1
|
Carvalho MV, Monteiro R, Souza IDC, Griboff J, Bendhack F, Monferrán MV, Wunderlin DA, Fernandes MN. Muscle oxidative stress, neurotoxicity and human health risks from consuming fish exposed to metallic settleable atmospheric particulate matter. MARINE POLLUTION BULLETIN 2025; 214:117821. [PMID: 40088637 DOI: 10.1016/j.marpolbul.2025.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
The concentration of metals/metalloids in settleable particulate matter (SePM) from industrial area and in the muscles were determined in the estuarine fish, Centropomus parallelus, after 96 h-exposure to different SePM concentrations. Antioxidant defenses, oxidative damage and neurotoxicity were also determined. The risk for human consumption was evaluated by estimating daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) and compared with fish collected close to the industries. Eighteen metals/metalloids were quantified in SePM and the muscles. In red muscle, the antioxidant enzymes were unchanged, and the acetylcholinesterase (AChE) activity and protein carbonyls (PC) increased. In white muscle, the glutathione-S-transferase (GST) activity and glutathione content (GSH) decreased, PC levels and lipid peroxidation (LPO) increased; the AChE was unchanged. Metals/metalloids bioaccumulated in muscles induced oxidative damage which may affect muscle function and consequently, fish performance. After short-term exposure to SePM there was no risk for human consumption. However, the EDI of fish collected in field exceeded the acceptable DI for children concerning to As and Hg. HI were lower than 1 revealing no carcinogenic risk.
Collapse
Affiliation(s)
- Mariana V Carvalho
- Programa de Pós-graduação em Ecologia e Recursos Naturais (PPG-ERN), Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Rafaella Monteiro
- Programa de Pós-graduação em Ecologia e Recursos Naturais (PPG-ERN), Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Julieta Griboff
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Fabiano Bendhack
- Centro de Estudos Marinhos, Universidade Federal do Paraná, Rua Rio Grande do Norte, 145, Pontal do Paraná, PR, Brazil.
| | - Magdalena V Monferrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Daniel A Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Dpto. Qca. Organica, Facultad Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina..
| | - Marisa N Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais (PPG-ERN), Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
2
|
Soares MP, De Angelis CF, Taylor EW, Silva LM, Montanari BH, Azevedo VC, da Costa Souza I, Monferrán MV, Wunderlin DA, Fernandes MN, Leite CAC. Dynamics of metal/metalloid bioaccumulation and sensitivity in post-larvae shrimp (Macrobrachium rosenbergii) exposed to settleable atmospheric particulate matter from an industrial source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177355. [PMID: 39489450 DOI: 10.1016/j.scitotenv.2024.177355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The metallurgy industry is a potent global source of particulate matter (PM) atmospheric emissions. A portion of this PM may settle in aquatic (SePM) carrying metal/metalloid particles and metallic nanoparticles. Surprisingly, this form of contamination has not received due attention from most environmental monitoring agencies. We analyzed the effect of exposure to SePM on shrimp post-larvae, a critical stage for the viability of shrimp populations and for the trophic chain. After acclimation, shrimp were exposed to contaminants using a randomized experimental design-a 4 × 4 factorial arrangement with 2 factors: exposure time (24, 48, 72, and 96 h) and SePM concentration (0.00, 0.01, 0.10, and 1.00 g L-1). The bioaccumulation of metals, contamination rates, mortality, and ROS-related biomarkers (lipid peroxidation - LPO; DNA strand breakage DNA SB and metallothionein content - MTs;) were evaluated. After contamination, the water contained 27 different metals/metalloids. Post-larvae accumulated metals, such as Cd, Pb, Al, As, Se, Sr, Zr, Ba, La, Ce, W, and Hg. However, the rise in SePM did not result in a proportional bioaccumulation rise, indicating that effective biological barriers may work for some metals. Although the different levels of SePM changed mortality dynamics, they resulted in a similar final lethality (60-80 %). SePM caused significant damage to lipids (increased LPO), genetic material (DNA SB), and increased Mts. Such effects may reflect a particularly deleterious ecological problem as it is present at such an early stage of life. These results identified a clear environmental risk since the lower level of exposure used was 102 times lower than that measured in the habitats affected by local industry. Consequently, our results emphasize the need for clear protocols for monitoring the effects of SePM in aquatic environments.
Collapse
Affiliation(s)
- Michelly Pereira Soares
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Carolina Fernandes De Angelis
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Edwin W Taylor
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ludmila Mendes Silva
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Beatriz Helena Montanari
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | | | - Iara da Costa Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Magdalena V Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina; Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CONICET, CIBICI, Ciudad Universitaria, Medina Allende Esq. Haya de La Torre S/n, 5000 Cordoba, Argentina.
| | - Daniel A Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Cléo Alcantara Costa Leite
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Araújo MJ, Vazquez M, Rodriguez-Lorenzo L, Moreda-Piñeiro A, Fonseca E, Mallo N, Pinheiro I, Quarato M, Bigorra-Ferré E, Matos A, Barreiro-Felpeto A, Turkina MV, Suárez-Oubiña C, Bermejo-Barrera P, Cabaleiro S, Vasconcelos V, Espiña B, Campos A. Diving into the metabolic interactions of titanium dioxide nanoparticles in "Sparus aurata" and "Ruditapes philippinarum". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124665. [PMID: 39116928 DOI: 10.1016/j.envpol.2024.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The biological response to nanomaterials exposure depends on their properties, route of exposure, or model organism. Titanium dioxide nanoparticles (TiO2 NPs) are among the most used nanomaterials; however, concerns related to oxidative stress and metabolic effects resulting from their ingestion are rising. Therefore, in the present work, we addressed the metabolic effects of citrate-coated 45 nm TiO2 NPs combining bioaccumulation, tissue ultrastructure, and proteomics approaches on gilthead seabream, Sparus aurata and Japanese carpet shell, Ruditapes philippinarum. Sparus aurata was exposed through artificially contaminated feeds, while R. philippinarum was exposed using TiO2 NPs-doped microalgae solutions. The accumulation of titanium and TiO2 NPs in fish liver is associated with alterations in hepatic tissue structure, and alteration to the expression of proteins related to lipid and fatty acid metabolism, lipid breakdown for energy, lipid transport, and homeostasis. While cellular structure alterations and the expression of proteins were less affected than in gilthead seabream, atypical gill cilia and microvilli and alterations in metabolic-related proteins were also observed in the bivalve. Overall, the effects of TiO2 NPs exposure through feeding appear to stem from various interactions with cells, involving alterations in key metabolic proteins, and changes in cell membranes, their structures, and organelles. The possible appearance of metabolic disorders and the environmental risks to aquatic organisms posed by TiO2 NPs deserve further study.
Collapse
Affiliation(s)
- Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - María Vazquez
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Antonio Moreda-Piñeiro
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Natalia Mallo
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Elizabeth Bigorra-Ferré
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ana Matos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro-Felpeto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Cristian Suárez-Oubiña
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Santiago Cabaleiro
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
4
|
Maraschi AC, Rubio-Lopez C, Snitman SM, Souza IC, Pichardo-Casales B, Alcaraz G, Monferrán MV, Wunderlin DA, Caamal-Monsreal C, Rosas C, Fernandes MN, Capparelli MV. The impact of settleable atmospheric particulate on the energy metabolism, biochemical processes, and behavior of a sentinel mangrove crab. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135316. [PMID: 39098202 DOI: 10.1016/j.jhazmat.2024.135316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
We use the sentinel mangrove crab, Minuca rapax, as a model to investigate the effects of metallic settleable particulate matter (SePM) on wetland. Multiple levels of energetic responses, including (i) metabolic rate and energy budget, (ii) oxidative stress, and (iii) behavioral response by righting time, were assessed as well as the metal and metalloid content in crabs exposed to 0, 0.1 and 1 g.L-1 of SePM, under emerged and submerged conditions over five days, simulating the rigors of the intertidal habitat. Al, Fe, Mn, Cr, and Y exhibited a concentration-dependent increase. Metal concentrations were higher in submerged crabs due to the continuous ingestion of SePM and direct exposure through gills. Exposure concentration up to 1 g.L-1 decreased metabolic rate and enzymatic activities, reduced assimilation efficiency and energy for maintenance, and induces a slower response to righting time, probably by metal effects on nervous system and energy deficits. In conclusion, SePM exposure affects the redox status and physiology of M. rapax depending on he submersion regime and SePM concentration. The disruption to the energy budget and the lethargic behavior in M. rapax exposed to SePM implies potential ecological alterations in the mangrove ecosystem with unknown consequences for the local population.
Collapse
Affiliation(s)
- Anieli C Maraschi
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Cesar Rubio-Lopez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Solana M Snitman
- IIMyC: Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, 7600 Mar del Plata, Argentina
| | - Iara C Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Brian Pichardo-Casales
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Guillermina Alcaraz
- Laboratorio de Ecofisiología Animal, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Marisa N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
5
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Ucar A, Arslan ME, Cilingir Yeltekin A, Ozgeris FB, Caglar Yıldırım O, Parlak V, Alak G, Turkez H, Atamanalp M. Neutralization of iron oxide magnetic nanoparticle aquatoxicity on Oncorhynchus mykiss via supplementation with ulexite. Drug Chem Toxicol 2024; 47:274-286. [PMID: 36606327 DOI: 10.1080/01480545.2022.2164298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nowadays, the unique features of nanoparticles (NPs) have encouraged new applications in different areas including biology, medicine, agriculture, and electronics. Their quick joining into daily life not only enhances the uses of NPs in a wide range of modern technologies but also their release into the aquatic environment causes inevitable environmental concerns. On the other hand boron exhibits key physiological effects on biological systems. This research was designed for evaluating the toxicity of magnetite nanoparticles (Fe3O4-MNPs) on aquatic organisms and obtaining data for the information gap in this area. In this study, Rainbow trout (Oncorhynchus mykiss) was considered as an aquatic indicator, and trials were designed as Ulexite (a boron mineral, UX) treatment against exposure to Fe3O4-MNPs. Synthesized and characterized Fe3O4-MNPs were exposed to rainbow trouts in wide spectrum concentrations (0.005-0.08 mL/L) to analyze its lethal dose (LC50) and cytoprotective properties by UX treatment were assessed against Fe3O4-MNPs applications for 96 h. For the initial toxicity analysis, hematological parameters (blood cell counts) were examined in experimental groups and micronucleus (MN) assay was performed to monitor nuclear abnormalities after exposure to NPs. Biochemical analyzes in both blood and liver samples were utilized to assess antioxidant/oxidative stress and inflammatory parameters. Also, 8-hydroxy-2'-deoxyguanosine (8-OHdG) assay was used to investigate oxidative DNA lesions and Caspase-3 analysis was performed on both blood and liver tissues to monitor apoptotic cell death occurrence. When antioxidant enzymes in blood and liver tissue were examined, time-dependent decreases in activity were determined in SOD, CAT, GPx, and GSH enzymes, while increased levels of MDA and MPO parameters were observed in respect to Fe3O4-MNPs exposure. It was found that TNF-α, Il-6 levels were enhanced against Fe3O4-MNPs treatment, but Nrf-2 levels were decreased at the 46th and 96th h. In the 96th application results, all parameters were statistically significant (p < 0.05) in blood and liver tissue, except for the IL-6 results. It was determined that the frequency of MN, the level of 8-OHdG and caspase-3 activity increased in respect to Fe3O4-MNPs exposure over time. Treatment with UX alleviated Fe3O4-MNPs-induced hematotoxic and hepatotoxic alterations as well as oxidative and genetic damages. Our findings offer strong evidence for the use of UX as promising, safe and natural protective agents against environmental toxicity of magnetite nanoparticles.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | - Fatma Betül Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Ozge Caglar Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
7
|
Fernandes IF, Fujiwara GH, Moraes Utsunomiya HS, Souza IC, Monteiro DA, Monferrán MV, Wunderlin DA, Fernandes MN, Carvalho CDS. Oxidative stress and neurotoxicity induced by exposure to settleable atmospheric particulate matter in bullfrog tadpoles, Aquarana catesbeiana, (Shaw, 1802). CHEMOSPHERE 2024; 353:141576. [PMID: 38462180 DOI: 10.1016/j.chemosphere.2024.141576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.
Collapse
Affiliation(s)
- Isabela Ferreira Fernandes
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Gabriel Hiroshi Fujiwara
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil
| | - Heidi Samantha Moraes Utsunomiya
- Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil; Grupo de Mutagênese Ambiental, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Av. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende esq. Haya de la Torre s/n, 5000, Córdoba, Argentina; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP CEP 18052-780, Brazil; Departamento de Biologia (DBio), Centro de Ciências Humanas e Biológicas (CCHB), Universidade Federal de São Carlos (UFSCar), 18052-780, São Carlos, São Paulo, Brazil.
| |
Collapse
|
8
|
Fortes WMPA, Souza IDC, Azevedo VC, Griboff J, Monferrán MV, Wunderlin DA, Matsumoto ST, Fernandes MN. Metal/metalloid bioconcentration dynamics in fish and the risk to human health due to water contamination with atmospheric particulate matter from a metallurgical industrial area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166119. [PMID: 37567312 DOI: 10.1016/j.scitotenv.2023.166119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Settleable atmospheric particulate matter (SeAPM) containing a mixture of metals, including metallic nanoparticles, has increased throughout the world, and caused environmental and biota contamination. The metal bioconcentration pattern in Nile tilapia (Oreochromis niloticus) was evaluated during a 30-day exposure to 1 g L-1 SeAPM and assessed the human health risk from consuming fish fillets (muscle) based on the estimated daily intake (EDI). SeAPM was collected surrounding an iron ore processing and steel industrial complex in Vitória city (Espírito Santo, Brazil) area. Water samples were collected daily for physicochemical analyses, and every 3 days for multi-elemental analyses. Metal bioconcentrations were determined in the viscera and fillet of fish every 3 days. The elements B, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Pb, Hg, Ba, Bi, W, Ti, Zr, Y, La, Nb, and Ce were analyzed in SeAPM, water, and fish using inductively coupled plasma mass spectrometry. The metal concentration in SeAPM-contaminated water was higher than in control water. Most metals bioconcentrated preferentially in the fish viscera, except for the Hg and Rb, which bioconcentrated mostly in the fillet. The bioconcentration pattern was Fe > Al > Mn > Pb > V > La > Ce > Y > Ni > Se > As > W > Bi in the viscera; it was higher than the controls throughout the 30-day exposure. Ti, Zr, Nb, Rb, Cd, Hg, B, and Cr showed different bioconcentration patterns. The Zn, Cu, Sr, Sn, Ag, and Ta did not differ from controls. The differences in metal bioconcentration were attributed to diverse metal bioavailability in water and the dissimilar ways fish can cope with each metal, including inefficient excretion mechanisms. The EDI calculation indicated that the consumption of the studied fish is not safe for children, because the concentrations of As, La, Zr, and Hg exceed the World Health Organization's acceptable daily intake for these elements.
Collapse
Affiliation(s)
- William Manuel Pereira Antunes Fortes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | | | - Julieta Griboff
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvia Tamie Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DCB/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
9
|
Souza IDC, Morozesk M, Azevedo VC, Griboff J, Elliott M, Matsumoto ST, Monferrán MV, Wunderlin DA, Fernandes MN. Integrating chemical and biological data by chemometrics to evaluate detoxification responses of a neotropical bivalve to metal and metalloid contamination. CHEMOSPHERE 2023; 340:139730. [PMID: 37574089 DOI: 10.1016/j.chemosphere.2023.139730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Mangroves represent a challenge in monitoring studies due to their physical and chemical conditions under constant marine and anthropogenic influences. This study investigated metals/metalloids whole-body bioaccumulation (soft tissues) and the risk associated with their uptake, biochemical and morphological detoxification processes in gills and metals/metalloids immobilisation in shells of the neotropical sentinel oyster Crassostrea rhizophorae from two Brazilian estuarine sites. Biochemical and morphological responses indicated three main mechanisms: (1) catalase, superoxide dismutase and glutathione played important roles as the first defence against reactive oxygen species; (2) antioxidant capacity against peroxyl radicals, glutathione S-transferase, metallothionein prevent protein damage and (3) metals/metalloids sequestration into oyster shells as a mechanism of oyster detoxification. However, the estimated daily intake, target hazard quotient, and hazard index showed that the human consumption of oysters would not represent a human health risk. Among 14 analysed metals/metalloids, chemometrics indicate that Mn, As, Pb, Zn and Fe overload the antioxidant system leading to morphological alterations in gills. Overall, results indicated cellular vacuolization and increases in mucous cell density as defence mechanisms to prevent metals/metalloids accumulation and the reduction in gill cilia; these have long-term implications in respiration and feeding and, consequently, for growth and development. The integration of data from different sites and environmental conditions using chemometrics highlights the main biological patterns of detoxification from a neotropical estuarine bivalve, indicating the way in which species can cope with metals/metalloids contamination and its ecological consequences.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905, São Carlos, São Paulo, Brazil; Departamento de Ciências Biológicas, Universidade Federal Do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| | - Vinicius C Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada.
| | - Julieta Griboff
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende Esq. Haya de La Torre S/n, 5000, Córdoba, Argentina.
| | - Michael Elliott
- School of Environmental Sciences, University of Hull, Hull, HU6 7RX, UK; International Estuarine & Coastal Specialists (IECS) Ltd. Leven, HU17 5LQ, UK.
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal Do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil.
| | - Magdalena V Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende Esq. Haya de La Torre S/n, 5000, Córdoba, Argentina; ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000, Córdoba, Argentina.
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000, Córdoba, Argentina.
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
10
|
Monteiro R, Souza IDC, Morozesk M, Soares MP, De Angelis CF, Vieira NS, Bendhack F, Monferrán MV, Wunderlin DA, Fernandes MN. Metalliferous atmospheric settleable particulate matter action on the fat snook fish (Centropomus parallelus): Metal bioaccumulation, antioxidant responses and histological changes in gills, hepatopancreas and kidneys. CHEMOSPHERE 2023; 330:138715. [PMID: 37098361 DOI: 10.1016/j.chemosphere.2023.138715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 05/14/2023]
Abstract
Metallic smoke released by steel industries is constitute by a mixture of fine and gross particles containing metals, including the emerging ones, which sedimentation contaminates soil and aquatic ecosystems and put in risk the resident biota. This study determined the metal/metalloids in the atmospheric settleable particulate matter (SePM, particles >10 μm) from a metallurgical industrial area and evaluated metal bioconcentration, antioxidant responses, oxidative stress, and the histopathology in the gills, hepatopancreas and kidneys of fat snook fish (Centropomus parallelus) exposed to different concentrations of SePM (0.0, 0.01, 0.1 and 1.0 g L-1), for 96 h. From the 27 metals (Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Ba, La, Ce, W, Hg, Pb, Bi) analyzed, 18 were quantified in SePM and dissolved in seawater. Metal bioconcentrations differed among organs; Fe and Zn were the metals most bioconcentrated in all organs, Fe was higher in hepatopancreas and Zn > Fe > Sr > Al was higher in kidneys. The activity of superoxide dismutase (SOD) decreased in the gills; SOD, catalase (CAT) decreased, and glutathione peroxidase (GPx) increased in hepatopancreas and, CAT, glutathione-S-transferase (GST) and the level of glutathione (GSH) increased in kidneys. The unchanged levels of lipid peroxidation and oxidized protein in any organ indicate that the antioxidant responses were efficient to avoid oxidative stress. Organ lesion indices were higher in the gills > kidneys > hepatopancreas, being higher in fish exposed to 0.01 g L-1 SePM. All changes indicate a tissue-specific metal/metalloids bioconcentration, antioxidant and morphological responses that all together compromise fish health. Regulatory normative are needed to control the emission of these metalliferous PM to preserve the environment and biota.
Collapse
Affiliation(s)
- Rafaella Monteiro
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Michelly Pereira Soares
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Carolina Fernandes De Angelis
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Nathan S Vieira
- Centro de Estudos Marinhos, Universidade Federal do Paraná, Rua Rio Grande do Norte, 145, Miramar, Pontal do Paraná, PR, Brazil
| | - Fabiano Bendhack
- Centro de Estudos Marinhos, Universidade Federal do Paraná, Rua Rio Grande do Norte, 145, Miramar, Pontal do Paraná, PR, Brazil
| | - Magdalena Victoria Monferrán
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Depto. Quimica. Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Depto. Quimica. Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
de Almeida Duarte LF, Dos Santos Barbosa Ortega A, de Souza Paço M, Sadauskas-Henrique H, Cesar-Ribeiro C, Souza IC, Monteiro R, Monferrán MV, Wunderlin DA, Fernandes MN, Pereira CDS. Settleable atmospheric particulate matter harms a marine invertebrate: Integrating chemical and biological damage in a bivalve model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163380. [PMID: 37044328 DOI: 10.1016/j.scitotenv.2023.163380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Some atmospheric pollutants may affect aquatic ecosystems after settling, generating contamination, bioaccumulation, and threats to aquatic species. Metallurgical processes result in the emission of settleable atmospheric particulate matter (SePM), including metals and metalloids, along with rare earth elements (REE) that are considered emerging contaminants. We report the 30-day exposure of brown mussels (Perna perna) to SePM collected in a metallurgical area of southeast Brazil close to estuarine ecosystems, followed by a 30-day clearance period, to evaluate the toxic potential of SePM to this model mollusk. The bioaccumulation of 28 elements identified in SePM and the sublethal effects were evaluated. REEs were found in SePM (Ce, Y, and La). Significant bioaccumulation of eight metals (Fe, Ni, Cu, Zn, Rb, Sr, Cd, and Ba) was found in the bivalves and correlates with the cytotoxicity and genotoxicity, showing a dose-dependent mode and suggesting a pre-pathological condition that could lead to ecological disturbances over time. Conversely, the unchanged lipid-peroxidation level after SePM exposure could indicate the effectiveness of the antioxidant system in protecting gills and digestive glands. The clearance period was not enough to successfully reverse the negative effects observed. So far, the current results enhance the comprehension of the negative role of SePM on metal bioaccumulation and metal-induced toxicity to aquatic biota. Thus, this report adds innovative findings on the role of SePM in aquatic pollution in coastal areas affected by atmospheric pollution, which should be relevant for future public policies to verify and control the environmental pollution.
Collapse
Affiliation(s)
- Luis Felipe de Almeida Duarte
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil; Universidade Santa Cecília, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil.
| | - Andressa Dos Santos Barbosa Ortega
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil; Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Litoral Paulista, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900 São Vicente, São Paulo, Brazil
| | - Marina de Souza Paço
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil
| | - Helen Sadauskas-Henrique
- Universidade Santa Cecília, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil
| | - Caio Cesar-Ribeiro
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Litoral Paulista, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900 São Vicente, São Paulo, Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Rafaella Monteiro
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cidad, Universitaria, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cidad, Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil; Universidade Santa Cecília, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil
| |
Collapse
|
12
|
Kao CL, Fang GC, Chen YH, Zhuang YJ. Applying principal component, health risk assessment, source identification for metallic elements of ambient air total suspended particulates at Taiwan Scientific Park. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:809-824. [PMID: 35332424 DOI: 10.1007/s10653-022-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
This study collected ambient air total suspended particle (TSP) concentrations and dry depositions at Taichung Science Park sampling site. The metallic elements concentrations and dry depositions were analyzed. The possible pollutant sources are discussed in this study. In addition, this study used the principal component analysis method to find metallic element sources and their transportation pathway and distributions at Taichung Science Park (T.S.P). The results indicated that the average highest TSP concentrations and dry deposition fluxes occurred in the autumn and winter seasons. The highest average metallic element concentration and dry deposition was Fe, while the lowest average metallic element concentration and dry deposition was Hg(p). The study results further indicated that the lowest metallic element concentrations and dry depositions all occurred in the summer season. The pollutant parcels originated from the northern Taiwan counties and sea surface in the autumn, winter and spring seasons. Factor 1 was responsible for the local industrial emission results and traffic road dust. The metallic elements Hg(p) yield a value greater than 0.7 in Factor 2 which revealed that ambient air particulate pollutants were generated from Taichung Thermal Power Plant (T.T.P.P.) emissions and were transported from the coastal area of mainland China cities. The mean seasonal concentration differences existed for ambient air particulates, and there were no mean seasonal concentrations differences for all metallic elements. In addition, there were no significant mean concentrations differences for all metallic elements and meteorological factors such as temperature, humidity and wind speed. Therefore, the ambient air metallic element emissions were stable and considered primary emissions sources. The health risk value for metallic element Cr was higher than that for the acceptable health risk value suggested by the EPA. Metallic element Cr revealed that it was no mean seasonal concentrations differences. Thus, metallic element Cr was considered came from local emission source at this T.S.P. sampling site.
Collapse
Affiliation(s)
- Chao-Lang Kao
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung City, Taiwan
| | - Guor-Cheng Fang
- Department of Safety, Health, and Environmental Engineering, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City, 43302, Taiwan (R.O.C.).
| | - Yi-Hsiu Chen
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung City, Taiwan
| | - Yuan-Jie Zhuang
- Department of Safety, Health, and Environmental Engineering, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City, 43302, Taiwan (R.O.C.)
| |
Collapse
|
13
|
Adorno HA, Souza IDC, Monferrán MV, Wunderlin DA, Fernandes MN, Monteiro DA. A multi-biomarker approach to assess the sublethal effects of settleable atmospheric particulate matter from an industrial area on Nile tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159168. [PMID: 36195137 DOI: 10.1016/j.scitotenv.2022.159168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Iron and steel industries discharge a large amount of atmospheric particulate matter (PM) containing metals and metallic nanoparticles (NPs) that contaminate not only the air, but also settle into the aquatic environments. However, the effects of settleable atmospheric particulate matter (SePM) on aquatic fauna are still poorly understood. This study aimed to evaluate the sublethal effects of a short-term exposure to a realistic concentration of SePM on Nile tilapia (Oreochromis niloticus) using a multi-biomarker approach: relative ventricular mass (RVM) and heart function, blood oxidative stress, stress indicators, hemoglobin concentration, metallic NPs internalization, and metal bioaccumulation. Exposed fish exhibited reduced hemoglobin content and elevated plasma cortisol and glucose levels, reflecting stressed states. Furthermore, SePM caused blood oxidative stress increasing lipid and protein oxidation, decreasing glutathione levels, and inhibiting superoxide and glutathione reductase activities. SePM exposure also increased RVM and improved cardiac performance, increasing myocardial contractile force and rates of contraction and relaxation. In the heart tissue there was a significant accumulation of Fe > Zn > > Cr > Cu > Rb > Ni > V > Mn > Se > Mo > As. On the other hand, in the erythrocytes there was significant accumulation of Sn > Zn > > Cr > Ti > Mn = Ni > Nb > As > Bi. The highest bioaccumulation factors were found for Cr, Zn and Ni in both tissues. NPs (Ti, Sn, Al, Fe, Cu, Si, Zn) were also detected in ventricular myocardium of fish exposed and nanocrystallographic analysis revealed a predominance of anatase phase of TiO2-NP, which is regarded to be more cytotoxic. The association between blood oxidative stress and energy expenditure to sustain increased cardiac pumping capacity under stress condition suggests that SePM has negative impacts on fish physiological performance, threatening their survival, growth rate and/or population establishment.
Collapse
Affiliation(s)
- Henrique Aio Adorno
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Ambientais (PPGCAm), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Departamento de Ciências Fisiológicas (DCF), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
14
|
De Angelis CF, Soares MP, Cardoso IL, Filogonio R, Taylor EW, McKenzie DJ, Souza IC, Wunderlin DA, Monferrán MV, Fernandes MN, Leite CAC. Settleable atmospheric particulate matter affects cardiorespiratory responses to hypoxia in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109353. [PMID: 35452846 DOI: 10.1016/j.cbpc.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Atmospheric particulate matter (APM) emitted by iron ore processing industries has a complex composition, including diverse metallic particles and nanoparticles. Settleable APM (SePM) causes air to water cross-contamination and has recently been demonstrated to have harmful sublethal impacts on fish, eliciting stress responses, affecting the immune system, and reducing blood oxygen-carrying capacity. These findings imply potential consequences for fish aerobic performance and energy allocation, particularly in their ability to tolerate respiratory challenges such as aquatic hypoxia. To assess that potential limitation, we analyzed metabolic, cardiorespiratory, and morphological alterations after exposing tilapia, Oreochromis niloticus, to an environmentally relevant concentration of SePM (96 h) and progressive hypoxia. The contamination initiated detectable gill damage, reducing respiratory efficiency, increasing ventilatory effort, and compromising fish capacity to deal with hypoxia. Even in normoxia, the resting respiratory frequency was elevated and limited respiratory adjustments during hypoxia. SePM increased O2crit from 26 to 34% of O2 (1.84 to 2.76 mg O2·L-1). Such ventilatory inefficacy implies higher ventilatory cost with relevant alterations in energy allocation. Progression in gill damage might be problematic and cause: infection, blood loss, ion imbalance, and limited cardiorespiratory performance. The contamination did not cause immediate lethality but may threaten fish populations due to limitations in physiological performance. This was the first investigation to evaluate the physiological responses of fish to hypoxia after SePM contamination. We suggest that the present level of environmental SePM deserves attention. The present results demonstrate the need for comprehensive studies on SePM effects in aquatic fauna.
Collapse
Affiliation(s)
- C F De Angelis
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - M P Soares
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - I L Cardoso
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - R Filogonio
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - E W Taylor
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - D J McKenzie
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier 34095, France.
| | - I C Souza
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - D A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departmento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - M V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departmento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M N Fernandes
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - C A C Leite
- Department of Physiological Sciences Department, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
15
|
Soares MP, De Angelis CF, Cardoso IL, McKenzie DJ, da Costa Souza I, Wunderlin DA, Monferrán MV, Fernandes MN, Leite CAC. Settleable atmospheric particulate matter induces stress and affects the oxygen-carrying capacity and innate immunity in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109330. [PMID: 35331889 DOI: 10.1016/j.cbpc.2022.109330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Steel industry emissions of atmospheric particulate matter are responsible for air to water cross-contamination, which deposits metal/metalloid contaminants in aquatic ecosystems. This source of contamination has not been considered in most of the environmental monitoring protocols. Settleable atmospheric particulate matter (SePM) collected in an area of steel industry influence was used to analyze the sublethal effects on the hematological and innate immunological variables in Nile tilapia (Oreochromis niloticus) after short-term exposure (96 h). Blood samples were analyzed to evaluate the oxygen-carrying transport capacity, innate immune activity and stress biomarkers after exposure to ecologically relevant concentration of SePM. The exposure reduced blood oxygen-carrying capacity by lessening hematocrit, hemoglobin, erythrocyte, and mean corpuscular hemoglobin concentration. Compensatory increments in mean corpuscular volume and mean corpuscular hemoglobin have also been observed. The contaminant impacted the immune system by reducing the number of leukocytes, thrombocytes, and monocytes, total plasma protein, leukocyte respiratory activity, and by increasing lysozyme concentration. Furthermore, the contaminant caused endocrine stress response, raising plasma cortisol and glucose. Therefore, the alterations caused by SePM threatened the capacity of sustaining aerobic metabolism, impaired the immune system, and changed the energy allocation due to both stress response and immune effect. This may have important implications for the impact of SePM on aquatic ecosystems. Future investigations should assess SePM impact on general physiology and aerobic performance, especially to face common ecological challenges such as hypoxia and sustained swimming. These results point out the need to develop proper protocols to address the air-to-water cross-contamination risks by iron ore processing industries.
Collapse
Affiliation(s)
- Michelly Pereira Soares
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Carolina Fernandes De Angelis
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Israel Luz Cardoso
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - David J McKenzie
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier 34095, France.
| | - Iara da Costa Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Daniel A Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Magdalena V Monferrán
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Cléo Alcantara Costa Leite
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
16
|
Kukla SP, Slobodskova VV, Zhuravel EV, Mazur AA, Chelomin VP. Exposure of adult sand dollars (Scaphechinus mirabilis) (Agassiz, 1864) to copper oxide nanoparticles induces gamete DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39451-39460. [PMID: 35103949 DOI: 10.1007/s11356-021-18318-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The increase in the number of products containing nanoparticles (NPs) poses a real threat to the environment. Recently, more evidence has been added to predictive models about the presence of NPs in various natural and anthropogenic systems. The acute toxicity of most aquatic NPs has now been well documented. However, data such as the ecotoxicological significance of the long-lasting effects of NPs on the reproductive system and gamete quality of aquatic organisms are still relatively scarce. Therefore, a 10-day experiment was carried out on the sand dollar Scaphechinus mirabilis (Agassiz, 1864) exposed to low (20 and 40 μg/L) concentrations of copper oxide nanoparticles (CuO NPs). An accumulation of copper in tissues and a significant increase in lipid peroxidation product concentrations after exposure to NP were observed. A significant decrease in the fertilization rate was shown at 40 μg/L. No significant changes in embryonic or larval development were found. However, comet analysis results showed a significant increase in DNA damage in spermatozoa exposed to CuO NPs, which may further manifest as negative effects at later developmental stages or in subsequent generations.
Collapse
Affiliation(s)
- Sergey Petrovich Kukla
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia.
| | - Valentina Vladimirovna Slobodskova
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| | - Elena Vladimirovna Zhuravel
- School of Natural Sciences, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690950, Russia
| | - Andrey Alexandrovich Mazur
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| | - Viktor Pavlovich Chelomin
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| |
Collapse
|
17
|
Souza IDC, Morozesk M, Siqueira P, Zini E, Galter IN, Moraes DAD, Matsumoto ST, Wunderlin DA, Elliott M, Fernandes MN. Metallic nanoparticle contamination from environmental atmospheric particulate matter in the last slab of the trophic chain: Nanocrystallography, subcellular localization and toxicity effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152685. [PMID: 34974021 DOI: 10.1016/j.scitotenv.2021.152685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric particulate material (PM) from mining and steel industries comprises several metallic contaminants. PM10 samples collected in a Brazilian region with a recognized influence of the steel and iron pelletizing industries were used to investigate metallic nanoparticle incorporation into human fibroblast cells (MRC-5). MRC-5 cells were exposed to 0 (control, ultrapure water), 2.5, 5, 10, 20 and 40 μg PM10 mL-1, for 24 h. Cytotoxic and genotoxic dose-response effects were observed on lysosome and DNA structure, and concentrations high as 20 and 40 μg PM10 mL-1 induced elevated cell death. Ultrastructure analyses showed aluminosilicate, iron, and the emerging metallic contaminants titanium, bismuth, and cerium nanoparticles were incorporated into lung cells, in which the nanocrystallography analysis indicated the bismuth as Bi2O3. All internalized metallic nanoparticles were free and unbound in the cytoplasm and nucleus thereby indicating bioavailability and potential interaction to biological processes and cellular structures. Pearson's correlation analysis showed Fe, Ni, Al, Cr, Pb and Hg as the main cytotoxic elements which are associated with the stainless steel production. The presence of internalized nanoparticles in human lung cells exposed to environmental atmospheric matter highlights the need for a greater effort by regulatory agencies to understand their potential damage and hence the need for future regulation, especially of emerging metallic contaminants.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Priscila Siqueira
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Enzo Zini
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Iasmini N Galter
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A de Moraes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Ma C, Chen Q, Li J, Li B, Liang W, Su L, Shi H. Distribution and translocation of micro- and nanoplastics in fish. Crit Rev Toxicol 2022; 51:740-753. [PMID: 35166176 DOI: 10.1080/10408444.2021.2024495] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are regarded as emerging particulate contaminants. Here, we first summarize the distribution of plastic particles in fish. Field investigations verify the presence of various kinds of fibrous, spherical, and fragmentary MPs in fish gastrointestinal tract and gills, and specifically in muscle and liver. Laboratory works demonstrate that NPs even penetrate into blood vessels of fish and pass onto next generations. Second, we systematically discuss the translocation ability of MPs and NPs in fish. MPs can enter early-developing fish through adherence, and enter adult fish internal organs by intestine absorption or epidermis infiltration. NPs can not only penetrate into fish embryo blastopores, but also reach adult fish internal organs through blood circulation. Third, the cellular basis for translocation of plastic particles, NPs in particular, into cells are critically reviewed. Endocytosis and paracellular penetration are two main pathways for them to enter cells and intercellular space, respectively. Finally, we compare the chemical and physical properties among various particular pollutants (MPs, NPs, settleable particulate matters, and manufactured nanomaterials) and their translocation processes at different biological levels. In future studies, it is urgent to break through the bottleneck techniques for NPs quantification in field environmental matrix and organisms, re-confirm the existence of MPs and NPs in field organisms, and develop more detailed translocating mechanisms of MPs and NPs by applying cutting-edge tracking techniques.
Collapse
Affiliation(s)
- Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jiawei Li
- Department of Geography, The University of Manchester, Manchester, United Kingdom
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Kitagawa YKL, Kumar P, Galvão ES, Santos JM, Reis NC, Nascimento EGS, Moreira DM. Exposure and dose assessment of school children to air pollutants in a tropical coastal-urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149747. [PMID: 34487895 DOI: 10.1016/j.scitotenv.2021.149747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This study estimates exposure and inhaled dose to air pollutants of children residing in a tropical coastal-urban area in Southeast Brazil. For that, twenty-one children filled their time-activities diaries and wore the passive samplers to monitor NO2. The personal exposure was also estimated using data provided by the combination of WRF-Urban/GEOS-Chem/CMAQ models, and the nearby monitoring station. Indoor/outdoor ratios were used to consider the amount of time spent indoors by children in homes and schools. The model's performance was assessed by comparing the modelled data with concentrations measured by urban monitoring stations. A sensitivity analyses was also performed to evaluate the impact of the model's height on the air pollutant concentrations. The results showed that the mean children's personal exposure to NO2 predicted by the model (22.3 μg/m3) was nearly twice to those measured by the passive samplers (12.3 μg/m3). In contrast, the nearest urban monitoring station did not represent the personal exposure to NO2 (9.3 μg/m3), suggesting a bias in the quantification of previous epidemiological studies. The building effect parameterisation (BEP) together with the lowering of the model height enhanced the air pollutant concentrations and the exposure of children to air pollutants. With the use of the CMAQ model, exposure to O3, PM10, PM2.5, and PM1 was also estimated and revealed that the daily children's personal exposure was 13.4, 38.9, 32.9, and 9.6 μg/m3, respectively. Meanwhile, the potential inhalation daily dose was 570-667 μg for PM2.5, 684-789 μg for PM10, and 163-194 μg for PM1, showing to be favourable to cause adverse health effects. The exposure of children to air pollutants estimated by the numerical model in this work was comparable to other studies found in the literature, showing one of the advantages of using the modelling approach since some air pollutants are poorly spatially represented and/or are not routinely monitored by environmental agencies in many regions.
Collapse
Affiliation(s)
- Yasmin Kaore Lago Kitagawa
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Centro Integrado de Manufatura e Tecnologia (SENAI CIMATEC), Salvador, Bahia, Brazil.
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Elson Silva Galvão
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Jane Meri Santos
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Neyval Costa Reis
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | | | - Davidson Martins Moreira
- Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil; Centro Integrado de Manufatura e Tecnologia (SENAI CIMATEC), Salvador, Bahia, Brazil
| |
Collapse
|
20
|
Oliveira MLS, Dotto GL, Pinto D, Neckel A, Silva LFO. Nanoparticles as vectors of other contaminants in estuarine suspended sediments: Natural and real conditions. MARINE POLLUTION BULLETIN 2021; 168:112429. [PMID: 33962087 DOI: 10.1016/j.marpolbul.2021.112429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Studding the behaviour and danger of nanoparticles (NPs, minerals and amorphous phases) in the estuarine ecosystem is presently incomplete by the lack of measureable description of NPs in the ecological conditions, such as suspended-sediments (SS). In the last years, several works have revealed the toxic consequences of ultra-fine and nanoparticulate compounds on diverse systems, raising apprehensions over the nanocontaminants behaviour and destiny in the numerous ecological partitions. The general objective of the manuscript is to explain the geochemical conditions of the LES (Laguna estuarine system, southern Brazil) suspended sediments covering an area around the main South American coal plant, enhancing the creation of future public policies for environmental recovery projects. Subsequently the discharge of nanoparticles and toxic element (TE) in the ecosystem, NPs react with several constituents of the nature and suffers active alteration progressions. Contamination coming from engineering actions, wastewater, are something identifiable, however when these contaminations are accompanied by other contamination sources (e.g. mining and farming) the work gets defaulted. By combining material about the concentration of TE contaminants and NPs occurrences, this work offers novel visions into contaminant contact and the possible effects of such exposure on estuarine systems in Brazil. The results presented here will be useful for different areas of estuaries around the world.
Collapse
Affiliation(s)
- Marcos L S Oliveira
- Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Alcindo Neckel
- Faculdade Meridional, IMED, 304, Passo Fundo, RS 99070-220, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| |
Collapse
|
21
|
Chen J, Li J, Jiang H, Yu J, Wang H, Wang N, Chen S, Mo W, Wang P, Tanguay RL, Dong Q, Huang C. Developmental co-exposure of TBBPA and titanium dioxide nanoparticle induced behavioral deficits in larval zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112176. [PMID: 33780780 DOI: 10.1016/j.ecoenv.2021.112176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Both tetrabromobisphenol A (TBBPA) and titanium dioxide nanoparticle (TiO2 NP) have widespread commercial applications, resulting in their ubiquitous co-presence in the environment and biota. Although environmental chemicals exist as mixtures, toxicity studies are nearly always conducted with single chemicals. Few studies explore potential interactions of different chemical mixtures. In this study, we employ the sensitive developing nerve system in zebrafish to assess the neurotoxicity of TBBPA/TiO2 NP mixtures. Specifically, zebrafish embryos were exposed to solvent control (0.1% DMSO), 2 μM TBBPA, 0.1 mg/L TiO2 NP, and their mixture from 8 to 120 h post fertilization (hpf), and motor/social behavioral assessments were conducted on embryos/larvae at different developmental stages. Our results showed that TBBPA/TiO2 NP single or co-exposures increased spontaneous movement, decreased touch response and swim speed, and affected social behaviors of light/dark preference, shoaling, mirror attack and social contact. In particular, many of these phenotypes were manifested with higher magnitude of changes from the mixture exposure. These behavioral deficits were also accompanied with increased cell death in olfactory region and neuromasts in the lateral line system, increased ROS in gallbladder, pancreas, liver, and intestine, as well as increased lipid peroxidation and decreased ATP levels in whole larval tissue homogenates. Further, genes coding for key cell apoptosis marker and antioxidant enzyme were significantly upregulated by these two chemicals, in particular to their mixture. Interestingly, the co-presence of TBBPA also increased the mean particle size of TiO2 NP in the exposure solutions and the TiO2 NP content in larval tissue. Together, our analysis suggests that TBBPA/TiO2 NP induced behavioral changes may be due to physical accumulation of these two chemicals in the target organs, and TiO2 NP may serve as carriers for increased accumulation of TBBPA. To conclude, we demonstrated that TBBPA/TiO2 NP together cause increased bioaccumulation of TiO2, and heightened responses in behavior, cell apoptosis and oxidative stress. Our findings also highlight the importance of toxicity assessment using chemical mixtures.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Jiani Li
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hao Jiang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiajian Yu
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongzhu Wang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Nengzhuang Wang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shan Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wen Mo
- Zhejiang Rehabilitation Medical Center, Hangzhou 310051, PR China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, United States
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
22
|
Souza IDC, Arrivabene HP, Azevedo VC, Duarte ID, Rocha LD, Matsumoto ST, Franco A, Elliott M, Wunderlin DA, Monferrán MV, Fernandes MN. Different trophodynamics between two proximate estuaries with differing degrees of pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144651. [PMID: 33736395 DOI: 10.1016/j.scitotenv.2020.144651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Mangroves are complex ecosystems with widely varying abiotic factors such as salinity, pH, redox potential, substratum particle size, dissolved organic matter and xenobiotic concentrations, and a high biodiversity. This paper presents the trophodynamic pathways of accumulation and transfer of metals and metalloids (B, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Ag, As, Se, Rb, Sr, Pb and Hg), in three trophic chains (plant-crab-fish, plankton-shrimp-fish and plankton-oyster) of similar food webs, corresponding to two mangrove estuaries (Santa Cruz and Vitória Bay, separated by 70 km) in the Espírito Santo State (Brazil). Although the trophic transfer patterns are affected by physical variables, metal and metalloids were found in all trophic levels. We observed similar trophodynamics between both estuaries with some elements, but unequal transfer patterns in other cases, thus questioning the effectiveness of 15N to determine the food chain when the aquatic biota is affected by anthropogenic contaminants. Thus, in the Santa Cruz estuary, most metals were biomagnified through the food web. Conversely, Vitória Bay presented mostly biodilution, suggesting that metal/metalloid transference patterns in mangrove ecosystems may be affected by different anthropogenic contamination inputs. These results indicate the importance of knowing the complete food web when evaluating the trophic transfer of elements, including an evaluation of the differential impact of pollution on diverse components of the food chain.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Hiulana P Arrivabene
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil.
| | - Vinicius C Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada.
| | - Ian D Duarte
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil.
| | - Livia D Rocha
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil.
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil.
| | - Anita Franco
- Estuarine and Marine Ecological Consultant, Hull HU5 3SF, UK.
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK.
| | - Daniel A Wunderlin
- ICYTAC: Institute of Food Science and Technology Córdoba, CONICET and Department of Organic Chemistry, Chemistry Faculty, National University of Cordoba, University Campus, 5000 Córdoba, Argentina.
| | - Magdalena V Monferrán
- ICYTAC: Institute of Food Science and Technology Córdoba, CONICET and Department of Organic Chemistry, Chemistry Faculty, National University of Cordoba, University Campus, 5000 Córdoba, Argentina.
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
23
|
Souza IC, Morozesk M, Azevedo VC, Mendes VAS, Duarte ID, Rocha LD, Matsumoto ST, Elliott M, Baroni MV, Wunderlin DA, Monferrán MV, Fernandes MN. Trophic transfer of emerging metallic contaminants in a neotropical mangrove ecosystem food web. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124424. [PMID: 33183835 DOI: 10.1016/j.jhazmat.2020.124424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Emerging metallic contaminants (EMCs) are of concern due their presence in aquatic ecosystems and the lack of environmental regulations in several countries. This study verifies the presence of EMCs in two neotropical mangrove estuarine ecosystems (Espírito Santo Brazil) by evaluating abiotic and biotic matrices across six trophic levels (plankton, oyster, shrimp, mangrove trees, crabs and fish) and hence interrogates the trophic transfer of these elements and their possible input sources. Using the oyster Crassostrea rhizophorae as a biomonitor, ten EMCs (Bi, Ce, La, Nb, Sn, Ta, Ti, W, Y and Zr) were determined. Bi input was from iron export and pelletizing industries; Ce, La and Y inputs were mainly associated with solid waste from steel production, while Zr, Nb and Ti were related to atmospheric particulate matter emissions. EMCs were detected at various trophic levels, showing biomagnification for most of them in the Santa Cruz estuary but biodilution in Vitória Bay. These contrasting results between the estuaries could be attributed to different pollution degrees, needing further research to be fully understood. This is the first report demonstrating EMCs trophic pathways in situ, constituting an essential baseline for future research and safety regulations involving EMCs in the environment.
Collapse
Affiliation(s)
- Iara C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil
| | - Mariana Morozesk
- Instituto de Ciências Puras e Aplicadas, Universidade Federal de Itajubá (ICPA/UNIFEI), Irmã Ivone Drumond St., 200, Distrito Industrial II, 35903-087 Itabira, Minas Gerais, Brazil
| | - Vinicius C Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
| | - Vitor A S Mendes
- Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (DEMa/UFSCar), São Carlos, SP, Brazil Ave. Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil
| | - Ian D Duarte
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Livia D Rocha
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX UK; International Estuarine & Coastal Specialists Ltd. Leven HU17 5LQ, UK
| | - María V Baroni
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil.
| |
Collapse
|
24
|
Souza IDC, Morozesk M, Mansano AS, Mendes VAS, Azevedo VC, Matsumoto ST, Elliott M, Monferrán MV, Wunderlin DA, Fernandes MN. Atmospheric particulate matter from an industrial area as a source of metal nanoparticle contamination in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141976. [PMID: 32889320 DOI: 10.1016/j.scitotenv.2020.141976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Air pollution legislation and control worldwide is based on the size of particulate matter (PM) to evaluate the effects on environmental and human health, in which the small diameter particles are considered more dangerous than larger sizes. This study investigates the composition, stability, size and dispersion of atmospheric settleable particulate matter (SePM) in an aqueous system. We aimed to interrogate the changes in the physical properties and characteristics that can contribute to increased metal uptake by aquatic biota. Samples collected in an area influenced by the steel and iron industry were separated into 8 fractions (425 to ≤10 μm) and analysed physically and chemically. Results from ICP-MS and X-ray showed that the PM composition was mainly hematite with 80% of Fe, followed by Al, Mn and Ti. Among 27 elements analysed we found 19 metals, showing emerging metallic contaminants such as Y, Zr, Sn, La, Ba and Bi. Scanning electron microscopy (SEM) showed that SePM fractions are formed by an agglomeration of nanoparticles. Furthermore, dynamic light scattering (DLS), zeta potential and nanoparticle tracking analysis (NTA) demonstrated that SPM were dissociated in water, forming nanoparticles smaller than 200 nm, which can also contribute to water pollution. This study highlights that SePM contamination may be substantially higher than expected under that allowed in atmospheric regulatory frameworks, thereby extending their negative effect to water bodies upon settling, which is an underexplored area of our knowledge. We therefore provide important insights for future investigations on safety regulations involving SePM in the environment, indicating the need to revise the role of SePM, not solely associated with air pollution but also considering their deleterious effects on water resources.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Mariana Morozesk
- Instituto de Ciências Puras e Aplicadas, Universidade Federal de Itajubá (ICPA/UNIFEI), Irmã Ivone Drumond St., 200, Distrito Industrial II, 35903-087 Itabira, Minas Gerais, Brazil
| | - Adrislaine S Mansano
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Vitor A S Mendes
- Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (DEMa/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Vinicius C Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|