury removal was observed within 48 h. The mercury-resistant determinant mer operon consisting of merA, encoding the mercuric reductase enzyme, and transport and regulatory genes (merT, merP, merD, and merR) were found in the isolate. Relative expression analysis of merA at increasing concentrations of HgCl2 was confirmed by quantitative real-time PCR. These data indicate the merA-mediated reduction of toxic Hg2+ into a non-toxic volatile Hg0. The phytotoxicity assay performed using Arabidopsis thaliana seeds further demonstrated the mercury toxicity reduction potential of DCL_24T. The study shows that this novel isolate, DCL_24T, is an interesting candidate for mercury bioremediation. However, further studies are required to assess the bioremediation efficacy of the strain under the harsh environmental conditions prevailing in polluted sites.
Collapse
Affiliation(s)
- Vinay Yadav
- CSIR, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anjali Manjhi
- CSIR, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Nithya Vadakedath
- CSIR, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India.
| |
Collapse
|
36
|
Zhan W, Su Y, Chen X, Xiong H, Wei X, Huang X, Xiong Y. Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions. BIOSENSORS 2023; 13:bios13040421. [PMID: 37185496 PMCID: PMC10135736 DOI: 10.3390/bios13040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Hg2+ contamination in sewage can accumulate in the human body through the food chains and cause health problems. Herein, a novel aggregation-induced emission luminogen (AIEgen)-encapsulated hydrogel probe for ultrasensitive detection of Hg2+ was developed by integrating hydrophobic AIEgens into hydrophilic hydrogels. The working mechanism of the multi-fluorophore AIEgens (TPE-RB) is based on the dark through-bond energy transfer strategy, by which the energy of the dark tetraphenylethene (TPE) derivative is completely transferred to the rhodamine-B derivative (RB), thus resulting in intense photoluminescent intensity. The spatial networks of the supporting hydrogels further provide fixing sites for the hydrophobic AIEgens to enlarge accessible reaction surface for hydrosoluble Hg2+, as well create a confined reaction space to facilitate the interaction between the AIEgens and the Hg2+. In addition, the abundant hydrogen bonds of hydrogels further promote the Hg2+ adsorption, which significantly improves the sensitivity. The integrated TPE-RB-encapsulated hydrogels (TR hydrogels) present excellent specificity, accuracy and precision in Hg2+ detection in real-world water samples, with a 4-fold higher sensitivity compared to that of pure AIEgen probes. The as-developed TR hydrogel-based chemosensor holds promising potential as a robust, fast and effective bifunctional platform for the sensitive detection of Hg2+.
Collapse
Affiliation(s)
- Wenchao Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hanpeng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
37
|
Yang H, Macario-González L, Cohuo S, Whitmore TJ, Salgado J, Peréz L, Schwalb A, Rose NL, Holmes J, Riedinger-Whitmore MA, Hoelzmann P, O’Dea A. Mercury Pollution History in Tropical and Subtropical American Lakes: Multiple Impacts and the Possible Relationship with Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3680-3690. [PMID: 36802450 PMCID: PMC9996825 DOI: 10.1021/acs.est.2c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Sediment cores obtained from 11 tropical and subtropical American lakes revealed that local human activities significantly increased mercury (Hg) inputs and pollution levels. Remote lakes also have been contaminated by anthropogenic Hg through atmospheric depositions. Long-term sediment-core profiles revealed an approximately 3-fold increase in Hg fluxes to sediments from c. 1850 to 2000. Generalized additive models indicate that c. 3-fold increases in Hg fluxes also occurred since 2000 in the remote sites, while Hg emissions from anthropogenic sources have remained relatively stable. The tropical and subtropical Americas are vulnerable to extreme weather events. Air temperatures in this region have shown a marked increase since the 1990s, and extreme weather events arising from climate change have increased. When comparing Hg fluxes to recent (1950-2016) climatic changes, results show marked increases in Hg fluxes to sediments during dry periods. The Standardized Precipitation-Evapotranspiration Index (SPEI) time series indicate a tendency toward more extreme drier conditions across the study region since the mid-1990s, suggesting that instabilities in catchment surfaces caused by climate change are responsible for the elevated Hg flux rates. Drier conditions since c. 2000 appear to be promoting Hg fluxes from catchments to lakes, a process that will likely be exacerbated under future climate-change scenarios.
Collapse
Affiliation(s)
- Handong Yang
- Environmental
Change Research Centre, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Laura Macario-González
- Institut
für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany
- Tecnológico
Nacional de México−I. T. de la Zona Maya, Carretera Chetumal-Escárcega
Km 21.5, Ejido Juan Sarabia, 77965 Juan Sarabia, Quintana
Roo, Mexico
| | - Sergio Cohuo
- Institut
für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany
- Tecnológico
Nacional de México−I. T. Chetumal, Av. Insurgentes 330, Chetumal 77013, Quintana Roo, Mexico
| | - Thomas J. Whitmore
- University
of South Florida, 140 7th Avenue South, St. Petersburg, Florida 33701, United States
| | - Jorge Salgado
- Environmental
Change Research Centre, University College
London, Gower Street, London WC1E
6BT, U.K.
- Programa
de Ingeniería Civil, Grupo de Infraestructura y Desarrollo
Sostenible, Universidad Católica
de Colombia, Bogotá 111311, Colombia
- School
of Geography, University of Nottingham, Nottingham NG7 2RD, U.K.
- Smithsonian
Tropical Research Institute, P.O. Box 0843-03092, Balboa 0843-03092, Panama
| | - Liseth Peréz
- Institut
für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany
| | - Antje Schwalb
- Institut
für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, D-38106 Braunschweig, Germany
| | - Neil L. Rose
- Environmental
Change Research Centre, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Jonathan Holmes
- Environmental
Change Research Centre, University College
London, Gower Street, London WC1E
6BT, U.K.
| | | | - Philipp Hoelzmann
- Institut
für Geographische Wissenschaften, Freie Universität Berlin, Malteser Strasse 74-100, D-12249 Berlin, Germany
| | - Aaron O’Dea
- Smithsonian
Tropical Research Institute, P.O. Box 0843-03092, Balboa 0843-03092, Panama
| |
Collapse
|
38
|
Li J, Tian X, Zhao J, Cui L, Wei L, Gao Y, Li B, Li YF. Temporal changes of blood mercury concentrations in Chinese newborns and the general public from 1980s to 2020s. J Trace Elem Med Biol 2023; 76:127126. [PMID: 36623421 DOI: 10.1016/j.jtemb.2023.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Mercury (Hg) is a global pollutant that threatens the environment and human health. As a major producer, emitter and consumer of Hg, China is currently taking different measures to curb mercury pollution in accordance with the requirements of the Minamata Convention on Mercury. Blood Hg can reflect the human body's recent exposure to Hg. This review summarized the temporal changes in blood Hg concentrations in newborns and the general public in China from 1980 s to 2020 s. It was shown that the blood Hg concentrations of newborns showed the downward trend, although it was not significant. The general public Hg concentrations showed a trend of first increase and then decrease trend. Most of the cord blood Hg and venous blood Hg concentrations in China were lower than the USEPA reference concentration of 5.8 µg/L. Since low-dose prenatal Hg exposure can affect fetal and neonatal development, continuous attention needs to be paid to reduce maternal and neonatal Hg exposure. The information provided in this review may lay a basis for the effectiveness evaluation on the implementation of Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Jincheng Li
- College of Mechanical Engineering, & National Consortium for Excellence in Metallomics, Guangxi University, Nanning, Guangxi 530004, China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Wei
- College of Mechanical Engineering, & National Consortium for Excellence in Metallomics, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuxi Gao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Makaure J, Dube T, Stewart D, Razavi NR. Mercury Exposure in Two Fish Trophic Guilds from Protected and ASGM-Impacted Reservoirs in Zimbabwe and Possible Risks to Human Health. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:199-213. [PMID: 36639419 DOI: 10.1007/s00244-023-00977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Despite a surge in mercury (Hg) pollution from artisanal and small-scale gold mining (ASGM) in Zimbabwe's drainage basins, little is known about Hg trophodynamics in the country's major reservoirs. We analyzed fish tissues for total mercury (THg) and stable isotopes of nitrogen and carbon (δ15N and δ13C) to compare patterns of biomagnification between two trophic guilds from a protected reservoir (Chivero) and an ASGM-impacted reservoir (Mazowe) and assessed consequences for human and fish health. Mean dry weight THg concentrations were significantly higher for both piscivorous and herbivorous fishes from Mazowe reservoir compared to fishes from similar feeding guilds in Chivero. Trophic magnification slopes (TMS), inferred from linear regressions between log10[THg] and δ15N, revealed significant Hg biomagnification in Mazowe (TMS = 0.28; p < 0.05) and no evidence for Hg biomagnification in Chivero (TMS = - 0.005; p > 0.05). In Mazowe's piscivorous fishes, 32% had wet weight THg concentrations that surpassed 0.2 µg/g ww, a threshold for susceptible human populations and biochemical and gene expression alterations in fish. In addition, 17% of Mazowe's piscivorous fishes surpassed the UNEP THg toxicity threshold for human consumption (0.5 µg/g ww). To reduce exposure to Hg toxicity in humans, the maximum fish consumption for piscivorous species from Mazowe reservoir should not exceed 431 g/week for both adult male and female consumers. Our findings demonstrate the importance of creating freshwater-protected areas to prevent direct Hg contamination of aquatic ecosystems and the need for health agencies to provide fish consumption advisories to vulnerable communities.
Collapse
Affiliation(s)
- Joseph Makaure
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Trevor Dube
- Department of Applied Biosciences and Biotechnology, Midlands State University, Gweru, Zimbabwe
| | - Donald Stewart
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - N Roxanna Razavi
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| |
Collapse
|
40
|
Patiño-Jurado B, Gaviria-Calderón A, Botero Cadavid JF, Garcia-Sucerquia J. Competitive fiber optic sensors for the highly selective detection of mercury in water. APPLIED OPTICS 2023; 62:592-600. [PMID: 36821262 DOI: 10.1364/ao.477340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Two competitive fiber optic sensors for the rapid, sensitive, and highly selective detection of mercury in water are designed, fabricated, and evaluated. A wavelength-modulated sensor based on an etched single-mode-multimode-single-mode (E-SMS) optical fiber structure and an intensity-modulated sensor based on fiber optics with a slanted end were fabricated by readily reproducible methods. The sensors were activated with a nanostructured chitosan/maghemite (CS/Fe2O3) composite thin film for the selective detection of mercury ions (Hg2+) in water. The functionalized sensors were implemented to experimentally validate the potential of CS/Fe2O3 thin film for optical sensing of Hg2+ in drinking water. The sensor based on the E-SMS structure exhibited a wavelength-modulated response with a sensitivity of up to 290 pm/(µg/mL), and the sensor based on the slanted end structure showed an intensity-modulated response with a sensitivity of -0.07dBm/(µg/mL). Validation of the experimental assay method proves the ability to selectively detect chemical interactions as low as 1 ng/mL (one part per billion) of Hg2+ in water for both sensors. The high specificity of the two sensors was demonstrated by evaluating their responses to a number of potentially interfering metal ions in water. These sensors are cost-effective, simple to construct, and easy to implement, which makes them very promising for the on-site detection and monitoring of mercury in bodies of water.
Collapse
|
41
|
Nayeem A, Ali MF, Shariffuddin JH. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114306. [PMID: 36191616 DOI: 10.1016/j.envres.2022.114306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
Collapse
Affiliation(s)
- Abdullah Nayeem
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Mohd Faizal Ali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Jun Haslinda Shariffuddin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia; Centre for Sustainability of Ecosystem & Earth Resources, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
42
|
Álvarez-Fernández N, Martínez Cortizas A, López-Costas O. Structural equation modelling of mercury intra-skeletal variability on archaeological human remains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158015. [PMID: 35970463 DOI: 10.1016/j.scitotenv.2022.158015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Archaeological burial environments are useful archives to investigate the long-term trends and the behaviour of mercury. In order to understand the relationship between mercury, skeletons and soil, we applied Partial Least Squares - Structural Equation Modelling (PLS-SEM) to a detailed, multisampling (n = 73 bone samples +37 soil samples) design of two archaeological graves dating to the 6th to 7th centuries CE (A Lanzada site, NW Spain). Mercury content was assessed using a DMA-80, and data about bone structure and the grave soil/sediments were obtained using FTIR-ATR spectroscopy. The theoretical model is supported by proxies of bone structure, grave soil/sediments, and location of the bone within the skeleton. The general model explained 61 % of mercury variance. Additionally, Partial Least Square - Prediction Oriented Segmentation (PLS-POS) was also used to check for segmentation in the dataset. POS revealed two group of samples depending on the bone phase (hydroxyapatite or collagen) controlling the Hg content, and the corresponding models explained 86 % and 76 % of Hg variance, respectively. The results suggest that mercury behaviour in the graves is complex, and that mercury concentrations were influenced by i) the ante-mortem status of the bone matrix, related to the weight of each bone phase; ii) post-mortem evolution of bone crystallinity, where bone loses mercury with increasing alteration; and iii) the proximity of the skeletal pieces to mercury target organs, as decomposition and collapse of the thoracic and abdominal soft tissues causes a secondary mercury enrichment in bones from the body trunk during early post-mortem. Skeletons provide a source of mercury to the soil whereas soil/sediments contribute little to skeletal mercury content.
Collapse
Affiliation(s)
- Noemi Álvarez-Fernández
- CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 16782, Spain; Boscalia Technologies S.L., Spain.
| | - Antonio Martínez Cortizas
- CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 16782, Spain; Bolin Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
| | - Olalla López-Costas
- EcoPast (GI-1553), CRETUS, Area of Archaeology, Department of History, Universidade de Santiago de Compostela, 15782, Spain; Archaeological Research Laboratory, Stockholm University, Wallenberglaboratoriet, SE-10691, Sweden; Laboratorio de Antropología Física, Facultad de Medicina, Universidad de Granada, 18012, Spain
| |
Collapse
|
43
|
Gangatharan Vinoth Kumar G, Bhaskar R, Harathi J, Jayaprakash N. Selective colorimetric signaling of mercury (II) ions using a quinoline-based probe with INHIBIT logic gate behavior and test strip. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Aggarwal R, Kumar S, Virender, Kumar A, Mohan B, Sharma D, Kumar V. Development of heterocyclic 2,7-diamino-3-phenylazo-6-phenylpyrazolo[1,5-a]pyrimidine as antimicrobial agent and selective probe for UV–visible and colorimetric detection of Hg2+ ions. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Li Z, Chi J, Shao B, Wu Z, He W, Liu Y, Sun P, Lin H, Wang X, Zhao Y, Chen L, Tong Y. Inhibition of methylmercury uptake by freshwater phytoplankton in presence of algae-derived organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120111. [PMID: 36075338 DOI: 10.1016/j.envpol.2022.120111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
As the first step of methylmercury (MeHg) entry into the aquatic food webs, MeHg uptake by phytoplankton is crucial in determining the final human MeHg exposure risks. MeHg availability to plankton is regulated by dissolved organic matter (DOM) in the water, while the extent of the impacts can vary largely based on the sources of DOM. Here, we investigated impacts of DOM sources on MeHg bioconcentration by three freshwater phytoplankton species (i.e. S. quadricauda, Chlorella sp., Microcystis elabens) in the laboratory system. We found that algae-derived DOM would prohibited the cellular MeHg bioconcentration by a percent up to 77-93%, while the soil-derived DOM didn't show similar inhibition effects. DOM characterization by the excitation‒emission matrices, Fourier transform infrared spectrum, ultra‒high performance liquid chromatography‒tandem quadrupole time of flight mass spectrometry shown that the molecular size of S-containing compound, rather than thiol concentration, has played a crucial role in regulating the MeHg uptake by phytoplankton. Climate change and increasing nutrient loadings from human activities may affect plankton growth in the freshwater, ultimately changing the DOM compositions. Impacts of these changes on cellular MeHg uptakes by phytoplankton should be emphasized when exploring the aquatic Hg cycling and evaluating their risks to human beings and wild life.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huiming Lin
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Long Chen
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
46
|
Pabón SE, Benítez B R, Sarria Villa RA, Gallo Corredor JA. Mercury (II) removal from aqueous solutions by iron nanoparticles synthesized from extract of Eucalyptus grandis. Heliyon 2022; 8:e11429. [DOI: 10.1016/j.heliyon.2022.e11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
|
47
|
Nurmyradova M, Tilki T, Dede B, Sezgin B. Synthesis, characterization, theoretical calculations of novel benzoic acid based azo molecules and their use in effective extraction of Hg(II) ions from aqueous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Traiwongsa N, Suren S, Pancharoen U, Nootong K, Maneeintr K, Punyain W, Lothongkum AW. Mechanisms of Mercury Ions Separation by Non-toxic Organic Liquid Membrane via DFT, Thermodynamics, Kinetics and Mass Transfer Model. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Kong EDH, Chau JHF, Lai CW, Khe CS, Sharma G, Kumar A, Siengchin S, Sanjay MR. GO/TiO 2-Related Nanocomposites as Photocatalysts for Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193536. [PMID: 36234665 PMCID: PMC9565631 DOI: 10.3390/nano12193536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Water pollution has been a prevalent issue globally for some time. Some pollutants are released into the water system without treatment, making the water not suitable for consumption. This problem may lead to more grave problems in the future including the destruction of the ecosystem along with the organisms inhabiting it, and illness and diseases endangering human health. Conventional methods have been implemented to remove hazardous pollutants such as dyes, heavy metals, and oil but are incapable of doing so due to economic restraints and the inability to degrade the pollutants, leading to secondary pollution. Photocatalysis is a more recently applied concept and is proven to be able to completely remove and degrade pollutants into simpler organic compounds. Titanium dioxide (TiO2) is a fine example of a photocatalyst owing to its cost-effectiveness and superb efficiency. However, issues such as the high recombination rate of photogenerated electrons along with positive holes while being only limited to UV irradiation need to be addressed. Carbonaceous materials such as graphene oxide (GO) can overcome such issues by reducing the recombination rate and providing a platform for adsorption accompanied by photocatalytic degradation of TiO2. The history and development of the synthesis of GO will be discussed, followed by the methods used for GO/TiO2 synthesis. The hybrid of GO/TiO2 as a photocatalyst has received some attention in the application of wastewater treatment due to its efficiency and it being environmentally benign. This review paper thereby aims to identify the origins of different pollutants followed by the sickness they may potentially inflict. Recent findings, including that GO/TiO2-related nanocomposites can remove pollutants from the water system, and on the photodegradation mechanism for pollutants including aromatic dyes, heavy metal and crude oil, will be briefly discussed in this review. Moreover, several crucial factors that affect the performance of photocatalysis in pollutant removal will be discussed as well. Therefore, this paper presents a critical review of recent achievements in the use of GO/TiO2-related nanocomposites and photocatalysis for removing various pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Ethan Dern Huang Kong
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
- Correspondence: (E.D.H.K.); (C.W.L.)
| | - Jenny Hui Foong Chau
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (E.D.H.K.); (C.W.L.)
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Gaurav Sharma
- Nanshan District Key Lab for Biopolymer and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
- International Research Center of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- School of Science and Technology, Global University, Saharanpur 247001, India
| | - Amit Kumar
- International Research Center of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- School of Science and Technology, Global University, Saharanpur 247001, India
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Mavinkere Rangappa Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
50
|
Khan M, Soylak M. Deep Eutectic Solvent Based Liquid-Liquid Microextraction of Mercury in Water, Hair and Fish with Spectrophotometric Determination: A Green Protocol. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mansoor Khan
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Turkey
| |
Collapse
|