1
|
Dramićanin MD, Brik MG, Antić Ž, Bănică R, Mosoarca C, Dramićanin T, Ristić Z, Dima GD, Förster T, Suta M. Pr 3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:562. [PMID: 40214607 PMCID: PMC11990599 DOI: 10.3390/nano15070562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in these processes. We describe the electronic and optical properties of the Pr3+ ion, emphasizing the conditions the host material must meet to obtain broad and intense emission in the UVC from parity-allowed transitions from the 4f5d levels and provide a list of materials that fulfill these conditions. This paper also delineates lanthanide-based upconversion, focusing on Pr3+ blue to UVC upconversion via the 3P0 and 1D2 intermediate states, and suggests routes for improving the quantum efficiency of the process. We review literature related to the use of upconversion materials in antimicrobial photodynamic treatments and for the blue to UVC upconversion germicidal effects. Further, we propose the spectral overlap between the UVC emission of Pr3+ materials and the germicidal effectiveness curve as a criterion for assessing the potential of these materials in antimicrobial applications. Finally, this paper briefly assesses the toxicity of materials commonly used in the preparation of upconversion materials.
Collapse
Affiliation(s)
- Miroslav D. Dramićanin
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Mikhail G. Brik
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Željka Antić
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Radu Bănică
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
| | - Cristina Mosoarca
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
| | - Tatjana Dramićanin
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - Zoran Ristić
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovi12-14, 11000 Belgrade, Serbia; (T.D.); (Z.R.)
| | - George Daniel Dima
- National Institute of Research and Development for Electrochemistry and Condensed Matter, Str. Dr. A. Păunescu Podeanu nr.144, 300569 Timisoara, Romania; (M.G.B.); (Ž.A.); (R.B.); (C.M.); (G.D.D.)
| | - Tom Förster
- Inorganic Photoactive Materials, Institute of Inorganic and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (T.F.); (M.S.)
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (T.F.); (M.S.)
| |
Collapse
|
2
|
Chang J, Zhang S, Zhong Y, Ding S, Zhang W, Huang Q, Ji S, Chi Y. Long-term and seasonal evaluation on environmental microbiology and water quality of Shanmei reservoir in southeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125650. [PMID: 39805467 DOI: 10.1016/j.envpol.2025.125650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
As a crucial source of potable water, the quality of water in Shanmei reservoir strongly and directly impacts the safety and well-being of downstream residents. Microorganisms play a pivotal role in the reservoir's resource and energy cycle. However, ecological protection efforts for the Shanmei reservoir have encountered numerous challenges in recent years. This study conducted an extensive visual analysis of microbial communities in sediment from the Shanmei reservoir between 2022 and 2024 using amplicon sequencing technology targeting 16S rRNA gene. The results showed that the microbial diversity of sediment showed an obvious seasonal pattern. At the same time, microbial composition also changes with the long-term evolution of time, which may be closely related to the change in environmental conditions. In addition, we have also carried out long-term multi-dimensional monitoring of the water quality of the Shanmei reservoir, and the results show that the water quality has reached the national drinking water grade. In conclusion, this study not only unveiled the interseasonal dynamics and long-term evolutionary characteristics of sediment microbial communities but also elucidated the significant influence of environmental factors on their composition, structure and function. These findings offer a fresh perspective for understanding the freshwater ecosystem microbial dynamics and provide a scientific foundation for reservoir management and water quality protection.
Collapse
Affiliation(s)
- Jiamin Chang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Shanshan Zhang
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Yanping Zhong
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Siqi Ding
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Wenzhou Zhang
- School of Pharmacy, QuanZhou Medical College, Quanzhou, 362011, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
3
|
Zhang B, Zhou J, Chen L. Spatial differentiation and coupling between village development intensity and landscape pattern of 100 villages in Anhui, China. Sci Rep 2025; 15:5015. [PMID: 39934220 DOI: 10.1038/s41598-025-88849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Spatial development and landscape pattern are fundamental elements of the land system of village. Analysing the spatial differentiation and coupling relationship between spatial development intensity and landscape pattern is of great significance for the development and protection of village land resources. In order to address the current research lack on the coupling response between village spatial development intensity and landscape pattern, a technical method for analysing the spatial differentiation and coupling relationship between village spatial development intensity and landscape pattern is constructed based on the methods of village spatial development intensity model, landscape pattern index, bivariate spatial autocorrelation model, coupling degree and coupling coordination degree model. Taking 100 villages in Anhui Province, China as an example, the spatial distribution characteristics and coupling characteristics of village spatial development intensity and landscape pattern are analysed. The results show that there are obvious regional differences in the spatial distribution of village spatial development intensity and landscape pattern in Anhui Province. The village spatial development intensity shows a pattern of the Northern Anhui plain region (NAPR) > along the Yangtze River plain region (YRPR) > Jiang-huai Hilly region (JHHR) > Southern Anhui mountainous region (SAMR) > Western Anhui mountainous region (WAMR). The village landscape pattern in NAPR and YRPR are high fragmentation, while the village in JHHR has the lowest fragmentation, and the villages in SAMR and WAMR show relatively low fragmentation. The spatial coupling relationship between village spatial development intensity and landscape pattern is mainly characterised by high-high clustering and low-high clustering. The coupling coordinated development of villages in NAPR is the best, followed by YRPR, JHHR and SAMR, and WAMR is the worst. There is only a significant multi-linear relationship between village landscape pattern and multiple spatial development intensity indicators in WAMR and NAPR. The spatial differentiation and coupling relationship are influenced by both natural geographical factors and human activity factors. Finally, the study puts forward some targeted countermeasures and suggestions. The research results can provide theoretical method and practical application reference for village land space development and protection and village planning.
Collapse
Affiliation(s)
- Bohang Zhang
- School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Jiahan Zhou
- Department of Urban Planning, Hefei University of Technology, Hefei, 230601, China
| | - Lihua Chen
- Department of Urban Planning, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
4
|
Jia J, Gao Y, Wang S, Wu F, Lu Y, Ha X. Feedbacks between phytoplankton and global changes in a riverine source-mainstem-estuary continuum. WATER RESEARCH 2024; 268:122746. [PMID: 39536638 DOI: 10.1016/j.watres.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Global changes have led to alterations in phytoplankton community structure and dynamics in aquatic environments. However, limited information is available on the comprehensive impacts of global changes on phytoplankton communities along river systems affected by anthropogenic activities. This study explores how anthropogenic pressures and climate change affect phytoplankton community transitions and induce harmful algal blooms by employing field surveys and a 40-year historical data analysis along China's Yangtze River source-mainstem-estuary continuum. Results revealed significantly higher phytoplankton density and biodiversity in the mainstem compared to the source and estuary zones. From the river's source to its mainstem and estuary, the dominant phytoplankton community formed a transition pattern (diatoms - chlorophytes - cyanobacteria - diatoms). Similarly, phytoplankton functional groups transitioned from mixed to eutrophic groups, signaling a shift in water quality towards moderate eutrophication, although it has not yet threatened the survival of diverse phytoplankton species. Moreover, compared to climate change, anthropogenic activities have more significantly intensified the urban heat island effect and nutrient inputs, thereby promoting phytoplankton cell density and biodiversity, particularly in the case of eutrophic functional groups. However, since 2003, governmental regulations have slowed the increase in nitrogen and phosphorus transport flux from the source to the estuary, contributing to the stabilization of harmful algal blooms at low levels in the estuary and adjacent waters. Strict control of nitrogen-to-phosphorus ratios is essential for preserving biodiversity, mitigating eutrophication, and preventing harmful algal blooms, thereby ensuring ecological balance and protecting water environments along the Yangtze River.
Collapse
Affiliation(s)
- Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xianrui Ha
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Liu Z, Xie F, Wang L, Yu L, Shi X, Yang Z, Zhang M. Response of heterocyst differentiation of Dolichospermum to different forms of nitrogen deficiency. HARMFUL ALGAE 2024; 139:102742. [PMID: 39567076 DOI: 10.1016/j.hal.2024.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024]
Abstract
In recent years, initiatives aimed at mitigating eutrophication have successfully reduced nitrogen and phosphorus concentrations in numerous lakes across China. Notably, the management of total nitrogen levels has prompted a shift in the dominant genera responsible for harmful algal blooms. Among these, Dolichospermum, a typical diazotrophic cyanobacterium, exhibits the ability to differentiate heterocysts for atmospheric N2 fixation under nitrogen-limited conditions. However, the underlying mechanisms driving heterocyst differentiation in response to the absence of specific nitrogen compounds remain poorly understood. This study analyzed the driving factors influencing heterocyst frequency using field data from Lake Chaohu collected between January and June 2022. Furthermore, an experiment was conducted utilizing NH4Cl, NaNO3 and urea as nitrogen sources, with specific nitrogen deficiencies created to investigate the response mechanisms of Dolichospermum under these conditions. The results indicated significant monthly variations in heterocyst frequency in Lake Chaohu, which were associated with the interaction of multiple driving factors. Nutrient changes emerged as the most intuitive driving factor, with heterocyst frequency showing a significant negative correlation with total nitrogen and dissolved total nitrogen levels. Experimental results demonstrated that the absence of NO3N promoted both the biomass and heterocyst frequency of Dolichospermum. When NH4N was limited, the proliferation of Dolichospermum was inhibited, leading to an extended period of heterocyst development. Although a lack of urea eventually increased heterocyst frequency in Dolichospermum, there was no significant increase in biomass. The concentrations of the three nitrogen sources exhibited a negative correlation with heterocyst differentiation, with the effects of NO3N and urea deficiency on heterocyst differentiation being significantly stronger than those of NH4N. Moreover, heterocyst differentiation frequency was positively correlated with photosynthetic efficiency, which indicated that the acquisition and distribution of photosynthetic energy between heterocysts and vegetative cells also influence the differentiation process of heterocysts to some extent. The findings highlight the differing responses of heterocyst differentiation to various forms of nitrogen, emphasizing the importance of prioritizing NH4N removal in nutrient control. However, further research is needed to determine the key threshold concentrations of different nitrogen sources that trigger heterocyst differentiation.
Collapse
Affiliation(s)
- Zichen Liu
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Fazhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Liya Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Li Yu
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China; National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China.
| | - Xiaoli Shi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Zhen Yang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
6
|
Hou X, Hu X, Li Y, Zhang H, Niu L, Huang R, Xu J. From disruption to adaptation: Response of phytoplankton communities in representative impounded lakes to China's South-to-North Water Diversion Project. WATER RESEARCH 2024; 261:122001. [PMID: 38964215 DOI: 10.1016/j.watres.2024.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.
Collapse
Affiliation(s)
- Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| |
Collapse
|
7
|
Sun R, Wei J, Zhang S, Pei H. The dynamic changes in phytoplankton and environmental factors within Dongping Lake (China) before and after the South-to-North Water Diversion Project. ENVIRONMENTAL RESEARCH 2024; 246:118138. [PMID: 38191041 DOI: 10.1016/j.envres.2024.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Dongping Lake is one of the most important regulation and storage lakes along the eastern route of the South-to-North Water Diversion Project in China, the water quality condition of which directly influences the safety of water diverting, because it serves as a Yangtze River water redistribution control point. However, the changes in algae, and in environmental factors affecting their community structures, before and after the water diversion project are rarely reported. In this study, the temporal variations of phytoplankton abundance were examined based on monthly samples collected at three stations from May 2010 to April 2022. The total abundance of algae greatly decreased after the water diversion project was implemented, with a relatively stable biodiversity and evenness before and after the water translocation. Multiple statistical methods were used together with the water quality indices (WQIs) and the nutrient status index (TSIM) to evaluate overall water condition and analyse relationships among environmental factors. The WQIs demonstrated a general "Good" water quality with a seasonal differentiation, and that water conditions during water transfer periods were better than during non-water transfer periods, which may be ascribed to the improved hydraulic conditions and purified water environment during water transfer periods. Redundancy analysis showed that water temperature, ammonia nitrogen, water transparency, and total phosphorus were the most important environmental factors, with relatively decreased contribution rates towards phytoplankton communities after the water translocation. Importantly, some dominant phytoplankton genera of Chlorophyta, Bacillariophyceae, and Cyanophyceae were similarly affected by water transparency, and nitrogen and phosphorus nutrients in summer after the water translocation. These research findings helped us gain a comprehensive understanding of the changing patterns of water quality and microalgae and their relationships before and after the water diversion project, providing a guidance for future lake management in regulating hydraulic conditions and improving water quality of Dongping Lake.
Collapse
Affiliation(s)
- Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jielin Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shasha Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| |
Collapse
|
8
|
Nicolosi Gelis MM, Canino A, Bouchez A, Domaizon I, Laplace-Treyture C, Rimet F, Alric B. Assessing the relevance of DNA metabarcoding compared to morphological identification for lake phytoplankton monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169774. [PMID: 38215838 DOI: 10.1016/j.scitotenv.2023.169774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
Phytoplankton is a key biological group used to assess the ecological status of lakes. The classical monitoring approach relies on microscopic identification and counting of phytoplankton species, which is time-consuming and requires high taxonomic expertise. High-throughput sequencing, combined with metabarcoding, has recently demonstrated its potential as an alternative approach for plankton surveys. Several studies have confirmed the relevance of the diatom metabarcoding approach to calculate biotic indices based on species ecology. However, phytoplankton communities have not yet benefited from such validation. Here, by comparing the results obtained with the two methods (molecular and microscopic counting), we evaluated the relevance of metabarcoding approach for phytoplankton monitoring by considering different metrics: alpha diversity, taxonomic composition, community structure and a phytoplankton biotic index used to assess the trophic level of lakes. For this purpose, 55 samples were collected in four large alpine lakes (Aiguebelette, Annecy, Bourget, Geneva) during the year 2021. For each sample, a metabarcoding analysis based on two genetic markers (16S and 23S rRNA) was performed, in addition to the microscopic count. Regarding the trophic level of lakes, significant differences were found between index values obtained with the two approaches. The main hypothesis to explain these differences comes from the incompleteness, particularly at the species level, of the barcode reference library for the two genetic markers. It is therefore necessary to complete reference libraries for using such species-based biotic indices with metabarcoding data. Besides this, species richness and diversity were higher in the molecular inventories than in the microscopic ones. Moreover, despite differences in taxonomic composition of the floristic lists obtained by the two approaches, their community structures were similar. These results support the possibility of using metabarcoding for phytoplankton monitoring but in a different way. We suggest exploring alternative approaches to index development, such as a taxonomy-free approach.
Collapse
Affiliation(s)
- Maria Mercedes Nicolosi Gelis
- Instituto de Limnología Dr. Raúl A. Ringuelet, CONICET-UNLP, Argentina; UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 75bis av. De Corzent - CS 50511, FR - 74203 Thonon-les-Bains cedex, France; Pole R&D ECLA Ecosystèmes Lacustres, France
| | - Alexis Canino
- UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 75bis av. De Corzent - CS 50511, FR - 74203 Thonon-les-Bains cedex, France; Pole R&D ECLA Ecosystèmes Lacustres, France
| | - Agnès Bouchez
- UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 75bis av. De Corzent - CS 50511, FR - 74203 Thonon-les-Bains cedex, France; Pole R&D ECLA Ecosystèmes Lacustres, France
| | - Isabelle Domaizon
- UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 75bis av. De Corzent - CS 50511, FR - 74203 Thonon-les-Bains cedex, France; Pole R&D ECLA Ecosystèmes Lacustres, France
| | - Christophe Laplace-Treyture
- Pole R&D ECLA Ecosystèmes Lacustres, France; UR EABX, INRAE, 50 avenue de Verdun, FR - 33612 Cestas cedex, France
| | - Frédéric Rimet
- UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 75bis av. De Corzent - CS 50511, FR - 74203 Thonon-les-Bains cedex, France; Pole R&D ECLA Ecosystèmes Lacustres, France
| | - Benjamin Alric
- UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 75bis av. De Corzent - CS 50511, FR - 74203 Thonon-les-Bains cedex, France; Pole R&D ECLA Ecosystèmes Lacustres, France.
| |
Collapse
|
9
|
Liang Q, Jin X, Feng J, Wu S, Wu J, Liu Y, Xie Z, Li Z, Chen C. Spatial and Temporal Characteristics of Phytoplankton Communities in Drinking Water Source Reservoirs in Shenzhen, China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3933. [PMID: 38068571 PMCID: PMC10707980 DOI: 10.3390/plants12233933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2025]
Abstract
Phytoplankton diversity and community characteristics are closely associated with aquatic environmental factors. Understanding these dynamics can provide insights into the ecological health of water bodies. We investigate the spatial and temporal characteristics of phytoplankton communities in 27 drinking water source reservoirs in Shenzhen, China. As a method, we collected samples during the dry season in 2021 and the wet season in 2022, analyzed the alpha and beta diversities of phytoplankton communities, and correlated these with the environmental factors. The results reveal that Cyanobacteria dominate the phytoplankton communities in the Shenzhen reservoirs. Phytoplankton diversity is greater during the dry season. The algal composition varies spatially, and the phytoplankton diversity tends to decrease with increasing eutrophication. A co-occurrence network analysis indicates denser and stronger correlations among phytoplankton nodes during the wet season than dry season. Reservoirs with moderate eutrophication levels exhibit denser nodes and stronger correlations compared to those with low or high eutrophication levels. The chemical oxygen demand, water temperature, pH, and total nitrogen are identified as key influencers of the phytoplankton community structure. Our results contribute to the enhanced understanding of the spatial and temporal dynamics of phytoplankton communities in reservoirs in South China and provides insights into the management and conservation of these drinking water reservoirs.
Collapse
Affiliation(s)
- Qiting Liang
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Xingliang Jin
- Shenzhen Ecological Environment Monitoring Station, Shenzhen 518000, China;
| | - Jie Feng
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Shenhao Wu
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Jiajia Wu
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Ying Liu
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Zixin Xie
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Zhi Li
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| | - Chunxing Chen
- Shenzhen Academy of Environmental Sciences, Shenzhen 518000, China; (Q.L.); (S.W.); (J.W.); (Y.L.); (Z.X.); (Z.L.); (C.C.)
| |
Collapse
|
10
|
Wang X, Yang Y, Wan J, Chen Z, Wang N, Guo Y, Wang Y. Water quality variation and driving factors quantitatively evaluation of urban lakes during quick socioeconomic development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118615. [PMID: 37454450 DOI: 10.1016/j.jenvman.2023.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Rapid urbanisation has caused a significant impact on the ecological environment of urban lakes in the world. To maintain the harmonious development of urban progress and water quality, it is essential to evaluate water quality variation and explore the driving factors quantitatively. A comprehensive evaluation method with cluster analysis and Kriging interpolation was used to explore the spatiotemporal variation in a typical urban lake in China, Chaohu Lake, from 2011 to 2020. The correlation between water quality and socioeconomic factors was evaluated by Pearson correlation analysis. Results indicated that: total phosphorus (TP) and total nitrogen (TN) were the key pollution parameters of Chaohu Lake. The pollution situation was gradually improving, however, and the improvement in chemical oxygen demand (COD) is more evident due to anthropogenic control. The spatial heterogeneity of water quality in Chaohu Lake is remarkable, and the water quality is poor in the west but better in the east. Natural attributes of lakes and external load were the main reasons for the spatial heterogeneity. The western residential areas of Chaohu Lake Basin (CLB) are concentrated, and a large amount of industrial and domestic sewage exacerbates water pollution in the west of tributaries. In contrast, the implementation of water environmental governance policies in recent years has alleviated water pollution. From 2011 to 2020, water quality has improved by 23%-35% in the west and 7%-14% in the east. This study provided a framework for quantitatively assessing water quality variation and its driving forces in urban lakes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Yinqun Yang
- Changjiang Water Resources Protection Institute, Wuhan, 430051, China
| | - Jing Wan
- Hubei Provincial Academy of Eco-environmental Sciences, Wuhan, 430064, PR China
| | - Zhuo Chen
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Nan Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Yanqi Guo
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Yonggui Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
11
|
Zheng S, Li J, Ye C, Xian X, Feng M, Yu X. Microbiological risks increased by ammonia-oxidizing bacteria under global warming: The neglected issue in chloraminated drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162353. [PMID: 36822432 DOI: 10.1016/j.scitotenv.2023.162353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
A rising outbreak of waterborne diseases caused by global warming requires higher microbial stability in the drinking water distribution system (DWDS). Chloramine disinfection is gaining popularity in this context due to its good persistent stability and fewer disinfection byproducts. However, the microbiological risks may be significantly magnified by ammonia-oxidizing bacteria (AOB) in distribution systems during global warming, which is rarely noticed. Hence, this work mainly focuses on AOB to explore its impact on water quality biosafety in the context of global warming. Research indicates that global warming-induced high temperatures can directly or indirectly promote the growth of AOB, thus leading to nitrification. Further, its metabolites or cellular residues can be used as substrates for the growth of heterotrophic bacteria (e.g., waterborne pathogens). Thus, biofilm may be more persistent in the pipelines due to the presence of AOB. Breakpoint chlorination is usually applied to control such situations. However, switching between this strategy and chloramine disinfection would result in even more severe nitrification and other adverse effects. Based on the elevated microbiological risks in DWDS, the following aspects should be paid attention to in future research: (1) to understand the response of nitrifying bacteria to high temperatures and the possible association between AOB and pathogenic growth, (2) to reveal the mechanisms of AOB-mediated biofilm formation under high-temperature stress, and (3) to develop new technologies to prevent and control the occurrence of nitrification in drinking water distribution system.
Collapse
Affiliation(s)
- Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianguo Li
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xuanxuan Xian
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Effects of Submerged Macrophytes on the Growth, Morphology, Nutritional Value, and Flavor of Cultured Largemouth Bass ( Micropterus salmoides). Molecules 2022; 27:molecules27154927. [PMID: 35956873 PMCID: PMC9370443 DOI: 10.3390/molecules27154927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index than those in the M group (p< 0.05). Moreover, compared with fish in the M group, those in the EM group showed improved muscle quality with significantly elevated levels of crude protein, total free and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3, and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile (p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii significantly improved growth, morphological traits, nutritional components, and characteristic flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured with submerged macrophytes.
Collapse
|
13
|
Ochieng B, Mbao EO, Zhang Z, Shi L, Liu Q. Phytoplankton community structure of Tang-Pu Reservoir: status and ecological assessment in relation to physicochemical variability. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:382. [PMID: 35441323 DOI: 10.1007/s10661-022-09958-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Seasonal variation in phytoplankton community structure within Tang-Pu Reservoir (Shaoxing city, Zhejiang province, China) was investigated in relation to variation in physicochemical and hydrological characteristics. Over the three-study seasons (autumn, winter, and spring), phytoplankton abundance and biomass showed a gradual increase with the peak in spring season. During this study period, phytoplankton community comprised of 7 phyla, 80 genera, and 210 species. The dominating phyla were Chlorophyta 80 species, Bacillariophyta 46, and Cyanophyta 44 as well as other phyla of freshwater ecosystems except Xanthophyta. The phytoplankton density and biomass varied in the six sampling sites between a minimum of 257.42 × 104 cells/L to 1054.15 × 104 cells/L and 1.60 mg/L to 4.56 mg/L respectively. Spring season had higher biomass and density values than autumn and winter. Furthermore, the results indicated that the Shannon-Wiener (H') and Pielou evenness (J') indices of phytoplankton community were stable although with slightly higher values in spring. Based on the calculated indices, Tang-Pu reservoir could be considered mesosaprobic in all the three seasons. Redundancy analysis (RDA) revealed that pH, total nitrogen (TN), total phosphorus (TP), transparency, chlorophyll a (Chl a), dissolve oxygen (DO), and water temperature (WT) were responsible for most phytoplankton community shift from Bacillariophyta and Cryptophyta to Cyanophyta and Chlorophyta in spring. These environmental parameters play an essential role in the community structure variation of phytoplankton in the downstream and upstream of Tang-Pu Reservoir. A decreasing phytoplankton abundance trend from the river area (inlet) to the lake (outlet) was also observed.
Collapse
Affiliation(s)
- Beryl Ochieng
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Sciences, Lingang New District, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| | - Evance Omondi Mbao
- Department of Geosciences and The Environment, The Technical University of Kenya, PO Box, Nairobi, 52428-00200, Kenya
| | - Zhen Zhang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- College of Fisheries and Life Sciences, Lingang New District, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Liandong Shi
- Shaoxing Tang-Pu Reservoir Co. Ltd, Shangyu, 312364, Zhejiang, China
| | - Qigen Liu
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Sciences, Lingang New District, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
14
|
Lecomte KL, Pasquini AI, Manjarrez-Rangel CS, Puy-Alquiza MJ, de Jesús N Segoviano-Garfias J, Zanor GA. Surface hydrochemical dynamic in an artificial lake with anthropic impact: La Purísima reservoir, Central Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:128. [PMID: 35080661 DOI: 10.1007/s10661-022-09773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
In the present study, the hydrochemical dynamic and the water quality of La Purísima reservoir, Central Mexico, have been determined. The reservoir presents total dissolved solids (TDSs) between 146 and 328 mg L-1 and water quality neutral to slightly alkaline (pH 7.0 to 8.7) during the dry season, whereas it becomes clearly alkaline (pH 8.1-9.9) in the rainy-warm season. Through its main tributaries, La Purísima reservoir has been receiving water affected by anthropic activities, such as mining, urbanization, and agriculture. La Purísima reservoir indicates water quality suitable for irrigation and aquatic lives, but unsuitable for drinking purposes. A geochemical evolution from the riverine to the lacustrine zone is evidenced by the complexation of several free ions: the higher saturation indexes; the lower toxic metal concentrations; and the lower trophic status, which ameliorate the water quality in the lacustrine zone. Trace elements co-precipitate and are adsorbed onto bottom sediments. During summer, high evaporation rates and atmospheric precipitation are found to decline the water quality. Cluster analyses reflect the geo-setting and different pollution levels: urban impact from the north coast, and agricultural activities from the east coast. The sensitivity of the lake to geochemical behavior can be used to understand the complex dissolved geochemical dynamics in a lake and the potential effects from long-term anthropic impact variability. The information about water quality of La Purísima reservoir may be useful to preserve the ecosystem and its biodiversity.
Collapse
Affiliation(s)
- Karina L Lecomte
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea I Pasquini
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016CGA, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthya Soledad Manjarrez-Rangel
- Departamento de Ciencias Ambientales, Posgrado en Biociencias, División de Ciencias de la Vida (DICIVA), Universidad de Guanajuato, Ex Hacienda El Copal, km 9 Carretera Irapuato-Silao AP. 311, CP. 36500, Irapuato, Guanajuato, Mexico
| | - María Jesús Puy-Alquiza
- Departamento de Ingeniería en Minas, Metalurgia y Geología, División de Ingenierías, Universidad de Guanajuato, Ex Hacienda de San Matías S/N, CP. 36020, Guanajuato, Mexico
| | - José de Jesús N Segoviano-Garfias
- Departamento de Ciencias Ambientales, Posgrado en Biociencias, División de Ciencias de la Vida (DICIVA), Universidad de Guanajuato, Ex Hacienda El Copal, km 9 Carretera Irapuato-Silao AP. 311, CP. 36500, Irapuato, Guanajuato, Mexico
| | - Gabriela A Zanor
- Departamento de Ciencias Ambientales, Posgrado en Biociencias, División de Ciencias de la Vida (DICIVA), Universidad de Guanajuato, Ex Hacienda El Copal, km 9 Carretera Irapuato-Silao AP. 311, CP. 36500, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
15
|
Huang M, Li Y, Xia C, Zeng C, Zhang B. Coupling responses of landscape pattern to human activity and their drivers in the hinterland of Three Gorges Reservoir Area. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Zhang X, Wang G, Tan Z, Wang Y, Li Q. Effects of ecological protection and restoration on phytoplankton diversity in impounded lakes along the eastern route of China's South-to-North Water Diversion Project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148870. [PMID: 34243009 DOI: 10.1016/j.scitotenv.2021.148870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Traditional lake phytoplankton diversity studies do not take into account the impact of ecological protection and restoration project policies. Here, a difference-in-differences (DID) model, which is commonly used to analyze the relative importance of economic factors, was used to evaluate the impact of such policies on phytoplankton diversity in lakes. Dongping Lake was used as the experimental group, and the upstream Nansi Lake was used as the control group. The phytoplankton diversity index of the experimental group and the control group was used as the explanatory variable of the DID model. Six environmental and socioeconomic factors, temperature and precipitation, were used as control variables in the DID model. The effects of ecological protection and restoration project policy on phytoplankton diversity in lakes were analyzed. Under the influence of policy implementation, the phytoplankton diversity in the experimental lake was improved by 2.79% compared with that in the control lake. Temperature and precipitation were the main factors affecting phytoplankton diversity in the two connected shallow lakes in the Shandong Peninsula. This study verified that DID models can be used to quantitatively analyze the impact of ecological protection and restoration project policies on phytoplankton diversity in lakes.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Guoqiang Wang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhongxin Tan
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuntao Wang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Qing Li
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Research Trends in the Remote Sensing of Phytoplankton Blooms: Results from Bibliometrics. REMOTE SENSING 2021. [DOI: 10.3390/rs13214414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phytoplankton blooms have caused many serious public safety incidents and eco-environmental problems worldwide and became a focus issue for research. Accurate and rapid monitoring of phytoplankton blooms is critical for forecasting, treating, and management. With the advantages of large spatial coverage and high temporal resolution, remote sensing has been widely used to monitor phytoplankton blooms. Numerous advances have been made in the remote sensing of phytoplankton blooms, biomass, and phenology over the past several decades. To fully understand the development history, research hotspots, and future trends of remote-sensing technology in the study of phytoplankton blooms, we conducted a comprehensive review to systematically analyze the research trends in the remote sensing of phytoplankton blooms through bibliometrics. Our findings showed that research on the use of remote-sensing technology in this field increased substantially in the past 30 years. “Oceanography,” “Environmental Sciences,” and “Remote Sensing” are the most popular subject categories. Remote Sensing of Environment, Journal of Geophysical Research: Oceans, and International Journal of Remote Sensing were the journals with the most published articles. The results of the analysis of international influence and cooperation showed that the United States had the greatest influence in this field and that the cooperation between China and the United States was the closest. The Chinese Academy of Sciences published the largest number of papers, reaching 542 articles. Keyword and topic analysis results showed that “phytoplankton,” “chlorophyll,” and “ocean” were the most frequently occurring keywords, while “eutrophication management and monitoring,” “climate change,” “lakes,” and “remote-sensing algorithms” were the most popular research topics in recent years. Researchers are now paying increasing attention to the phenological response of phytoplankton under the conditions of climate change and the application of new remote-sensing methods. With the development of new remote-sensing technology and the expansion of phytoplankton research, future research should focus on (1) accurate observation of phytoplankton blooms; (2) the traits of phytoplankton blooms; and (3) the drivers, early warning, and management of phytoplankton blooms. In addition, we discuss the future challenges and opportunities in the use of remote sensing in phytoplankton blooms. Our review will promote a deeper and wider understanding of the field.
Collapse
|
18
|
Rimba AB, Mohan G, Chapagain SK, Arumansawang A, Payus C, Fukushi K, Husnayaen, Osawa T, Avtar R. Impact of population growth and land use and land cover (LULC) changes on water quality in tourism-dependent economies using a geographically weighted regression approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25920-25938. [PMID: 33475923 DOI: 10.1007/s11356-020-12285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
This paper aims to assess the influence of land use and land cover (LULC) indicators and population density on water quality parameters during dry and rainy seasons in a tourism area in Indonesia. This study applies least squares regression (OLS) and Pearson correlation analysis to see the relationship among factors, and all LULC and population density were significantly correlated with most of water quality parameter with P values of 0.01 and 0.05. For example, DO shows high correlation with population density, farm, and built-up in dry season; however, each observation point has different percentages of LULC and population density. The concentration value should be different over space since watershed characteristics and pollutions sources are not the same in the diverse locations. The geographically weighted regression (GWR) analyze the spatially varying relationships among population density, LULC categories (i.e., built-up areas, rice fields, farms, and forests), and 11 water quality indicators across three selected rivers (Ayung, Badung, and Mati) with different levels of tourism urbanization in Bali Province, Indonesia. The results explore that compared with OLS estimates, GWR performed well in terms of their R2 values and the Akaike information criterion (AIC) in all the parameters and seasons. Further, the findings exhibit population density as a critical indicator having a highly significant association with BOD and E. Coli parameters. Moreover, the built-up area has correlated positively to the water quality parameters (Ni, Pb, KMnO4 and TSS). The parameter DO is associated negatively with the built-up area, which indicates increasing built-up area tends to deteriorate the water quality. Hence, our findings can be used as input to provide a reference to the local governments and stakeholders for issuing policy on water and LULC for achieving a sustainable water environment in this region.
Collapse
Affiliation(s)
- Andi Besse Rimba
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan.
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan.
- Center for Remote Sensing and Ocean Sciences (CReSOS), Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80232, Indonesia.
| | - Geetha Mohan
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Saroj Kumar Chapagain
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
| | - Andi Arumansawang
- Department of Mining Engineering, Hasanuddin University, Poros Malino Street km.6, Bontomarannu, Gowa, South Sulawesi, 92171, Indonesia
| | - Carolyn Payus
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
- Faculty of Science & Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Kensuke Fukushi
- United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), 5 Chome-53-70 Jingumae, Shibuya-Ku, Tokyo, 150-8925, Japan
- Institute for Future Initiatives (IFI), University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Husnayaen
- Center for Remote Sensing and Ocean Sciences (CReSOS), Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80232, Indonesia
- Environmental Engineering Program, Faculty of Engineering, Science and Technology Institute of Nahdatul Ulama Bali (STNUBA), Jalan West Pura DemakNo.31, Denpasar, Bali, 80119, Indonesia
| | - Takahiro Osawa
- Center for Remote Sensing and Ocean Sciences (CReSOS), Udayana University, Jalan PB Sudirman, Denpasar, Bali, 80232, Indonesia
| | - Ram Avtar
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
19
|
Wei W, Guo Z, Zhou L, Xie B, Zhou J. Assessing environmental interference in northern China using a spatial distance model: From the perspective of geographic detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136170. [PMID: 31884283 DOI: 10.1016/j.scitotenv.2019.136170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The rapid development of society and the expansion of human activities have resulted in interference with the natural environment. Assessing the environmental interference (EI) caused by human activities is highly important for socio-economic sustainable development. In this study, the spatial distance model (SDM) and resource endowment index (REI)-human activity index (HAI) ratio model were developed to calculate the environmental interference index (EII) in northern China (NC). The current spatial distribution and patterns of EII in NC were analyzed based on geographic information system (GIS) technology. In addition, the factors that influence the level of EI were examined through a geographical detector method. The results showed that the EII value in the eastern region was significantly higher than that in the western region and that differences in EI were spatial heterogeneity. The spatial distribution of EI was analyzed at the provincial, municipal and county scales, respectively. It was found that its distribution was closely related to urban development. The spatial distribution of EI displayed longitudinal zonality. East of 104.987°E, there were many large cities, such as Beijing, Tianjin, Qingdao and Zhengzhou, with high population densities and developed economies. Thus, these areas had high EI values. To the west of 104.987°E, such as in the Qinghai, Gansu, Xinjiang and Inner Mongolia regions, the EI values were generally low, with low environmental quality and fewer human activities. The level of EI in the Huang-Huai-Hai Plain region was higher than that in other areas, displaying obvious spatial dependence. Moreover, the distribution of EI exhibited high-high and low-low aggregation patterns, which accounted for 24.06% and 27.35% of the total study area, respectively. Specifically, in NC, the EI caused by human activities displayed obvious regional characteristics. In addition, the factors that influence EI were determined through a geographical detector model. The land use intensity was the direct factor related to changes in and the levels of EI, and the cover and growth of vegetation were the most important factors associated with mitigating human interference. The assessment results can provide a reference for the formulation of environmental governance and related policies.
Collapse
Affiliation(s)
- Wei Wei
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Zecheng Guo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Liang Zhou
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.
| | - Binbin Xie
- School of Urban Economics and Tourism Culture, Lanzhou City University, Lanzhou 730070, Gansu, China
| | - Junju Zhou
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
20
|
MODIS-Satellite-Based Analysis of Long-Term Temporal-Spatial Dynamics and Drivers of Algal Blooms in a Plateau Lake Dianchi, China. REMOTE SENSING 2019. [DOI: 10.3390/rs11212582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Algal blooms in eutrophic lakes have been a global issue to environmental ecology. Although great progress on prevention and control of algae have been made in many lakes, systematic research on long-term temporal-spatial dynamics and drivers of algal blooms in a plateau Lake Dianchi is so far insufficient. Therefore, the algae pixel-growing algorithm (APA) was used to accurately identify algal bloom areas at the sub-pixel level on the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 2000 to 2018. The results showed that algal blooms were observed all year round, with a reduced frequency in winter–spring and an increased frequency in summer–autumn, which lasted a long time for about 310–350 days. The outbreak areas were concentrated in 20–80 km2 and the top three largest areas were observed in 2002, 2008, and 2017, reaching 168.80 km2, 126.51 km2, and 156.34 km2, respectively. After deriving the temporal-spatial distribution of algal blooms, principal component analysis (PCA) and redundancy analysis (RDA) were applied to explore the effects of meteorological, water quality and human activities. Of the variables analyzed, mean temperature (Tmean) and wind speed (WS) were the main drivers of daily algal bloom areas and spatial distribution. The precipitation (P), pH, and water temperature (WT) had a strong positive correlation, while WS and sunshine hours (SH) had a negative correlation with monthly maximum algal bloom areas and frequency. Total nitrogen (TN) and dissolved oxygen (DO) were the main influencing factors of annual frequency, initiation, and duration of algal blooms. Also, the discharge of wastewater and the southwest and southeast monsoons may contribute to the distribution of algal blooms mainly in the north of the lake. However, different regions of the lake show substantial variations, so further zoning and quantitative joint studies of influencing factors are required to more accurately understand the true mechanisms of algae in Lake Dianchi.
Collapse
|
21
|
Human Activity Intensity Assessment by Remote Sensing in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China. SUSTAINABILITY 2019. [DOI: 10.3390/su11205670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human activities have significantly affected the natural eco-environment, which could lead to land cover changes. The human activity intensity of land surface (HAILS) represent human activity at the regional scale and can be monitored efficiently over a long term based on land cover data collected by remote sensing techniques. In this study, we quantify the HAILS index for 2000, 2010, and 2015 based on land cover, and analyze its temporal and spatial variation to illustrate the potential influence of human activities on the water quality in the water source area of the Middle Route of the South-to-North Water Diversion Project (MR-SNWDP). The results show that from 2000 to 2015, the HAILS decreased in general but increased with the highest increment of 78.4% around water resources. The area showing high values of HAILS increased at a rate of 30.8% from 2000 to 2015. In the riparian zone around the water body, the HAILS rose at an increment of 0.68% in 2010 to 0.05% in 2015. On the basis of the variation of the HAILS, it has been revealed that human activities, increased mainly around water bodies, may increase the risk of water pollution.
Collapse
|