1
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Xie Y, Feng NX, Huang L, Wu M, Li CX, Zhang F, Huang Y, Cai QY, Xiang L, Li YW, Zhao HM, Mo CH. Improving key gene expression and di-n-butyl phthalate (DBP) degrading ability in a novel Pseudochrobactrum sp. XF203 by ribosome engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174207. [PMID: 38914327 DOI: 10.1016/j.scitotenv.2024.174207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.
Collapse
Affiliation(s)
- Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Functional Molecules, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Miaoer Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Cheng-Xuan Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Wu ZH, Li F, Wang F, Jin R, Li Y, Li S, Zhou Z, Jia P, Li JT. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116691. [PMID: 38981391 DOI: 10.1016/j.ecoenv.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Feifan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rongzhou Jin
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shilin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuang Zhou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
4
|
Wang Y, Zhang F, Zhang G, Wang H, Zhu S, Zhang H, He T, Guo T. Trace metals coupled with plasticisers in microplastics strengthen the denitrification function of the soil microbiome in the Qinghai Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134593. [PMID: 38749249 DOI: 10.1016/j.jhazmat.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Huaxin Wang
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tiantian He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tingyu Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
5
|
Cao XD, Jien SH, Yang CW, Lin YH, Liao CS. Innovative Microbial Immobilization Strategy for Di- n-Butyl Phthalate Biodegradation Using Biochar-Calcium Alginate-Waterborne Polyurethane Composites. Microorganisms 2024; 12:1265. [PMID: 39065034 PMCID: PMC11278806 DOI: 10.3390/microorganisms12071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Di-n-butyl phthalate (DBP) is a prevalent phthalate ester widely used as a plasticizer, leading to its widespread presence in various environmental matrices. This study presents an innovative microbial immobilization strategy utilizing biochar, calcium alginate (alginate-Ca, (C12H14CaO12)n), and waterborne polyurethane (WPU) composites to enhance the biodegradation efficiency of DBP. The results revealed that rice husk biochar, pyrolyzed at 300 °C, exhibits relatively safer and more stable physical and chemical properties, making it an effective immobilization matrix. Additionally, the optimal cultural conditions for Bacillus aquimaris in DBP biodegradation were identified as incubation at 30 °C and pH 7, with the supplementation of 0.15 g of yeast extract, 0.0625 g of glucose, and 1 CMC of Triton X-100. Algal biotoxicity results indicated a significant decrease in biotoxicity, as evidenced by an increase in chlorophyll a content in Chlorella vulgaris following DBP removal from the culture medium. Finally, microbial community analysis demonstrated that encapsulating B. aquimaris within alginate-Ca and WPU layers not only enhanced DBP degradation, but also prevented ecological competition from indigenous microorganisms. This novel approach showcases the potential of agricultural waste utilization and microbial immobilization techniques for the remediation of DBP-contaminated environments.
Collapse
Affiliation(s)
- Xuan-Di Cao
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840203, Taiwan;
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei 111002, Taiwan;
| | - Yi-Hsuan Lin
- Environmental Engineering Research Center, Sinotech Engineering Consultants Inc., Taipei 114065, Taiwan;
| | - Chien-Sen Liao
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
6
|
Wang L, Feng C, Chen Y, Meng Q, Li J, Liu Y, Zhang W, Li Z, Qu J, Zhang Y. Study on the mechanism and degradation behavior of Encifer adhaerens DNM-S1 capturing dimethyl phthalate. CHEMOSPHERE 2024; 358:141919. [PMID: 38641291 DOI: 10.1016/j.chemosphere.2024.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
The global concern surrounding pollution caused by phthalates is escalating, with dimethyl phthalate (DMP) emerging as one of the most prevalent contaminants within the phthalates (PAEs) category. Although the biodegradation of DMP is considered both safe and efficient, its underlying degradation mechanism is not yet fully elucidated, and the degradation performance can be somewhat inconsistent. To address this issue, our study isolated a DMP-degrading bacterium (DNM-S1) from a vegetable greenhouse. The resulting data revealed that DNM-S1 exhibited a remarkable degradation performance, successfully degrading 84.98% of a 2000 mg L-1 DMP solution within 72 h. Remarkably, it achieved complete degradation of a 50 mg L-1 DMP solution within just 3 h. DMP degradation by DNM-S1 was also found to be efficient even under low-temperature conditions (10 °C). Our research further indicates that DNM-S1 is capable of capturing DMP through the ester bond in the bacterium's cell wall fatty acids, forming hydrogen bonds through hydrophobic interactions. The DMP was then transported into the DNM-S1 protoplasm using an active transport mechanism. Interestingly, the secondary metabolites of DNM-S1 contained natural carotenoids, which could potentially counteract the damaging effects of PAEs on cell membrane permeability. In summary, these findings highlight the potential of DNM-S1 in addressing PAEs pollution and provide new insights into the metabolic mechanism of PAEs degradation.
Collapse
Affiliation(s)
- Lei Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Chengcheng Feng
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Yuxin Chen
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Qingqing Meng
- Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Jingwei Li
- Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Yi Liu
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Wenqian Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Zhe Li
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Jianhua Qu
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
7
|
Men J, Liu H, Jin T, Cai G, Cao H, Cernava T, Jin D. The color of biodegradable mulch films is associated with differences in peanut yield and bacterial communities. ENVIRONMENTAL RESEARCH 2024; 248:118342. [PMID: 38295980 DOI: 10.1016/j.envres.2024.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.
Collapse
Affiliation(s)
- Jianan Men
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongzhe Cao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
8
|
Qiao H, Wu L, Li C, Yuan T, Gao J. Microbial perspective on restoration of degraded urban soil using ornamental plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120920. [PMID: 38688130 DOI: 10.1016/j.jenvman.2024.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The urban soil where abandoned buildings are demolished is barren and structurally poor, and this degraded soil requires restoration. Ornamental plants enhance the urban environment, increase biodiversity, and affect soil physicochemical properties, microbial diversity; however, their effects remain unclear. Thus, in this study, a mixed-planting meadow consisting of 14 perennial ornamental flower species, including Iris tectorum, Iris lacteal, and Patrinia scabiosaefolia, etc. Was planted at a demolition site with sewage-contaminated soil in Beijing. Simultaneously, a single-planting lawn of I. tectorum was established in a nearby park. We aimed to examine soil physicochemical properties, sequence soil bacterial 16S rRNA and fungal ITS amplicons, and analyze soil microbial diversity and community structure at both sites at five time points in the year after planting, To explore the effect of herbaceous ornamental plants on degraded urban soil, we used FAPROTAX and FUNGuild to predict bacterial and fungal functions, the bin-based null model to evaluate the soil microbial community, and random matrix theory to construct soil microbial molecular networks. The mixed-planting meadow produced a visually appealing landscape and dynamic seasonal enrichment, significantly increasing soil total nitrogen (TN) and organic matter (SOM) contents by 1.99 and 1.21 times, respectively. TN had a positive correlation with soil microbial α diversity and community structure. Dominant phyla at both sites included Proteobacteria, Actinobacteria, and Ascomycota. Although soil microorganisms were primarily influenced by stochastic processes, stochasticity was notably higher in the mixed-planting meadow than in the single-planting lawn. The mixed-planting meadow significantly increased the relative abundance of beneficial microorganisms, improving nitrification and aerobic ammonium oxidation of soil bacteria, as well as symbiotroph of fungi. No significant changes were observed in the single-planting lawn. The mixed-planting meadow established a complex soil microbial molecular network, enhancing the correlation between bacteria and fungi and increasing the number of key microorganisms. Our findings suggest the potential of mixed-planting meadow in restoring degraded urban soils by influencing the soil microbial community and enhancing the ecological service function. Our study provides theoretical support for applying mixed-planting meadow communities to improve the soil environment of urban green spaces.
Collapse
Affiliation(s)
- Hongyong Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| | - Luyao Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China; Zhejiang Provincial Institute of Cultural Relice and Archaeology, Zhejiang Province, PR China
| | - Chaonan Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China.
| | - Jianzhou Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
9
|
Zhong L, Li X, Sun Y, Xiao H, Tang Y, Wang R, Su X. Effects of microplastics on N 2O production and reduction potential in crop soils of northern China. CHEMOSPHERE 2024; 351:141256. [PMID: 38246503 DOI: 10.1016/j.chemosphere.2024.141256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Microplastics (MPs) pollution are found to be increasing in vegetable soils and potentially affecting N2O production and their associated pathways; however, its specific effects remain unclear. Here, we selected two common MPs, PE and PP at four different concentration levels of 0, 0.5, 1.5 and 3%, and conducted several incubation experiments aiming to explore soil bacterial and fungal N2O production. Results showed that the bacteria were the main contributors for the production of N2O, regardless of the absence or presence of MPs; and its contribution was decreased with increasing concentrations of PE and PP. The nosZ clade I and II genes were positively correlated with N2O reduction rates, indicating a combined regulation on soil N2O reduction. PE significantly inhibited the bacterial nitrification and denitrification, but did not affect the total N2O production rates; while PP significantly reduced both the bacterial and fungal N2O production rates. The resistance of fungal N2O production to MPs pollution was stronger than that of the bacterial N2O production. It highlights that the MPs pollution could reduce the potential of N2O production and reduction, and thus disturb soil nitrogen cycling system; while the inhibition on N2O production via bacteria and fungi varies with different types of MPs. This study is conducive to an improved and more comprehensive understanding of the ecological impacts of MPs within the agroecosystem.
Collapse
Affiliation(s)
- Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Xinhao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuru Sun
- Beijing Construction Engineering Group Environmental Remediation Co., Ltd, National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Hui Xiao
- Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Yafang Tang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Ruying Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Qu Y, Chen J, Russel M, Huang W, Bingke Y, Lei W, Zhang D, Blaszczak-Boxe C. Optimizing concentration and interaction mechanism of Demodesmus sp. and Achromobacter pulmonis sp. consortium to evaluate their potential for dibutyl phthalate removal from synthetic wastewater. BIORESOURCE TECHNOLOGY 2024; 395:130372. [PMID: 38278454 DOI: 10.1016/j.biortech.2024.130372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
A green approach of Desmodesmus sp. to Achromobacter pulmonis (1:1) coculture ratios was optimized to improve the removal efficiency of dibutyl phthalate (DBP) from simulated wastewater. High DBP resistance bacterial strains and microalgae was optimized from plastic contaminated water and acclimation process respectively. The influence of various factors on DBP removal performance was comprehensively investigated. Highest DBP removal 93 % was recorded, when the ratios algae-bacteria 1:1, with sodium acetate, pH-6, shaking speed-120 rpm and lighting periods L:D-12:12. Enough nutrient (TN/TP/TOC) availability and higher protein-108 mg/L and sugar-40 mg/L were observed in presences of 50 mg/L DBP. The degradation and sorption were calculated 81,12; 27,39 & 43,12 % in algae-bacteria, only algae and only bacteria system respectively. The degradation kinetics t1/2 3.74,22.15,12.86 days were evaluated, confirming that algae-bacteria effectively degrade the DBP. This outcome leading to promote a green sustainable approach to remove the emerging contamination from wastewater.
Collapse
Affiliation(s)
- Yihe Qu
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing 100012, P.R.China
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China.
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yang Bingke
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Wu Lei
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Dayong Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Christopher Blaszczak-Boxe
- Earth, Environment, & Equity Department, NOAA Center for Atmospheric Science & Meteorology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
11
|
Wang Y, Zhang L, Zhang S, Zhu S, Zhang F, Zhang G, Duan B, Ren R, Zhang H, Han M, Xu Y, Li Y. Regulating pathway for bacterial diversities toward improved ecological benefits of thiencarbazone-methyl·isoxaflutole application: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120037. [PMID: 38194872 DOI: 10.1016/j.jenvman.2024.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Herbicide abuse has a significantly negative impact on soil microflora and further influences the ecological benefit. The regulating measures and corresponding mechanisms mitigating the decreased bacterial diversity due to herbicide use have rarely been studied. A field experiment containing the application gradient of an efficient maize herbicide thiencarbazone-methyl·isoxaflutole was performed. The relationship between soil bacterial community and thiencarbazone-methyl·isoxaflutole use was revealed. Modified attapulgite was added to explore its impacts on soil microflora under the thiencarbazone-methyl·isoxaflutole application. Based on the analytic network process-entropy weighting method-TOPSIS method model, the ecological benefit focusing on microbial responses was quantitatively estimated along with technical effectiveness and economic benefit. The results showed that the diversity indices of soil microflora, especially the Inv_Simpson index, were reduced at the recommended, 5 and 10 times the recommended dosages of thiencarbazone-methyl·isoxaflutole use. The Flavisolibacter bacteria was negatively correlated with the residues in soils based on the random forest model and correlation analysis, indicating a potential degrader of thiencarbazone-methyl·isoxaflutole residues. The structural equation model further confirmed that the high soil water content and soil pH promoted the function of Flavisolibacter bacteria, facilitated the dissipation of thiencarbazone-methyl·isoxaflutole residues and further improved the diversity of soil microflora. In addition, the presence of modified attapulgite was found to increase the soil pH, which may improve bacterial diversity through the regulating pathway. This explained the high ecological benefits of the treatment where the thiencarbazone-methyl·isoxaflutole was applied at the recommended dosage rates in conjunction with modified attapulgite addition. Therefore, the comprehensive benefits of thiencarbazone-methyl·isoxaflutole application with a focus on ecological benefits can be improved by regulating the soil pH with modified attapulgite.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Shumin Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Bihua Duan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Meng Han
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Xu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuyang Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
12
|
Wang Y, Zhang F, Liao X, Yang X, Zhang G, Zhang L, Wei C, Shi P, Wen J, Ju X, Xu C, Liu Y, Lan Y. Disturbance mitigation of thiencarbazone-methyl·isoxaflutole on bacterial communities through nitrification inhibitor and attapulgite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122840. [PMID: 37926417 DOI: 10.1016/j.envpol.2023.122840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
There is a knowledge gap in the interaction between the effects of herbicide thiencarbazone-methyl·isoxaflutole on soil microflora and environmental parameters, which leads to a lack of measures in mitigating damage to bacterial communities from the herbicide use. The impacts of thiencarbazone-methyl·isoxaflutole and soil parameters on the diversity, structure and functions of soil bacterial communities were clarified, and the effects and potential mitigation mechanisms of nitrapyrin and modified attapulgite with bacterial function intervention on bacterial communities were explored through incubation and field experiments. The results showed that as thiencarbazone-methyl·isoxaflutole application increased, the stress on soil bacterial community structure and diversity also increased. The relative abundance of bacteria including Aridibacter and GP7 and functional annotations including "nitrate_reduction" were significantly negatively correlated with thiencarbazone-methyl·isoxaflutole residues in soils. The remarkable toxic effects on the Adhaeribacter bacteria were detected at the recommended dose of thiencarbazone-methyl·isoxaflutole application. The residue of isoxaflutole (one of the effective ingredients of thiencarbazone-methyl·isoxaflutole) directly and more strongly affected the diversity of soil bacterial communities than thiencarbazone-methyl. Increasing soil pH was recognised as an important factor in improving the diversity and structure of soil microflora based on the results of the Mantel test and canonical correspondence analysis. Supplemental use of nitrapyrin or modified attapulgite was found to increase soil pH, and further improve the expression of "manganese oxidation" function annotation. This contributed to the increased bacterial diversity (Shannon index). Therefore, the disturbance of soil microflora caused by thiencarbazone-methyl·isoxaflutole application can be mitigated by the use of nitrapyrin and modified attapulgite through raising soil pH.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Chaojun Wei
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Pengge Shi
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiongxin Wen
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Xiaorong Ju
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Can Xu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Yang Liu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang Province, China
| | - Ying Lan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang Province, China
| |
Collapse
|
13
|
Li J, Yang L, Yu S, Ding A, Zuo R, Yang J, Li X, Wang J. Environmental stressors altered the groundwater microbiome and nitrogen cycling: A focus on influencing mechanisms and pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167004. [PMID: 37704146 DOI: 10.1016/j.scitotenv.2023.167004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nitrogen cycling, as an important biogeochemical process in groundwater, strongly impacts the energy and matter flow of groundwater ecology. Phthalate esters (PAEs) were screened as key environmental stressors in the groundwater of Beijing, contributing to the alteration of microbial community structure and functions; thus, it could be deduced that these stressors might influence nitrogen cycling that is almost exclusively mediated by microorganisms. Identification of the influences of PAEs on groundwater nitrogen cycling and exploration of the potential influence mechanisms and pathways are vital but still challenging. This study explored the influence mechanisms and pathways of the environmental stressor PAE on nitrogen cycling in groundwater collected from a typical monitoring station in Beijing based on high-throughput sequencing and bioinformatics analysis combined with mediation analysis methods. The results suggested that among the 5 detected PAEs, dimethyl phthalate and diethyl phthalate significantly negatively impacted nitrogen cycling processes, especially nitrogen fixation and denitrification processes (p < 0.05), in groundwater. Their influences were fully or partially mediated by functional microorganisms, particularly assigned keystone genera (such as Dechloromonas, Aeromonas and Noviherbaspirillum), whose abundance was significantly inhibited by these PAEs via dysregulation of carbohydrate metabolism and activation of defense mechanisms. These findings confirmed that the influences of environmental stressors PAEs on nitrogen cycling in groundwater might be mediated by the "PAE stress-groundwater microbiome-nitrogen cycling alteration" pathway. This study may advance the understanding of the consequences of environmental stressors on groundwater ecology and support the ecological hazard assessment of groundwater stressors.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofei Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
14
|
Ma Q, Li Q, Wang J, Parales RE, Li L, Ruan Z. Exposure to three herbicide mixtures influenced maize root-associated microbial community structure, function and the network complexity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122393. [PMID: 37595734 DOI: 10.1016/j.envpol.2023.122393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Herbicide mixtures are a new and effective agricultural strategy for managing suppress weed resistance and have been widely used in controlling weeding growth in maize fields. However, the potential ecotoxicological impact of these mixtures on the microbial community structure and function within various root-associated niches, remains inadequately understood. Here, the effects of nicosulfuron, mesotrione and atrazine on soil enzyme activity and microbial community structure and function were investigated when applied alone and in combination. The findings indicated that herbicide mixtures exhibit a prolonged half-life compared to single herbicides. Ecological niches are the major factor influencing the structure and functions of the microbial community, with the rhizosphere exhibiting a more intensive response to herbicide stress. Herbicides significantly inhibited the activities of soil functional enzymes, including dehydrogenase, urease and sucrose in the short-term. Single herbicide did not drastically influence the alpha or beta diversity of the soil bacterial community, but herbicide mixtures significantly increased the richness of the fungal community. Meanwhile, the key functional microbial populations, such as Pseudomonas and Enterobacteriaceae, were significantly altered by herbicide stress. Both individual and combined use of the three herbicides reduced the complexity and stability of the bacterial network but increased the interspecific cooperations of fungal community in the rhizosphere. Moreover, by quantification of residual herbicide concentrations in the soil, we showed that the degradation period of the herbicide mixture was longer than that of single herbicides. Herbicide mixtures increased the contents of NO3--N and NH4+-N in the soil in the short-term. Overall, our study provided a comprehensive insight into the response of maize root-associated microbial communities to herbicide mixtures and facilitated the assessment of the ecological risks posed by herbicide mixtures to the agricultural environment from an agricultural sustainability perspective.
Collapse
Affiliation(s)
- Qingyun Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qingqing Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jie Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; College of Life Science, Xinjiang Normal University, Urumqi, 830046, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
15
|
Grimm D, Guy N, Lengyel G, Franks J, Maltman C. Gordonia metallireducens sp. nov., a tellurite- and selenite-resistant bacterium isolated from the sediment of an acid mine drainage stream. Int J Syst Evol Microbiol 2023; 73. [PMID: 37990983 DOI: 10.1099/ijsem.0.006176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
A polyphasic taxonomic study was carried out on strain TSed Te1T, isolated from sediment of a stream contaminated with acid drainage from a coal mine. The bacterium forms pink-pigmented colonies and has a rod-coccus growth cycle, which also includes some coryneform arrangements. This bacterium is capable of growing in the presence of up to 750 μg ml-1 tellurite and 5000 μg ml-1 selenite, reducing each to elemental form. Nearly complete 16S rRNA gene sequence analysis associated the strain with Gordonia, with 99.5 and 99.3 % similarity to Gordonia namibiensis and Gordonia rubripertincta, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization comparisons with the closest phylogenetic neighbour of TSed Te1T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids were C16 : 0, C18 : 1, C16 : 1 and tuberculostearic acid. The DNA G+C content was 67.6 mol%. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside, while MK-9(H2) was the only menaquinone found. Mycolic acids of C56-C60 were present. Whole-cell hydrolysates contained meso-diaminopimelic acid along with arabinose and galactose as the major cell-wall sugars. On the basis of the results obtained in this study, the bacterium was assigned to the genus Gordonia and represents a new species with the name Gordonia metallireducens sp. nov. The type strain is TSed Te1T (=NRRL B-65678T=DSM 114093T).
Collapse
Affiliation(s)
- David Grimm
- Department of Microbiology, Miami University College of Arts and Science, Oxford, Ohio 45056, USA
| | - Nathan Guy
- Department of Chemistry, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - George Lengyel
- Department of Chemistry, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Chris Maltman
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA
| |
Collapse
|
16
|
Xie Y, Huang Y, Liang Z, Shim H. Reutilization of scrap tyre for the enhanced removal of phthalate esters from water: immobilization performance, interaction mechanisms, and application. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132387. [PMID: 37639788 DOI: 10.1016/j.jhazmat.2023.132387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Waste scrap tyre as microbial immobilization matrix enhanced degradation of phthalate esters (PAEs), di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diethyl phthalate (DEP). The hybrid (physical adsorption and microbial immobilization) degradation process performance of scrap tyres was examined for the PAEs degradation. The scrap tyre was shown with competitive adsorption capacity toward PAEs, influenced by pH, temperature, dosage of adsorbent (scrap tyre), and concentration of PAE. The primary adsorption mechanism for tyres toward PAEs was considered hydrophobic. The immobilization of previously isolated Bacillus sp. MY156 on tyre surface significantly enhanced PAEs degradation as well as bacterial growth. The enzymatic activity results implied immobilization promoted dehydrogenase activity and decreased esterase activity. The cell surface response during PAEs degradation, in terms of morphological observation, FTIR and XRD analyses, and extracellular polymeric substance (EPS) release, was further assessed to better understand the interactions between microorganisms and tyre surface. Waste scrap tyres could be a promising potential candidate to be reused for sustainable environmental management, including contaminants removal.
Collapse
Affiliation(s)
- Yimin Xie
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao Special Administrative Region of China
| | - Yihuai Huang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao Special Administrative Region of China
| | - Zhiwei Liang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao Special Administrative Region of China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao Special Administrative Region of China.
| |
Collapse
|
17
|
Fan S, Guo J, Han S, Du H, Wang Z, Fu Y, Han H, Hou X, Wang W. A Novel and Efficient Phthalate Hydrolase from Acinetobacter sp. LUNF3: Molecular Cloning, Characterization and Catalytic Mechanism. Molecules 2023; 28:6738. [PMID: 37764514 PMCID: PMC10537300 DOI: 10.3390/molecules28186738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Phthalic acid esters (PAEs), which are widespread environmental contaminants, can be efficiently biodegraded, mediated by enzymes such as hydrolases. Despite great advances in the characterization of PAE hydrolases, which are the most important enzymes in the process of PAE degradation, their molecular catalytic mechanism has rarely been systematically investigated. Acinetobacter sp. LUNF3, which was isolated from contaminated soil in this study, demonstrated excellent PAE degradation at 30 °C and pH 5.0-11.0. After sequencing and annotating the complete genome, the gene dphAN1, encoding a novel putative PAE hydrolase, was identified with the conserved motifs catalytic triad (Ser201-Asp295-His325) and oxyanion hole (H127GGG130). DphAN1 can hydrolyze DEP (diethyl phthalate), DBP (dibutyl phthalate) and BBP (benzyl butyl phthalate). The high activity of DphAN1 was observed under a wide range of temperature (10-40 °C) and pH (6.0-9.0). Moreover, the metal ions (Fe2+, Mn2+, Cr2+ and Fe3+) and surfactant TritonX-100 significantly activated DphAN1, indicating a high adaptability and tolerance of DphAN1 to these chemicals. Molecular docking revealed the catalytic triad, oxyanion hole and other residues involved in binding DBP. The mutation of these residues reduced the activity of DphAN1, confirming their interaction with DBP. These results shed light on the catalytic mechanism of DphAN1 and may contribute to protein structural modification to improve catalytic efficiency in environment remediation.
Collapse
Affiliation(s)
- Shuanghu Fan
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Jingjing Guo
- School of Chemistry and Materials Science, Langfang Normal University, Langfang 065000, China;
| | - Shaoyan Han
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
| | - Haina Du
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
| | - Zimeng Wang
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
| | - Yajuan Fu
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Hui Han
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Xiaoqiang Hou
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
18
|
Wang Y, Men J, Zheng T, Ma Y, Li W, Cernava T, Bai L, Jin D. Impact of pyroxasulfone on sugarcane rhizosphere microbiome and functioning during field degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131608. [PMID: 37178534 DOI: 10.1016/j.jhazmat.2023.131608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Pyroxasulfone (PYR) is a widely used herbicide, but its effects on non-target organisms, particularly microorganisms, are largely unknown. Herein, we investigated the effects of various doses of PYR on the sugarcane rhizosphere microbiome by using amplicon sequencing of rRNA genes and quantitative PCR techniques. Correlation analyses indicated that several bacterial phyla (Verrucomicrobia and Rhodothermaeota) and genera (Streptomyces and Ignavibacteria) strongly responded to PYR application. Additionally, we found that both bacterial diversity and composition were significantly altered after 30 days, indicating a prolonged effect of the herbicide. Moreover, co-occurrence analyses of the bacterial community showed that the network complexity was significantly decreased by PYR at day 45. Furthermore, FAPROTAX analysis suggested that some functions with implications for carbon cycling groups were significantly altered after 30 days. Overall, we provide the first indications that PYR may not pose a significant risk for altering microbial communities in the short term (less than 30 days). However, its potential negative effects on bacterial communities in the middle and late stages of degradation deserve further attention. To our knowledge, this is the first study to provide insight into the effects of PYR on the rhizosphere microbiome, providing an extended basis for future risk assessments.
Collapse
Affiliation(s)
- Yanhui Wang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Tao Zheng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yonglin Ma
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Weisheng Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Lianyang Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weed, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
19
|
Liu LH, Zhang JY, Tang GX, Huang YH, Xie XQ, Geng J, Lü HX, Li H, Li YW, Mo CH, Zhao HM, Cai QY. Endophytic Phthalate-degrading Bacillus subtilis N-1-gfp colonizing in soil-crop system shifted indigenous bacterial community to remove di-n-butyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130993. [PMID: 36812730 DOI: 10.1016/j.jhazmat.2023.130993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Endophytic bacteria can degrade toxic phthalate (PAEs). Nevertheless, the colonization and function of endophytic PAE-degrader in soil-crop system and their association mechanism with indigenous bacteria in PAE removal remain unknown. Here, endophytic PAE-degrader Bacillus subtilis N-1 was marked with green fluorescent protein gene. Inoculated strain N-1-gfp could well colonize in soil and rice plant exposed to di-n-butyl phthalate (DBP) as directly confirmed by confocal laser scanning microscopy and realtime PCR. Illumina high-throughput sequencing demonstrated that inoculated N-1-gfp shifted indigenous bacterial community in rhizosphere and endosphere of rice plants with significant increasing relative abundance of its affiliating genus Bacillus than non-inoculation. Strain N-1-gfp exhibited efficient DBP degradation with 99.7% removal in culture solutions, and significantly promoted DBP removal in soil-plant system. Strain N-1-gfp colonization help plant enrich specific functional bacteria (e.g., pollutant-degrading bacteria) with significant higher relative abundances and stimulated bacterial activities (e.g., pollutant degradation) compared with non-inoculation. Furthermore, strain N-1-gfp displayed strong interaction with indigenous bacteria for accelerating DBP degradation in soil, decreasing DBP accumulation in plants and promoting plant growth. This is the first report on well colonization of endophytic DBP-degrader Bacillus subtilis in soil-plant system and its bioaugmentation with indigenous bacteria for promoting DBP removal.
Collapse
Affiliation(s)
- Li-Hui Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia-Yan Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Xuan Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang-Qing Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Geng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui-Xiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Zhao Z, Wu H, Jin T, Liu H, Men J, Cai G, Cernava T, Duan G, Jin D. Biodegradable mulch films significantly affected rhizosphere microbial communities and increased peanut yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162034. [PMID: 36754316 DOI: 10.1016/j.scitotenv.2023.162034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable mulch films are widely used to replace conventional plastic films in agricultural fields. However, their ecological effects on different microbial communities that naturally inhabit agricultural fields are scarcely explored. Herein, differences in bacterial communities recovered from biofilms, bulk soil, and rhizosphere soil were comparatively assessed for polyethylene film (PE) and biodegradable mulch film (BDM) application in peanut planted fields. The results showed that the plastic film type significantly influenced the bacterial community in different ecological niches of agricultural fields (P < 0.001). Specifically, BDMs significantly increased the diversity and abundance of bacteria in the rhizosphere soil. The bacterial communities in each ecological niche were distinguishable from each other; bacterial communities in the rhizosphere soil showed the most pronounced response among different treatments. Acidobacteria and Pseudomonas were significantly enriched in the rhizosphere soil when BDMs were used. BDMs also increased the rhizosphere soil bacterial network complexity and stability. The enrichment of beneficial bacteria in the rhizosphere soil under BDMs may also have implications for the observed increase in peanut yield. Deepening analyses indicated that Pseudoxanthomonas and Glutamicibacter are biomarkers in biofilms of PE and BDMs respectively. Our study provides new insights into the consequences of the application of different types of plastic films on microbial communities in different ecological niches of agricultural fields.
Collapse
Affiliation(s)
- Zhirui Zhao
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Haimiao Wu
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tuo Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Tang Q, Wang P, Liu H, Jin D, Chen X, Zhu L. Effect of chlorantraniliprole on soil bacterial and fungal diversity and community structure. Heliyon 2023; 9:e13668. [PMID: 36852024 PMCID: PMC9957708 DOI: 10.1016/j.heliyon.2023.e13668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chlorantraniliprole (CAP) is an insecticide with low toxicity and high efficiency, which is widely used in agriculture in China. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different CAP concentrations on bacterial and fungal communities in soil based on high-throughput sequencing. The results showed that CAP application had no significant effect on soil bacterial and fungal diversity, but altered the bacterial and fungal community structure. In particular, the soil bacterial and fungal community structure in the low CAP concentration treatment group exhibited large variability. Compared with 0 day, the phylum level of bacteria changed at 115 days, and fungi changed at 175 days, indicating that soil microbial community might have significant correlation with CAP degradation in soil. Correlation analysis between soil properties and microbial communities showed that TN, TP, and NO3-N were three key factors that significantly influenced microbial community structure. These results provide basic data for studying the effects of pesticides on ecosystem and potential remediation strategies of polluted soil.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Pingping Wang
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Huijun Liu
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
- Corresponding author.
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangning Chen
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
- Corresponding author.
| | - Lifei Zhu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
22
|
Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, Chen G, Ma NL, Sun Y. The combined action of biochar and nitrogen-fixing bacteria on microbial and enzymatic activities of soil N cycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120790. [PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
Collapse
Affiliation(s)
- Zechang Gou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Haoyu Zheng
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Ziqi He
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Su
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Siji Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Huan Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yang Sun
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
23
|
Zhou B, Zheng X, Zhu Z, Qin Q, Song K, Sun L, Sun Y, Zhang Y, Lv W, Xue Y. Effects of fertilizer application on phthalate ester pollution and the soil microbial community in plastic-shed soil on long-term fertilizer experiment. CHEMOSPHERE 2022; 308:136315. [PMID: 36087728 DOI: 10.1016/j.chemosphere.2022.136315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Due to the use of agricultural film, the pollution of phthalate esters (PAEs) in plastic-shed soils has attracted increasing attention. In this study, we used watermelon as a planting system and investigated the effects of organic fertilizer and chemical fertilizer application on the degradation of PAEs by evaluating soil nutrients and soil bacterial communities in plastic-shed soil. The dibutyl phthalate (DBP) concentration in the organic fertilizer soil was only 58.2% in the zero-fertilization control (CK) soil, but the concentrations of monohexyl phthalate (MEHP) and mono-n-butyl ester (MBP), the metabolites of PAEs, were found to be higher. The concentration of MBP is ten times that of DBP. The results showed that fertilization, especially the application of organic fertilizers, had a significant effect on the degradation of PAEs. There were specific biomarkers in different fertilization treatments. Among the microbiome community, Planifilum had the highest relative abundance in the organic fertilizer (OF) soil, and the highest proportion of Thermodesulfovibrionia was detected in the chemical fertilizer (CF) soil. These biomarkers were significantly correlated with PAEs and their metabolites. The relative abundance of Thermomonosporaceae was significantly positively correlated with DBP. Planifilum and Thermaerobacter, which significantly increased in organic fertilizer soil, showed a significant negative correlation with DBP and a significant positive correlation with MBP. The relative abundances of Planifilum and Geobacillus were elevated in the OF soil and may be able to co-metabolize soil nitrogen and PAEs. PAEs and their metabolites in soils had significant effects on soil microbes, as did the soil nutrients including available phosphorus (AP), alkali-hydrolysable nitrogen (Alkali-N), and organic matter (OM). Our research provides scientific support for the use of fertilizers to reduce PAE contamination but also warns of the potential risks of PAE metabolites.
Collapse
Affiliation(s)
- Bin Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Zhengyi Zhu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Qin Qin
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Ke Song
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Lijuan Sun
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Yafei Sun
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Yue Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China.
| | - Yong Xue
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, 201403, PR China.
| |
Collapse
|
24
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
25
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
26
|
Manzi HP, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Khan A, Yoon Y, Salama ES. Effect of dibutyl phthalate on microalgal growth kinetics, nutrients removal, and stress enzyme activities. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105741. [PMID: 36122470 DOI: 10.1016/j.marenvres.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The dibutyl phthalate (DPB) is an emerging plasticizer contaminant that disrupts the biological processes of primary producers, especially phytoplankton. In this study, two microalgal species (Chlorella sp. GEEL-08 and Tetradesmus dimorphus GEEL-04) were exposed to various concentrations of DBP extending from 0 to 100 mg/L. The growth kinetics, N-nitrate, and P-phosphate removal efficiency were assessed. The response enzymes such as malonaldehyde (MDA) and superoxide dismutase (SOD) were also investigated. The results revealed that the Chlorella sp. GEEL-08 at 10 mg/L concentration of DBP exhibited higher growth (0.88 OD680nm) compared to T. dimorphus GEEL-04 (0.80 OD680nm). More than 94% of N and P were removed from culture media by both microalgal species. The DBP (>50 mg/L) significantly exacerbates the growth of both microalgae species and the growth inhibition ratio was in the range of 3.6%-25.9%. The SOD activity and MDA were higher in T. dimorphus culture media than in the culture media of Chlorella sp. The results reflect the hazard and the risk of plasticizers on primary producers in the ecosystem.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou City, Gansu Province, 730000, PR China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China.
| |
Collapse
|
27
|
Gou Z, Liu G, Wang Y, Li X, Wang H, Chen S, Su Y, Sun Y, Ma NL, Chen G. Enhancing N uptake and reducing N pollution via green, sustainable N fixation-release model. ENVIRONMENTAL RESEARCH 2022; 214:113934. [PMID: 36027962 DOI: 10.1016/j.envres.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The overuse of N fertilizers has caused serious environmental problems (e.g., soil acidification, excessive N2O in the air, and groundwater contamination) and poses a serious threat to human health. Improving N fertilizer utilization efficiency and plant uptake is an alternative for N fertilizers overuses. Enterobacter cloacae is an opportunistic pathogen, also used as plant growth-promoting rhizobacteria (PGPR), has been widely presented in the fields of bioremediation and bioprotection. Here we developed a new N fixation-release model by combining biochar with E. cloacae. The efficiency of the model was evaluated using a greenhouse pot experiment with maize (Zea mays L.) as the test crop. The results showed that biochar combined with E. cloacae significantly increased the N content. The application of biochar combined with E. cloacae increased total N in soil by 33% compared with that of N fertilizers application. The N-uptake and utilization efficiency (NUE) in plant was increased 17.03% and 14.18%, respectively. The activities of urease, dehydrogenase and fluorescein diacetate hydrolase (FDA) was improved, the catalase (CAT) activity decreased. Analysis of the microbial community diversity revealed the abundance of Proteobacteria, Actinobacteria, Firmicutes, and Gemmatimonadetes were significantly improved. The mechanism under the model is that E. cloacae acted as N-fixation by capturing N2 from air. Biochar served as carrier, supporting better living environment for E. cloacae, also as adsorbent adsorbing N from fertilizer and from fixed N by E. cloacae, the adsorption in turn slower the N release. Altogether, the model promotes N utilization by plants, improves the soil environment, and reduces N pollution.
Collapse
Affiliation(s)
- Zechang Gou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Guoqing Liu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yisheng Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Xiufeng Li
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Huiqiong Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Siji Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Su
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Sun
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
28
|
Qin Z, Zhao Z, Xia L, Wang S. Pollution pressure and soil depth drive prokaryotic microbial assemblage and co-occurrence patterns in an organic polluted site. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129570. [PMID: 35999754 DOI: 10.1016/j.jhazmat.2022.129570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Organic polluted sites have become a global concern of soil contamination, yet little is known about microbial vertical distribution and community assembly in organic polluted sites. Here, high-throughput sequencing technology was employed to investigate prokaryotic microbial diversity and community assembly along soil profile in an abandoned chemical organic contaminated site. Results showed that there was no significant difference (P > 0.05) observed in microbial alpha diversity among different soil layers, whereas the structure of microbial communities presented significantly different (P < 0.05) in the superficial layer (0-0.5 m) compared with intermediate (1-1.5 m) and bottom (2.5-3 m) layers. Soil prokaryotic microbial community evolved to possess the potential of degrading organic pollutants under long-term organic pollution stress. A relatively homogeneous environment created by the organic polluted site mainly induced the ecological process of homogeneous selection driving community assembly, while dispersal limitation gained importance with the increase of soil depth. Organic contaminants were identified as the key driver of destabilizing co-occurrence networks, while the frequent cooperative behaviors among species could combat organic pollution stress and sustain prokaryotic community stability. Collectively, pollution pressure and soil depth jointly affected prokaryotic microbial assemblage and co-occurrence that underpinned the spatial scaling patterns of organic contaminated sites microbiota.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| |
Collapse
|
29
|
Wang P, Wang Z, Ren Z, Ding Y, Pan J, Wang Y, Jin D. Effects of di-n-butyl phthalate on aerobic composting process of agricultural waste: Mainly based on bacterial biomass and community dynamics analysis. ENVIRONMENTAL RESEARCH 2022; 212:113290. [PMID: 35427593 DOI: 10.1016/j.envres.2022.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Phthalic acid esters (PAEs) pollution has become a major environmental problem in agricultural waste composting. However, little information was available about the how the PAEs alter microbial processes during composting. This study investigated the effects of di-n-butyl phthalate (DBP) on bacterial biomass and community dynamics during composting. The results showed that a decreasing of DBP was observed from thermophilic phase and 43.26% of DBP was degraded after composting. The bacterial biomass and diversity during composting were reduced under DBP stress, so delaying the decomposition of organic matter. Moreover, the changes in bacterial community were observed since the thermophilic phase of DBP-contaminated composting. KEGG pathway analysis indicated that DBP stress decreased the relative abundance of the main metabolic pathways and inhibited compost maturation. Moreover, DBP stress had more significant correlation with the dominant bacteria. This work will expand the understanding of PAEs-contaminated organic waste composting and further control of PAEs pollutants.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ziming Ren
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yuejie Ding
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Yanhui Wang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
30
|
Wang P, Ma J, Wang Z, Jin D, Pan Y, Su Y, Sun Y, Cernava T, Wang Q. Di-n-butyl phthalate negatively affects humic acid conversion and microbial enzymatic dynamics during composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129306. [PMID: 35739802 DOI: 10.1016/j.jhazmat.2022.129306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
To understand the effects of phthalic acid esters (PAEs) on humic acid (HA) conversion, enzymatic and specific metabolic dynamics during composting under di-n-butyl phthalate (DBP) stress were evaluated for the first time. The results indicated that HA conversion was mainly related to bacteria rather than fungi, with positive associations with Actinobacteria, Chloroflexi, and Gemmatimonadota (all P < 0.05), and negative associations with Proteobacteria and Bacteroidota (all P < 0.05), while DBP stress retarded HA formation by altering the core microbes related to HA formation and their metabolic functions. Moreover, typical hydrolase and oxidoreductase activities were altered under DBP stress, proteases and cellulases were hindered, and peroxidases as well as polyphenol oxidases were promoted during composting. Overall, our data shows that DBP stress can retard HA formation and compost maturation by interfering with microbial activity. This study provides potentially useful information for the degradation and reuse of PAE-contaminated waste.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jing Ma
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China; Key Laboratory of Yellow River Sediment Research, MWR, Zhengzhou 450003, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuting Pan
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yazi Su
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Qian Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
31
|
Wang X, Wu H, Dai C, Wang X, Wang L, Xu J, Lu Z. Microbial interactions enhanced environmental fitness and expanded ecological niches under dibutyl phthalate and cadmium co-contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119362. [PMID: 35489538 DOI: 10.1016/j.envpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Co-contamination of organic pollutants and heavy metals is universal in the natural environment. Dibutyl phthalate (DBP), a typical plasticizer, frequently coexists with cadmium (Cd) in nature. However, little attention has been given to the impacts of co-contamination by DBP and Cd on microbial communities or the responses of microbes. To address this, a microcosm experiment was conducted by supplying the exogenous DBP-degrading bacterium Glutamicibacter nicotianae ZM05 to investigate the interplay among DBP-Cd co-contamination, the exogenous DBP-degrading bacterium G. nicotianae ZM05, and indigenous microorganisms. To adapt to co-contamination stress, microbial communities adjust their diversity, interactions, and functions. The stability of the microbial community decreased under co-contamination, as evidenced by lower diversity, simpler network, and fewer ecological niches. Microbial interactions were strengthened, as evidenced by enriched pathways related to microbial communications. Meanwhile, interactions between microorganisms enhanced the environmental fitness of the exogenous DBP-degrading bacterium ZM05. Based on co-occurrence network prediction and coculture experiments, metabolic interactions between the non-DBP-degrading bacterium Cupriavidus metallidurans ZM16 and ZM05 were proven. Strain ZM16 utilized protocatechuic acid, a DBP downstream metabolite, to relieve acid inhibition and adsorbed Cd to relieve toxic stress. These findings help to explain the responses of bacterial and fungal communities to DBP-Cd co-contamination and provide new insights for the construction of degrading consortia for bioremediation.
Collapse
Affiliation(s)
- Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuhan Dai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Li S, Deng Y, Lian S, Dai C, Ma Q, Qu Y. Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. ENVIRONMENTAL RESEARCH 2022; 204:112143. [PMID: 34600881 DOI: 10.1016/j.envres.2021.112143] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Although fungi are regarded as the important degraders of aromatic hydrocarbons (AHs) in various environments, the dynamic succession and interaction of their community under aromatic hydrocarbon stress has been rarely reported. In this study, we systematically investigated the responses of the fungal community and the associations among fungal species when facing the continuous stress of two typical AHs, benzene and naphthalene. Using high-throughput sequencing technology, we demonstrated that fungal diversity displayed a significant downward trend during six weeks of continuous aromatic hydrocarbon treatment. Community succession was observed during the operational period, and the relative abundance of some typical degraders, such as Exophiala sp. and Candida sp., increased during the later period of operation. Meanwhile, by predicting the functions of the fungal community through PICRUSt2, we found that some relevant enzymes, such as peroxidase, dioxygenase, and monooxygenase, may play an important role in the degradation process and maintaining overall community multifunctionality. Furthermore, the measurement of modified normalized stochasticity ratio (MST) indicated that continuous aromatic hydrocarbon stress resulted in a stronger deterministic process in community assembly over time, suggesting environmental selection dominated succession of the fungal community in activated sludge. Finally, molecular ecological network analysis (MENA) demonstrated that, the cooperative behaviors among members, the network keystone genera related to biodegradation, such as Exophiala sp. and Haglerozyma sp., and a well-organized topological structure, together, maintained the structural stability of the fungal community under AH stress. Our study provides new insights for understanding the stability of fungal communities during the degradation of contaminants in activated sludge.
Collapse
Affiliation(s)
- Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
33
|
Li H, Luo L, Tang B, Guo H, Cao Z, Zeng Q, Chen S, Chen Z. Dynamic changes of rhizosphere soil bacterial community and nutrients in cadmium polluted soils with soybean-corn intercropping. BMC Microbiol 2022; 22:57. [PMID: 35168566 PMCID: PMC8845239 DOI: 10.1186/s12866-022-02468-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean-corn intercropping is widely practised by farmers in Southwest China. Although rhizosphere microorganisms are important in nutrient cycling processes, the differences in rhizosphere microbial communities between intercropped soybean and corn and their monoculture are poorly known. Additionally, the effects of cadmium (Cd) pollution on these differences have not been examined. Therefore, a field experiment was conducted in Cd-polluted soil to determine the effects of monocultures and soybean-corn intercropping systems on Cd concentrations in plants, on rhizosphere bacterial communities, soil nutrients and Cd availability. Plants and soils were examined five times in the growing season, and Illumina sequencing of 16S rRNA genes was used to analyze the rhizosphere bacterial communities. RESULTS Intercropping did not alter Cd concentrations in corn and soybean, but changed soil available Cd (ACd) concentrations and caused different effects in the rhizosphere soils of the two crop species. However, there was little difference in bacterial community diversity for the same crop species under the two planting modes. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and corn rhizospheres. In ecological networks of bacterial communities, intercropping soybean (IS) had more module hubs and connectors, whereas intercropped corn (IC) had fewer module hubs and connectors than those of corresponding monoculture crops. Soil organic matter (SOM) was the key factor affecting soybean rhizosphere bacterial communities, whereas available nutrients (N, P, K) were the key factors affecting those in corn rhizosphere. During the cropping season, the concentration of soil available phosphorus (AP) in the intercropped soybean-corn was significantly higher than that in corresponding monocultures. In addition, the soil available potassium (AK) concentration was higher in intercropped soybean than that in monocropped soybean. CONCLUSIONS Intercropped soybean-corn lead to an increase in the AP concentration during the growing season, and although crop absorption of Cd was not affected in the Cd-contaminated soil, soil ACd concentration was affected. Intercropped soybean-corn also affected the soil physicochemical properties and rhizosphere bacterial community structure. Thus, intercropped soybean-corn was a key factor in determining changes in microbial community composition and networks. These results provide a basic ecological framework for soil microbial function in Cd-contaminated soil.
Collapse
Affiliation(s)
- Han Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luyun Luo
- Yangtze Normal University, Chongqing, China.
| | - Bin Tang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huanle Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Zhongyang Cao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Qiang Zeng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songlin Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihui Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
34
|
Kong X, Bai Z, Jin T, Jin D, Pan J, Yu X, Cernava T. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126914. [PMID: 34419851 DOI: 10.1016/j.jhazmat.2021.126914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Plasticizer phthalic acid esters (PAEs) are commonly found as contaminants in various soils. Previous studies indicated that their natural degradation can substantially differ among soil types; however, potential implications of the soil microbiome remained largely unexplored. Here, we have collected ten soil types from nine different geographical regions of China to investigate the degradation of DBP therein and role of bacteria in this process. Results showed that the degradation rate of DBP was lowest in nutrient-poor red soils from Jiangxi Province, while it was highest in fluvo-aquatic soil from Hebei Province. Bacterial community responses to DBP substantially differed in each of the analyzed soils. Arthrobacter is known for its broad-spectrum activity in terms of DBP degradation in soil and was therefore implemented as bioremediating inoculant in many polluted environments. In the present study, network analyses indicated that synergism between soil bacteria increased following exposure to DBP. Arthrobacter and Sphingomonas were found to expand their positive interactions with other members of the microbiome in DBP-contaminated soils. The overall findings of our study provide a basis for biomarker development for detection of DBP contaminations and an extended basis for future bioremediation approaches based on beneficial bacteria.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanbing Bai
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
35
|
The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Chang X, Song Z, Xu Y, Gao M. Response of soil characteristics to biochar and Fe-Mn oxide-modified biochar application in phthalate-contaminated fluvo-aquic soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112755. [PMID: 34500388 DOI: 10.1016/j.ecoenv.2021.112755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Biochar (BC) derived from agricultural biomass is effective at immobilizing phthalate in the agricultural soil environment. In this study, we assessed the effects of 0.5%, 1%, and 2% BC and Fe-Mn oxide-modified biochar (FMBC) addition on dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) residues and biochemical characteristics in the rhizosphere soil of mature wheat polluted with DBP and DEHP using a pot experiment. Scanning electron microscopy showed that the surfaces and pores of BC and FMBC adhered soil mineral particles after remediation. Therefore, DBP and DEHP residues were increased in BC- and FMBC-treated soils. Illumina HiSeq sequencing showed that, compared with the control, BC and FMBC addition significantly enhanced the relative abundance of Firmicutes and reduced Proteobacteria. The abundance of Sphenodons and Pseudomonas, which degrade phthalates, tended to be higher in FMBC-amended soils than in BC-amended and control soils. This result may be related to an increase in available nutrients and organic matter following BC and FMBC application. Subsequently, the changes in soil bacterial abundance and community structure induced an increase in polyphenol oxidase, β-glucosidase, neutral phosphatase, and protease activity in BC and FMBC remediation. In comparison with the BC treatment, FMBC addition had a significantly positive effect on enzyme activity, and the microbial structure and was therefore more effective at immobilizing DBP and DEHP in the soil. Thus, our findings strongly suggest that FMBC is a reliable remediation material for phthalate-contaminated soil.
Collapse
Affiliation(s)
- Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
37
|
Huang Y, Ren W, Liu H, Wang H, Xu Y, Han Y, Teng Y. Contrasting impacts of drying-rewetting cycles on the dissipation of di-(2-ethylhexyl) phthalate in two typical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148433. [PMID: 34146807 DOI: 10.1016/j.scitotenv.2021.148433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) pollution has become a growing problem in farmlands of China. Drying-rewetting (DW) cycle is one of frequent environmental changes that agricultural production is confronted with, and also a convenient and practical agronomic regulation measure. In this study, in order to explore the effects of DW cycles on the dissipation of DEHP and their driving mechanisms in different types of soils, we performed a 45-day microcosm culture experiment with two typical agricultural soils, Lou soil (LS) and Red soil (RS). High-throughput sequencing was applied to study the response of soil microbial communities in the process of DEHP dissipation under DW cycles. The results showed that the DW cycles considerably inhibited the dissipation of DEHP in LS while promoted that in RS. The DW cycles obviously decreased the diversity, the relative abundance of significantly differential bacteria, and the total abundance of potential degrading bacterial groups in LS, whereas have little effect on bacterial community in RS, except at the initial cultivation stage when the corresponding parameters were promoted. The inhibition of the DW cycles on DEHP dissipation in LS was mainly derived from microbial degradation, but the interplay between microbial functions and soil attributes contributed to the promotion of DEHP dissipation in RS under the DW cycles. This comprehensive understanding of the contrasting impacts and underlying driving mechanisms may provide crucial implications for the prevention and control of DEHP pollution in regional soils.
Collapse
Affiliation(s)
- Yiwen Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haoran Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huimin Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujuan Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
38
|
Wang X, Wu H, Wang X, Wang H, Zhao K, Ma B, Lu Z. Network-directed isolation of the cooperator Pseudomonas aeruginosa ZM03 enhanced the dibutyl phthalate degradation capacity of Arthrobacter nicotianae ZM05 under pH stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124667. [PMID: 33279322 DOI: 10.1016/j.jhazmat.2020.124667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP), widely used as plasticizer, is a typical soil contaminant. A new isolate, Arthrobacter nicotianae ZM05, is efficient at degrading DBP but lacks stress resistance to adverse environments. In this study, to isolate effective cooperators of strain ZM05 under pH stress and explore the effects of DBP on the bacterial community structure and interaction between bacteria, a microcosm experiment was conducted by supplying the exogenous DBP-degrading bacteria ZM05. 16S rRNA gene sequencing analysis showed that DBP contamination decreased microbial community diversity and weakened potential interactions between microorganisms, evidenced by fewer links, lower average degree, and lower average clustering coefficients in the cooccurrence network. Furthermore, the subnetworks showed that DBP shifted the interactions between strain ZM05 and other microbes. Based on the prediction of the network, the nondegrading bacterium Pseudomonas aeruginosa ZM03 was isolated and proven through coculture experiments to have a positive interaction with strain ZM05 during DBP degradation under pH stress. Strain ZM03 could utilize downstream acidic metabolites to alleviate acid inhibition and accelerate degradation. This study provides solid evidence that bacterial communities adjust their interactions to adapt to DBP stress and provides new insight into the prediction of microbes that are cooperative with degrading bacteria.
Collapse
Affiliation(s)
- Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Wang P, Gao J, Zhao Y, Zhang M, Zhou S. Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142476. [PMID: 33035973 DOI: 10.1016/j.scitotenv.2020.142476] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 05/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a chemical plasticizer that has been commonly used in the manufacture of polyvinyl chloride. DEHP is one of the environmental pollution sources. In this study, a gram-negative strain RX bacterium utilizing DEHP as sole carbon source was isolated from activated sludge through screening test. This strain RX was identified as Achromobacter sp. RX based on its morphology, physiological properties and 16S rRNA gene sequence analysis. The results showed that the optimal conditions for the DEHP degradation were 30.0 °C and pH 7.0. The DEHP degradation induced by strain RX demonstrated nitrogen source dependent, while followed a decreasing degradation rate under the source of: NO3- > NH4+ > NO2-. The biodegradability of Achromobacter sp. RX was enhanced with Masson pine seed powder as a co-metabolic substrate and Tween-80 as a solubilizing agent. Meanwhile, the degrading kinetics analysis was performed in the condition of DEHP as sole carbon source. The DEHP degradation curves fitted well with the first-order kinetic model at 50-300 mg/L of DEHP, with the half-life ranging from 13.0 to 16.4 h. During the biodegradation of DEHP, mono-(2-ehtylhexyl) phthalate (MEHP) was firstly generated through de-esterification, followed by the formation of phthalic acid and benzoic acid after further de-esterification of MEHP. Benzoic acid was finally mineralized to CO2 and H2O. The decontamination of DEHP-contaminated soil by Achromobacter sp. RX was investigated using a rotating-drum bioreactor. Evolution of total organic carbon from the contaminated soil showed that 86.4%-91.7% of DEHP was mineralized at pH 7.0 and 30.0 °C within 96 h. Reusability of Achromobacter sp. RX and its lifetime were observed over six consecutive cycles. Thus, Achromobacter sp. RX possessed high DEHP biodegradability, which provided a good potential in dealing with DEHP-contaminated soil.
Collapse
Affiliation(s)
- Ping Wang
- School of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingjing Gao
- School of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhao
- School of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- School of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Sijie Zhou
- School of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
40
|
Tran HT, Lin C, Bui XT, Itayama T, Dang BT, Cheruiyot NK, Hoang HG, Vu CT. Bacterial community progression during food waste composting containing high dioctyl terephthalate (DOTP) concentration. CHEMOSPHERE 2021; 265:129064. [PMID: 33248736 DOI: 10.1016/j.chemosphere.2020.129064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The overall dioctyl terephthalate (DOTP) degradation efficiency during food waste composting was 98%. The thermophilic phases contributed to 76% of the overall degradation efficiency, followed by the maturation phase (22%), then the mesophilic phase (0.7%). The thermophilic phase had the highest specific degradation rate of 0.149 d-1. The progression of the bacterial community during the composting process was investigated to understand DOTP biodegradation. The results showed that the bacterial richness and the alpha diversity of the DOTP composting were similar to a typical composting process, indicating that the high concentration of DOTP did not hinder the thriving and evolution of the bacterial community. Additionally, Firmicutes was the most dominant at the phylum level, followed by Proteobacteria and Bacteroidetes. Bacilli was the most dominant class (70%) in the mesophilic phase, with the abundance decreasing thereafter in the thermophilic and maturation phase. Moreover, Lactobacillus sp. was the dominant species at the beginning of the experiment, which was probably responsible for DOTP biodegradation. The high removal efficiency observed in the maturation phase indicates that degradation occurs in all the composting phases, and that compost can be used to enhance natural attenuation. These findings provide a better understanding of the bacterial communities during biodegradation of DOTP and plasticizers via food waste composting and should facilitate the development of appropriate green bioremediation technologies.
Collapse
Affiliation(s)
- Huu Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Viet Nam.
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Bao Trong Dang
- Ho Chi Minh City University of Technology - HUTECH, Ho Chi Minh City, 700000, Viet Nam
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Hong Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chi Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL, 35899, USA
| |
Collapse
|
41
|
Zhou Y, Wang J, Zou M, Jia Z, Zhou S, Li Y. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141368. [PMID: 32798871 DOI: 10.1016/j.scitotenv.2020.141368] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
The global prevalence of microplastics (MPs) poses a potential threat and unpredictable risk to the function and health of environmental systems. However, the research progress of soil MPs is restricted by the inherent technical inconformity and difficulties in analyzing particles in complex matrices. Here, we reviewed a selection of papers and then extrapolated a tentative standardized method for such analyses. The multiple sources of soil MPs in soil need to be quantified. Global monitoring data of soil MPs is far from sufficient. The interaction between MPs and different properties and environmental factors controls the migration and retention of MPs in soil. The migration behavior and key mechanisms of MPs in real-world environments remain to be determined. The presence of MPs threatens soil microbial-plant-animal ecosystem function and health, and may enter the human body through the food chain, although the extent of these hazards is currently debated. In particular, attention should be paid to the potential transport and ecotoxicological mechanisms of contaminants derived and adsorptive from MPs and of harmful microorganisms (such as pathogens) attached as biofilms. Although there exist preliminary studies on soil MPs, it is urgent to consider the diversity of MPs as a suite of contaminants and to systematically understand the sources, flux and effects of these artificial pollutants in time and space from the perspective of plastic environmental cycle. More comprehensive quantification of their environmental fate is undertaken to identify risks to global human and ecological systems. From the perspective of controlling soil MP pollution, the responsibility assignment of government manage-producer-consumer system and the strategy of remediation should be implemented. This review is helpful for providing an important roadmap and inspiration for the research methods and framework of soil MPs and facilitates the development of waste management and remediation strategies for regional soil MP contamination.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Junxiao Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Zhenyi Jia
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.
| | - Yan Li
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
42
|
Wang Y, Du L, Liu H, Long D, Huang M, Wang Y, Huang S, Jin D. Halosulfuron methyl did not have a significant effect on diversity and community of sugarcane rhizosphere microflora. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123040. [PMID: 32526443 DOI: 10.1016/j.jhazmat.2020.123040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Halosulfuron methyl (HM) is a new, highly active sulfonylurea herbicide that has been widely used for weed control in agricultural production. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different concentrations of HM on bacterial communities in sugarcane rhizospheric soil by using 16S rRNA gene high-throughput sequencing. The half-life of HM for 130 mg/kg, 600 mg/kg, and 1300 mg/kg spraying concentrations were 6.64, 9.19, and 9.87 d, respectively. HM application did not alter the alpha or beta diversity of the soil bacterial community, whereas some microbial populations and the main microbial functional groups were significantly altered by HM exposure. The phylum Cyanobacteria and genus unclassified Chloroflexi group KD4-96 were found to be positively correlated with HM concentration in soils, indicating that they are highly involved in the biodegradation of HM in soils. Relationship analysis between soil properties and microbial communities showed that total nitrogen and total phosphorus concentration were two key factors that significantly influenced microbial community structure. To our best knowledge, this is the first microbial ecotoxicological assessment of HM in agricultural soil.
Collapse
Affiliation(s)
- Yanhui Wang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Liangwei Du
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Huijun Liu
- Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Di Long
- Institute of Pesticide and Environmental Toxicology, Guangxi University, Nanning, 530007, China
| | - Mengge Huang
- Institute of Pesticide and Environmental Toxicology, Guangxi University, Nanning, 530007, China
| | - Yuting Wang
- Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Shilin Huang
- Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
43
|
Bai N, Li S, Zhang J, Zhang H, Zhang H, Zheng X, Lv W. Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115112. [PMID: 32634694 DOI: 10.1016/j.envpol.2020.115112] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and β-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.
Collapse
Affiliation(s)
- Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
44
|
Feng NX, Liang QF, Feng YX, Xiang L, Zhao HM, Li YW, Li H, Cai QY, Mo CH, Wong MH. Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139883. [PMID: 32544682 DOI: 10.1016/j.scitotenv.2020.139883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Phthalate acid esters (PAEs) are ubiquitous pollutants in agricultural soils. Application of bioorganic fertilizer (BOF) containing beneficial microbes represents a promising approach to improve the yield and quality of crops grown in contaminated soils. In the present study, a novel multifunctional bioorganic fertilizer N-BOF was developed by using compost of sewage sludge and agricultural waste and inoculating with PAEs-degrading B. megaterium YJB3 and phosphate solubilizing B. megaterium YLYP1. Its feasibility of improving the yield and quality of vegetable grown in PAEs (including DBP and DEHP) contaminated soil was evaluated by pot experiments. The N-BOF could effectively promote plant growth, with biomass increasing by 4-66.9% and 19-110% compared to chemical (CF) and no fertilizer (CK), respectively. The concentrations of DBP and DEHP in shoots of chemically fertilised vegetable ranged 1.23-3.12 mg/kg (dry weight, DW) and 1.63-3.89 mg/kg (DW), respectively. Their concentrations were significantly decreased (p < 0.05) when N-BOF was applied (1%, 2%, 5% amendment), especially at higher application rate ranging 0.11-0.3 mg/kg (DW) and 0.16-0.32 mg/kg (DW), respectively. Meanwhile, vegetable quality attributes were also significantly improved when 2% N-BOF was applied, with increase in the contents of vitamin C, vitamin B1, total protein, and starch, and decrease in the contents of nitrite and nitrate. In this case, the human health risk from consumption of the vegetable grown in PAEs-contaminated soil could be significantly reduced. Thus, our study is expected to provide an efficient way of high-value utilization of organic substrates by producing low-cost but high quality N-BOF. Future studies on the effects of N-BOF in terms of fertilizer regimes on yield and quality of the vegetable are needed, and further field studies for assessing the long-term efficacy and reliability of this promising N-BOF are also warranted.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qi-Feng Liang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Xi Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
45
|
Yu YH, Su JF, Shih Y, Wang J, Wang PY, Huang CP. Hazardous wastes treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1833-1860. [PMID: 32866315 DOI: 10.1002/wer.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.
Collapse
Affiliation(s)
- Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenn Fang Su
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yujen Shih
- Graduate Institute of Environmental Essngineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Jianmin Wang
- Department of Civil Architectural and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Po Yen Wang
- Department of Civil Engineering, Widener University, Chester, Pennsylvania, USA
| | - Chin Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
46
|
Zhang H, Lin Z, Liu B, Wang G, Weng L, Zhou J, Hu H, He H, Huang Y, Chen J, Ruth N, Li C, Ren L. Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02: Characterization, metabolic pathway and kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139138. [PMID: 32446058 DOI: 10.1016/j.scitotenv.2020.139138] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer and a representative endocrine disrupting chemical. The toxicological effects of DEHP on environmental and human health have been widely investigated. In this study, the DEHP-degrading bacterial strain RL-JC02 was isolated from red soil with long-term usage of plastic mulch, and it was identified as Gordonia terrae by 16S rRNA gene analysis coupled with physiological and biochemical characterization. The biodegrading capacity of different phthalic acid esters and related intermediates was investigated as well as the performance of strain RL-JC02 under different environmental conditions, such as temperature, pH, salinity and DEHP concentration. Specifically, strain RL-JC02 showed good tolerance to low pH, with 86.6% of DEHP degraded under the initial pH of 5.0 within 72 h. The metabolic pathway of DEHP was examined by metabolic intermediate identification via a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analysis in which DEHP was hydrolyzed into phthalic acid (PA) and 2-ethylhexanol (2-EH) via mono (2-ethylhexyl) phthalate (MEHP). PA and 2-EH were further utilized through the protocatechuic acid metabolic pathway and β-oxidation via protocatechuic acid and 2-ethylhexanoic acid, respectively. The application potential of strain RL-JC02 was confirmed through the bioremediation of artificial DEHP-contaminated red soil showing 91.8% DEHP degradation by strain RL-JC02 within 30 d. The kinetics analysis of DEHP degradation by strain RL-JC02 in soil demonstrated that the process followed the modified Gompertz model. Meanwhile, the cell concentration monitoring of strain RL-JC02 in soil with absolute quantification polymerase chain reaction (qPCR) suggested that strain RL-JC02 survived well during bioremediation. This study provides sufficient evidence of a robust degrader for the bioremediation of PAE-contaminated red soil.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guan Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liyun Weng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Junliang Zhou
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hong He
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinjun Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Nahurira Ruth
- Faculty of Science, Kabale University, Kabale 317, Uganda
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
47
|
Yu H, Wang L, Lin Y, Liu W, Tuyiringire D, Jiao Y, Zhang L, Meng Q, Zhang Y. Complete metabolic study by dibutyl phthalate degrading Pseudomonas sp. DNB-S1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110378. [PMID: 32146194 DOI: 10.1016/j.ecoenv.2020.110378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 05/26/2023]
Abstract
The primary purpose of this study was to systematically explore the complete metabolic pathway and tolerance mechanism of strain DNB-S1 to dibutyl phthalate (DBP), and the effect of DBP on energy metabolism of DNB-S1. Here, DNB-S1, a strain of Pseudomonas sp. that was highly effective in degrading DBP, was identified, and differentially expressed metabolites and metabolic networks of DBP were studied. The results showed that the differentially expressed metabolites were mainly aromatic compounds and lipid compounds, with only a few toxic intermediate metabolites. It speculated that phthalic acid, salicylic acid, 3-hydroxybenzoate acid, 3-Carboxy-cis, cis-muconate, fumarypyravate were intermediate metabolites of DBP. Their up-regulation indicated that there were two metabolic pathways in the degradation of DBP (protocatechuate pathway and gentisate pathway), which had been verified by peak changes at 290 nm, 320 nm, 330 nm, and 375 nm in the enzymatic method. Also, aspartate, GSH, and other metabolites were up-regulation, indicating that DNB-S1 had a high tolerance to DBP and maintained cell homeostasis, which was also one of the essential reasons to ensure the efficient degradation of DBP. Altogether, this study firstly proposed two pathways to degrade DBP and comprehensively explored the effect of DBP on the metabolic function of DNB-S1, which enriched the study of microbial metabolism of organic pollutants, and which provided a basis for the application of metabolomics.
Collapse
Affiliation(s)
- Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yulong Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Weixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Diogene Tuyiringire
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
48
|
Tai X, Li R, Zhang B, Yu H, Kong X, Bai Z, Deng Y, Jia L, Jin D. Pollution Gradients Altered the Bacterial Community Composition and Stochastic Process of Rural Polluted Ponds. Microorganisms 2020; 8:microorganisms8020311. [PMID: 32102406 PMCID: PMC7074964 DOI: 10.3390/microorganisms8020311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 11/29/2022] Open
Abstract
Understanding the effects of pollution on ecological communities and the underlying mechanisms that drive them will helpful for selecting a method to mediate polluted ecosystems. Quantifying the relative importance of deterministic and stochastic processes is a very important issue in ecology. However, little is known about their effects on the succession of microbial communities in different pollution levels rural ponds. Also, the processes that govern bacterial communities in polluted ponds are poorly understood. In this study, the microbial communities in water and sediment from the ponds were investigated by using the 16S rRNA gene high-throughput sequencing technology. Meanwhile, we used null model analyses based on a taxonomic and phylogenetic metrics approach to test the microbial community assembly processes. Pollution levels were found to significantly alter the community composition and diversity of bacteria. In the sediment samples, the bacterial diversity indices decreased with increasing pollutant levels. Between-community analysis revealed that community assembly processes among water and sediment samples stochastic ratio both gradually decreased with the increased pollution levels, indicating a potential deterministic environmental filtering that is elicited by pollution. Our results identified assemblage drivers of bacterial community is important for improving the efficacies of ecological evaluation and remediation for contaminated freshwater systems.
Collapse
Affiliation(s)
- Xin Tai
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
| | - Rui Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hao Yu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- Correspondence: (H.Y.); (D.J.); Tel.: +86-183-4184-9989 (H.Y.); +86-152-1009-8966 (D.J.)
| | - Xiao Kong
- School of Health and Public, Qingdao University, Qingdao 266071, China;
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Jia
- Research Institute of Mineral Resources Development and Utilization Technology and Equipment, Liaoning Technical University, Fuxin 123000, China;
| | - Decai Jin
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (R.L.); (B.Z.); (Z.B.); (Y.D.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.Y.); (D.J.); Tel.: +86-183-4184-9989 (H.Y.); +86-152-1009-8966 (D.J.)
| |
Collapse
|
49
|
Feng F, Chen X, Wang Q, Xu W, Long L, Nabil El-Masry G, Wan Q, Yan H, Cheng J, Yu X. Use of Bacillus-siamensis-inoculated biochar to decrease uptake of dibutyl phthalate in leafy vegetables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109636. [PMID: 31678688 DOI: 10.1016/j.jenvman.2019.109636] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Dibutyl phthalate (DBP) is a frequently detected farmland contaminant that is harmful to the environment and human health. In this study, a DBP-degrading endophytic Bacillus siamensis strain T7 was immobilized in rice husk-derived biochar for bioremediation of DBP-polluted agricultural soils. The effects of this microbe-biochar composite on the soil prokaryotic community and the mechanism by which it regulates DBP degradation, were also investigated. A supplement of T7-biochar composite not only significantly boosted DBP biodegradation in soil by raising the DBP degradation rate constant and half-life from 0.1979 d-1 and 2.3131 d to 0.2434 d-1 and 2.1062 d, respectively, but also impeded DBP uptake by leafy vegetables. The general bioremediation effect of T7-biochar alliance excelled pure T7 suspensions and biochar, by trapping more DBP and boosting its complete degradation in soil. Besides, the combination of strain T7 and biochar can increase the proportion of some beneficial bacteria and boost the functional diversity of soil prokaryotic community, then to a certain extent may reverse the negative effect of DBP pollution on the agricultural soils. These results indicate that the rice-husk-derived biochar is a proper media when utilizing functional microbes into environmental treatment. Overall, T7-biochar composite is a promising soil modifier for soil bioremediation and the production of DBP-free crops.
Collapse
Affiliation(s)
- Fayun Feng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, PR China, Nanjing, 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaolong Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qiong Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjun Xu
- Department of Biotechnology, Qingdao University of Science &Technology, Qingdao, 266042, China
| | - Ling Long
- College of Agriculture, Guangxi University, Nanning, 530005, China
| | | | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, PR China, Nanjing, 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haijuan Yan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinjin Cheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, PR China, Nanjing, 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|