1
|
Wang Y, Wang Z, Wang K, Liang Z, Wang Q, Ding F, Lu Y, Su C. Insight into the evolution of phosphorous conversion, microbial community and functional gene expression during anaerobic co-digestion of food waste and excess sludge with spicy substances exposure. CHEMOSPHERE 2025; 371:144053. [PMID: 39743152 DOI: 10.1016/j.chemosphere.2024.144053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed. The results showed the addition of garlic and chili promoted the release of protein in the soluble chemical oxygen demand. Secondly, the addition of garlic and chili up-regulated the relative abundances of key coding genes pstS, pstA, pstB and pstC. The relative abundances of the pstS and pstC genes increased by 0.0113% and 0.0021%, respectively, when 10 g garlic was added compared with no garlic. Furthermore, with respect to phosphorus conversion, the addition of garlic inhibited the conversion of solid phosphorus to gaseous phosphorus, whereas the addition of chili had the opposite effect. Meanwhile, garlic and chili inhibited the expression of key coding genes in phosphofructokinase. This work provides new insights into the phosphorus conversion and microbial metabolism in the process of anaerobic co-digestion of FW and ES under the influence of spicy substances.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Kaiyi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhu Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qing Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Fengxiu Ding
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Wang S, Hu H, Tanveer M, Ji M, Chai W, Wu H, Xie H, Hu Z. Characteristics and mechanisms of phosphine production in sulfur-based constructed wetlands. WATER RESEARCH 2024; 256:121639. [PMID: 38657306 DOI: 10.1016/j.watres.2024.121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Phosphine (PH3) is an important contributor to the phosphorus cycle and is widespread in various environments. However, there are few studies on PH3 in constructed wetlands (CWs). In this study, lab-scale CWs and batch experiments were conducted to explore the characteristics and mechanisms of PH3 production in sulfur-based CWs. The results showed that the PH3 release flux of sulfur-based CWs varied from 0.86±0.04 ng·m-2·h-1 to 1.88±0.09 ng·m-2·h-1. The dissolved PH3 was the main PH3 form in CWs and varied from 2.73 μg·L-1 to 4.08 μg·L-1. The matrix-bound PH3 was a staging reservoir for PH3 and increased with substrate depth. In addition, the sulfur-based substrates had a significant improvement on PH3 production. Elemental sulfur is more conducive to PH3 production than pyrite. Moreover, there was a significant positive correlation between PH3 production, the dsrB gene, and nicotinamide adenine dinucleotide (NADH). NADH might catalyze the phosphate reduction process. And the final stage of the dissimilatory sulfate reduction pathway driven by the dsrB gene might also provide energy for phosphate reduction. The migration and transformation of PH3 increased the available P (Resin-P and NaHCO3-P) from 35 % to 56 % in sulfur-based CW, and the P adsorption capacity was improved by 12 %. The higher proportion of available P increased the plant uptake rate of P by 17 %. This study improves the understanding of the phosphorus cycle in sulfur-based CW and provides new insight into the long-term stable operation of CWs.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haodong Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Muhammad Tanveer
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Mingde Ji
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Weiqiang Chai
- Weishan District Branch of Jining Ecological Environment Bureau, Jining City, Shandong Province 277600, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Huijun Xie
- Field Monitoring Station of the Ministry of Education for the East Route of the South-to-North Water Transfer Project, Shandong University, Jinan 250100, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
3
|
Reyes-Umana V, Ewens SD, Meier DAO, Coates JD. Integration of molecular and computational approaches paints a holistic portrait of obscure metabolisms. mBio 2023; 14:e0043123. [PMID: 37855625 PMCID: PMC10746228 DOI: 10.1128/mbio.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Microorganisms are essential drivers of earth's geochemical cycles. However, the significance of elemental redox cycling mediated by microorganisms is often underestimated beyond the most well-studied nutrient cycles. Phosphite, (per)chlorate, and iodate are each considered esoteric substrates metabolized by microorganisms. However, recent investigations have indicated that these metabolisms are widespread and ubiquitous, affirming a need to continue studying the underlying microbiology to understand their biogeochemical effects and their interface with each other and our biosphere. This review focuses on combining canonical techniques of culturing microorganisms with modern omic approaches to further our understanding of obscure metabolic pathways and elucidate their importance in global biogeochemical cycles. Using these approaches, marker genes of interest have already been identified for phosphite, (per)chlorate, and iodate using traditional microbial physiology and genetics. Subsequently, their presence was queried to reveal the distribution of metabolic pathways in the environment using publicly available databases. In conjunction with each other, computational and experimental techniques provide a more comprehensive understanding of the location of these microorganisms, their underlying biochemistry and genetics, and how they tie into our planet's geochemical cycles.
Collapse
Affiliation(s)
- Victor Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Sophia D. Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - David A. O. Meier
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Liu Q, Niu X, Zhang D, Ye X, Tan P, Shu T, Lin Z. Phototransformation of phosphite induced by zinc oxide nanoparticles (ZnO NPs) in aquatic environments. WATER RESEARCH 2023; 245:120571. [PMID: 37683523 DOI: 10.1016/j.watres.2023.120571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.
Collapse
Affiliation(s)
- Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xingyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Peibing Tan
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Ting Shu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
5
|
Liu W, Zhang Y, Yu M, Xu J, Du H, Zhang R, Wu D, Xie X. Role of phosphite in the environmental phosphorus cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163463. [PMID: 37062315 DOI: 10.1016/j.scitotenv.2023.163463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
In modern geochemistry, phosphorus (P) is considered synonymous with phosphate (Pi) because Pi controls the growth of organisms as a limiting nutrient in many ecosystems. The researchers therefore realised that a complete P cycle is essential. Limited by thermodynamic barriers, P was long believed to be incapable of redox reactions, and the role of the redox cycle of reduced P in the global P cycling system was thus not ascertained. Nevertheless, the phosphite (Phi) form of P is widely present in various environments and participates in the global P redox cycle. Herein, global quantitative evidences of Phi are enumerated and the early origin and modern biotic/abiotic sources of Phi are elaborated. Further, the Phi-based redox pathway for P reduction is analysed and global multienvironmental Phi redox cycle processes are proposed on the basis of this pathway. The possible role of Phi in controlling algae in eutrophic lakes and its ecological benefits to plants are proposed. In this manner, the important role of Phi in the P redox cycle and global P cycle is systematically and comprehensively identified and confirmed. This work will provide scientific guidance for the future production and use of Phi products and arouse attention and interest on clarifying the role of Phi in the environmental phosphorus cycle.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengqin Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jinying Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Hu Du
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ru Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
6
|
Fan Y, Niu X, Zhang D. Analysis of the process and factors influencing microbial phosphine production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27293-7. [PMID: 37243771 DOI: 10.1007/s11356-023-27293-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/29/2023]
Abstract
The process of phosphine production by phosphate-reducing bacteria Pseudescherichia sp. SFM4 has been well studied. Phosphine originates from the biochemical stage of functional bacteria that synthesize pyruvate. Stirring the aggregated bacterial mass and supplying pure hydrogen could lead to an increase of 40 and 44% phosphine production, respectively. Phosphine was produced when bacterial cells agglomerated in the reactor. Extracellular polymeric substances secreted on microbial aggregates promoted the formation of phosphine due to the presence of groups containing phosphorus element. Phosphorus metabolism gene and phosphorus source analysis implied that functional bacteria used anabolic organic phosphorus, especially containing carbon-phosphorus bonds, as a source with [H] as electron donor to produce phosphine.
Collapse
Affiliation(s)
- Yimin Fan
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| |
Collapse
|
7
|
Kim K, Kim C, Yoo J, Kim JR, Kim YH, Lee SE. Phosphine gas in the dark induces severe phytotoxicity in Arabidopsis thaliana by increasing a hypoxia stress response and disrupting the energy metabolism: Transcriptomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130141. [PMID: 36241498 DOI: 10.1016/j.jhazmat.2022.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Phosphine (PH3) is an ideal fumigant alternative on methyl bromide (MB) as MB has been classified as an ozone-depleting substance. However, several challenges limit its efficient use in crop production, including the emergence of PH3-resistant insect pests and the incidence of phytotoxic effects on nursery plants. Therefore, this study aims to elucidate the mechanism underlying PH3 phytotoxicity in plants using transcriptomic techniques. Fumigation with 2 g/m3 PH3 induced phytotoxic effects in A. thaliana, as evidenced by a decrease in growth and vegetation indices compared to the control group. Transcriptomic analysis revealed that PH3 fumigation phytotoxicity responses in A. thaliana involve genes related to hypoxia stress and energy metabolism. Additionally, pretreatment with ethylene induced pre-adaptation to hypoxia under light conditions during fumigation effectively suppressed the phytotoxic effects of PH3 in A. thaliana by increasing the expression of hypoxia-adaptive genes. Moreover, the phytotoxicity of PH3 was also confirmed in pumpkin (Cucurbita moschata Duch.), and was dependent on light. Overall, our findings showed that fumigation under light conditions and ethylene pretreatment could be used to minimize PH3-induced phytotoxic effects in plants.
Collapse
Affiliation(s)
- Kyeongnam Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinsung Yoo
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Jun-Ran Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yoon-Ha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Nader W, Zahm A, Jaschik J. Phosphonic acid in plant-based food and feed products – Where does it come from? Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Wang B, Shen Q, Han C, Zheng Y, Wang Z, Liu C, Zhang L, Ren J. New insights into the growth response of the macrophyte Vallisneria natans exposed to phosphite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158189. [PMID: 35995166 DOI: 10.1016/j.scitotenv.2022.158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Renewed interest in phosphite, an analog of phosphate, has increased due to its widespread distribution and increasing abundance in many waterbodies. However, up until recently very little is known about their ecological effects on aquatic organisms. Herein we studied the effects of phosphite via root and foliar exposure on the growth responses of the dominant pioneer macrophyte V. natans. Overall, both exposures of phosphite to V. natans resulted in significant reductions in the leaf length, root length, relative growth rate (RGR) and photosynthetic pigments, suggesting phosphite had an inhibitory effect on the plant growth. Our results further confirmed phosphite could induce the oxidative stresses in the V. natans cells, as indicated by the significantly increased intracellular enzyme activities i.e. superoxide dismutase activity (SOD) and malondialdehyde (MDA). Microscopic evidence also showed phosphite penetrated the cell membrane and destroyed membrane integrity under high phosphite stress. Besides, V. natans leaves exhibited intuitive deterioration symptoms, which seemed to be more sensitive to phosphite toxicity than roots. It is concluded that the increased abundance of phosphite in waterbodies cannot be utilized as a bioavailable P source but impose adverse physiological and metabolic limitations to plant growth, which should be receive more attention in the ecological risk assessment. Our result is necessary to build a comprehensive understanding of phosphite biogeochemical behaviors in aquatic ecosystems.
Collapse
Affiliation(s)
- Baoying Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ye Zheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaode Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinghua Ren
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210018, China
| |
Collapse
|
10
|
Bains W, Petkowski JJ, Seager S, Ranjan S, Sousa-Silva C, Rimmer PB, Zhan Z, Greaves JS, Richards AMS. Venusian phosphine: a ‘wow!’ signal in chemistry? PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1998051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sukrit Ranjan
- Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, USA
- Department of Astronomy and Astrophysics, Northwestern University, Evanston, USA
- Blue Marble Space Institute of Science, Seattle, USA
| | | | - Paul B. Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane S. Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, UK
| | - Anita M. S. Richards
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Yu S, Liu S, Yao X, Ning P. Enhanced biological phosphorus removal from wastewater by current stimulation coupled with anaerobic digestion. CHEMOSPHERE 2022; 293:133661. [PMID: 35063560 DOI: 10.1016/j.chemosphere.2022.133661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The integrated wastewater discharge standard for phosphorus has become increasingly strict. In this study, a synergetic current stimulation system coupled with anaerobic digestion was used to enhance phosphorus removal from wastewater. The effects of current intensity, pH, and methane (CH4) synthesis on phosphorus removal were investigated. As direct current was supplied to an anaerobic bioreactor, the removal of sewage total phosphorus was significantly enhanced. The conditions of weak acid and low negative oxidation-reduction potential facilitated the phosphorus removal from wastewater. The optimal parameters for the dephosphorisation process were a current intensity of 100 mA and a pH of 6.0. When the anaerobic digestion process was inhibited by the reagent 2-bromoethanesulphonic acid sodium (BES), abundant metabolic intermediates accumulated and methanogenesis clearly decreased. Affected by the current stimulation and the inhibition of CH4 synthesis, the formation of gaseous phosphine (PH3) was greatly improved, and then PH3 escaped from the digestion mixture after it was absorbed by microbial cells. The maximum PH3 content of the digestion gas was 41.8 mg m-3 in the reactor supplied with a current of 100 mA and BES addition of 10 mmol L-1, and the phosphorus removal in this digestion system reached 55.2% at 6 d; however, the removal in the conventional anaerobic digestion system was only 17.7% after the same amount of time. Finally, a pathway of enhanced anaerobic biological phosphorus removal was proposed to better understand the inherent synergistic mechanism.
Collapse
Affiliation(s)
- Shuo Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shugen Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiaofei Yao
- Panzhihua University, Panzhihua, 617000, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
12
|
Bains W, Petkowski JJ, Seager S, Ranjan S, Sousa-Silva C, Rimmer PB, Zhan Z, Greaves JS, Richards AMS. Phosphine on Venus Cannot Be Explained by Conventional Processes. ASTROBIOLOGY 2021; 21:1277-1304. [PMID: 34283644 DOI: 10.1089/ast.2020.2352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The recent candidate detection of ∼1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modeled for Venus' atmosphere before, and our work represents the first attempt to model phosphorus species in the venusian atmosphere. We thoroughly explore the potential pathways of formation of phosphine in a venusian environment, including in the planet's atmosphere, cloud and haze layers, surface, and subsurface. We investigate gas reactions, geochemical reactions, photochemistry, and other nonequilibrium processes. None of these potential phosphine production pathways is sufficient to explain the presence of ppb phosphine levels on Venus. If PH3's presence in Venus' atmosphere is confirmed, it therefore is highly likely to be the result of a process not previously considered plausible for venusian conditions. The process could be unknown geochemistry, photochemistry, or even aerial microbial life, given that on Earth phosphine is exclusively associated with anthropogenic and biological sources. The detection of phosphine adds to the complexity of chemical processes in the venusian environment and motivates in situ follow-up sampling missions to Venus. Our analysis provides a template for investigation of phosphine as a biosignature on other worlds.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Clara Sousa-Silva
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane S Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Anita M S Richards
- Department of Physics and Astronomy, Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Omran A, Oze C, Jackson B, Mehta C, Barge LM, Bada J, Pasek MA. Phosphine Generation Pathways on Rocky Planets. ASTROBIOLOGY 2021; 21:1264-1276. [PMID: 34551269 DOI: 10.1089/ast.2021.0034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The possibility of life in the venusian clouds was proposed in the 1960s, and recently this hypothesis has been revived with the potential detection of phosphine (PH3) in Venus' atmosphere. These observations may have detected ∼5-20 ppb phosphine on Venus (Greaves et al., 2020), which raises questions about venusian atmospheric/geochemical processes and suggests that this phosphine could possibly be generated by biological processes. In such a claim, it is essential to understand the abiotic phosphorus chemistry that may occur under Venus-relevant conditions, particularly those processes that may result in phosphine generation. Here, we discuss two related abiotic routes for phosphine generation within the atmosphere of Venus. Based on our assessment, corrosion of large impactors as they ablate near Venus' cloud layer, and the presence of reduced phosphorus compounds in the subcloud layer could result in production of phosphine and may explain the phosphine detected in Venus' atmosphere or on other rocky planets. We end on a cautionary note: although there may be life in the clouds of Venus, the detection of a simple, single gas, phosphine, is likely not a decisive indicator.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Christopher Oze
- Geology Department, Occidental College, Los Angeles, California, USA
| | - Brian Jackson
- Department of Physics, Boise State University, Boise, Idaho, USA
| | - Chris Mehta
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jeffrey Bada
- Scripps Institution of Oceanography Department, University of California at San Diego, La Jolla, California, USA
| | - Matthew A Pasek
- Department of Geosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
14
|
Schulze-Makuch D. The Case (or Not) for Life in the Venusian Clouds. Life (Basel) 2021; 11:255. [PMID: 33804625 PMCID: PMC8003671 DOI: 10.3390/life11030255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023] Open
Abstract
The possible detection of the biomarker of phosphine as reported by Greaves et al. in the Venusian atmosphere stirred much excitement in the astrobiology community. While many in the community are adamant that the environmental conditions in the Venusian atmosphere are too extreme for life to exist, others point to the claimed detection of a convincing biomarker, the conjecture that early Venus was doubtlessly habitable, and any Venusian life might have adapted by natural selection to the harsh conditions in the Venusian clouds after the surface became uninhabitable. Here, I first briefly characterize the environmental conditions in the lower Venusian atmosphere and outline what challenges a biosphere would face to thrive there, and how some of these obstacles for life could possibly have been overcome. Then, I discuss the significance of the possible detection of phosphine and what it means (and does not mean) and provide an assessment on whether life may exist in the temperate cloud layer of the Venusian atmosphere or not.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Research Group, Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany; ; Tel.: +49-30-314-23736
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, (IGB), 12587 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
15
|
Fan Y, Niu X, Zhang D, Lin Z, Fu M, Zhou S. Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain. CHEMOSPHERE 2021; 262:128213. [PMID: 33182078 DOI: 10.1016/j.chemosphere.2020.128213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/19/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Although phosphine is ubiquitously present in anaerobic environments, little is known regarding the microbial community dynamics and metabolic pathways associated with phosphine formation in an anaerobic digestion system. This study investigated the production of phosphine in anaerobic digestion, with results indicating that phosphine production mainly occurred during logarithmic microbial growth. Dehydrogenase and hydrogen promoted the production of phosphine, with a maximum phosphine concentration of 300 mg/m3. The abundance of Ruminococcaceae and Escherichia was observed to promote phosphine generation. The analysis of metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the MetaCyc pathway database revealed the highest relative abundance of replication and repair in genetic information processing; further, the cofactor, prosthetic group, electron carrier, and vitamin biosynthesis were observed to be closely related to phosphine formation. A phylogenetic tree was reconstructed based on the neighbor-joining method. The results indicated the clear evolutionary position of the isolated Pseudescherichia sp. SFM4 strain, adjacent to Escherichia, with a stable phosphate-reducing ability for a maximum phosphine concentration of 26 mg/m3. The response surface experiment indicated that the initial optimal conditions for phosphine production by SFM4 could be achieved with nitrogen, carbon, and phosphorus loads of 6.17, 300, and 10 mg/L, respectively, at pH 7.47. These results provide comprehensive insights into the dynamic changes in the microbial structure, isolated single bacterial strain, and metabolic pathways associated with phosphine formation. They also provide information on the molecular biology associated with phosphorus recycling.
Collapse
Affiliation(s)
- Yimin Fan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China; Sino-Singapore International Joint Research Institute, Guangzhou, 510700, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Sousa-Silva C, Seager S, Ranjan S, Petkowski JJ, Zhan Z, Hu R, Bains W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. ASTROBIOLOGY 2020; 20:235-268. [PMID: 31755740 DOI: 10.1089/ast.2018.1954] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O2, only a handful of gases have been considered in detail. In this study, we evaluate phosphine (PH3). On Earth, PH3 is associated with anaerobic ecosystems, and as such, it is a potential biosignature gas in anoxic exoplanets. We simulate the atmospheres of habitable terrestrial planets with CO2- and H2-dominated atmospheres and find that PH3 can accumulate to detectable concentrations on planets with surface production fluxes of 1010 to 1014 cm-2 s-1 (corresponding to surface concentrations of 10s of ppb to 100s of ppm), depending on atmospheric composition and ultraviolet (UV) irradiation. While high, the surface flux values are comparable to the global terrestrial production rate of methane or CH4 (1011 cm-2 s-1) and below the maximum local terrestrial PH3 production rate (1014 cm-2 s-1). As with other gases, PH3 can more readily accumulate on low-UV planets, for example, planets orbiting quiet M dwarfs or with a photochemically generated UV shield. PH3 has three strong spectral features such that in any atmosphere scenario one of the three will be unique compared with other dominant spectroscopic molecules. Phosphine's weakness as a biosignature gas is its high reactivity, requiring high outgassing rates for detectability. We calculate that tens of hours of JWST (James Webb Space Telescope) time are required for a potential detection of PH3. Yet, because PH3 is spectrally active in the same wavelength regions as other atmospherically important molecules (such as H2O and CH4), searches for PH3 can be carried out at no additional observational cost to searches for other molecular species relevant to characterizing exoplanet habitability. Phosphine is a promising biosignature gas, as it has no known abiotic false positives on terrestrial planets from any source that could generate the high fluxes required for detection.
Collapse
Affiliation(s)
- Clara Sousa-Silva
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Physics, and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Physics, and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Sukrit Ranjan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- SCOL Postdoctoral Fellow
| | - Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | | |
Collapse
|
17
|
Affiliation(s)
- Matthew A. Pasek
- School of Geosciences, University of South Florida, 4202 E. Fowler Avenue NES 204, Tampa, Florida 33620, United States
| |
Collapse
|
18
|
Bains W, Petkowski JJ, Sousa-Silva C, Seager S. Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. ASTROBIOLOGY 2019; 19:885-902. [PMID: 30896974 DOI: 10.1089/ast.2018.1958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphorus is an essential element for all life on Earth, yet trivalent phosphorus (e.g., in phosphines) appears to be almost completely absent from biology. Instead phosphorus is utilized by life almost exclusively as phosphate, apart from a small contingent of other pentavalent phosphorus compounds containing structurally similar chemical groups. In this work, we address four previously stated arguments as to why life does not explore trivalent phosphorus: (1) precedent (lack of confirmed instances of trivalent phosphorus in biochemicals suggests that life does not have the means to exploit this chemistry), (2) thermodynamic limitations (synthesizing trivalent phosphorus compounds is too energetically costly), (3) stability (phosphines are too reactive and readily oxidize in an oxygen (O2)-rich atmosphere), and (4) toxicity (the trivalent phosphorus compounds are broadly toxic). We argue that the first two of these arguments are invalid, and the third and fourth arguments only apply to the O2-rich environment of modern Earth. Specifically, both the reactivity and toxicity of phosphines are specific to aerobic life and strictly dependent on O2-rich environment. We postulate that anaerobic life persisting in anoxic (O2-free) environments may exploit trivalent phosphorus chemistry much more extensively. We review the production of trivalent phosphorus compounds by anaerobic organisms, including phosphine gas and an alkyl phosphine, phospholane. We suggest that the failure to find more such compounds in modern terrestrial life may be a result of the strong bias of the search for natural products toward aerobic organisms. We postulate that a more thorough identification of metabolites of the anaerobic biosphere could reveal many more trivalent phosphorus compounds. We conclude with a discussion of the implications of our work for the origin and early evolution of life, and suggest that trivalent phosphorus compounds could be valuable markers for both extraterrestrial life and the Shadow Biosphere on Earth.
Collapse
Affiliation(s)
| | - Janusz Jurand Petkowski
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Sousa-Silva
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sara Seager
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- 3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- 4Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
19
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|