1
|
Yang Y, Leung CT, Yang J, Wang Q, Shao Y, Kang B, Wong AST, Wu RSS, Lai KP. Epigenetic Responses Induced by Transgenerational and Multigenerational Exposure Alter the Plasticity of Fish to Neurotoxic Effects of Triclosan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40492829 DOI: 10.1021/acs.est.4c14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Triclosan (TCS), a common antimicrobial agent, is widely detected in the global environments nowadays globally. Using marine medaka as a model, this study investigated and compared the transgenerational and multigenerational neurotoxic effects on fish. The environmentally realistic concentration of TCS can induce hyperlocomotor activities and increase heart rate, while higher concentrations (>500 μg/L) can inhibit hatching and cause cardiovascular malformations and neurotransmitter imbalances. Parental (F0) exposure to TCS resulted in transgenerational effects on locomotor activities manifested in F2, alongside with alterations in phototransduction and cell adhesion pathways. Global DNA methylation analyses indicated that the observed transgenerational effects are mediated through relevant epigenetic changes. Multigenerational exposure to TCS increased locomotor activities from F1 to F3, which is associated with changes in the expression of genes related to eye structure, phototransduction, and lipid and retinol metabolisms, thereby affecting energy metabolism and visual function. Results of this study highlight the difference between transgenerational and multigenerational effects of TCS exposure, and potential biases incurred in current risk assessment based exclusively on data derived from F0, which presents challenges for environmental management and regulatory standards.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Tim Leung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | - Jing Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Bin Kang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, PR China
| |
Collapse
|
2
|
Li Y, Zhou Y, Wang C, Nie Y, Zhu Y, Zhao S, Wu L, Xu A. 2,4,6-trinitrotoluene induces neurotoxicity by affecting the G protein pathways in Caenorhabditis elegans. Neurotoxicology 2025; 108:328-337. [PMID: 40318810 DOI: 10.1016/j.neuro.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
2,4,6-trinitrotoluene (TNT) is a chemical widely used to make explosives, and its use of residues can lead to potential threats to both ecosystems and human health. A thorough understanding of the various toxic effects of TNT is essential for developing effective environmental protection and health safety measures. Thus, we employed Caenorhabditis elegans (C. elegans), a typical model organism, to explore the neurotoxic effects of TNT and the signaling pathways involved. The results showed that neurotoxicity induced by 10-100 ng/mL TNT was manifested in reduced behavioral capacity (head thrashes, body bends, and pharyngeal pumping rates), and inhibition of foraging behavior and ethanol avoidance behavior. Using fluorescence-labeled transgenic nematodes, it was found that TNT damaged dopaminergic and cholinergic neurons, which resulted in a significant decrease in the release of neurotransmitters and the expression of associated genes (dat-1 and unc-17). We studied the role of G protein signaling pathways and discovered that the related genes (egl-30, gsa-1, goa-1, and unc-13) were significantly down-regulated, resulting in reduced acetylcholine release, which in turn corresponded to the observed behavioral abnormality and damaged neurons in the worms. This study shed light on TNT's neurotoxic mechanisms and associated health risks.
Collapse
Affiliation(s)
- Ying Li
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, PR China
| | - Yanping Zhou
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, PR China
| | - Chunyan Wang
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, PR China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, PR China.
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| |
Collapse
|
3
|
Shen H, Cui Y, Liang S, Zhou S, Li Y, Wu Y, Song J. A High-Throughput Biosensing Approach for Rapid Screening of Compounds Targeting the hNav1.1 Channel: Marine Toxins as a Case Study. Mar Drugs 2025; 23:119. [PMID: 40137305 PMCID: PMC11943507 DOI: 10.3390/md23030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel activity, its labor-intensive and time-consuming nature highlights the need for fast screening strategies to facilitate a preliminary selection of potential drugs or hazards. In this study, a high-throughput and cost-effective biosensing method was developed to rapidly identify specific agonists and inhibitors targeting the human Nav1.1 (hNav1.1) channel. It combines a red fluorescent dye sensitive to transmembrane potentials with CHO cells stably expressing the hNav1.1 α-subunit (hNav1.1-CHO). In the initial screening mode, the tested compounds were mixed with pre-equilibrated hNav1.1-CHO cells and dye to detect potential agonist effects via fluorescence enhancement. In cases where no fluorescence enhancement was observed, the addition of a known agonist veratridine allowed the indication of inhibitor candidates by fluorescence reduction, relative to the veratridine control without test compounds. Potential agonists or inhibitors identified in the initial screening were further evaluated by measuring concentration-response curves to determine EC50/IC50 values, providing semi-quantitative estimates of their binding strength to hNav1.1. This robust, high-throughput biosensing assay was validated through comparisons with the patch-clamp results and tested with 12 marine toxins, yielding consistent results. It holds promise as a low-cost, rapid, and long-term stable approach for drug discovery and non-target screening of neurotoxins.
Collapse
Affiliation(s)
- Huijing Shen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (Y.W.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Yuxia Cui
- Department of Cardiology, Center for Cardiovascular Translational Research, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing 100044, China;
| | - Shiyuan Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Yingji Li
- ICE Bioscience Inc., Beijing 100176, China;
| | - Yongning Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (H.S.); (Y.W.)
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; (S.L.); (S.Z.)
| | - Junxian Song
- Department of Cardiology, Center for Cardiovascular Translational Research, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People’s Hospital, Beijing 100044, China;
| |
Collapse
|
4
|
Yu Y, Tan S, Xie D, Li H, Chen H, Dang Y, Xiang M. Photoaged microplastics induce neurotoxicity associated with damage to serotonergic, glutamatergic, dopaminergic, and GABAergic neuronal systems in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165874. [PMID: 37517734 DOI: 10.1016/j.scitotenv.2023.165874] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that cause neurotoxicity in various organisms. MPs are typically affected by light irradiation and undergo photoaging. However, the neurotoxic effects of photoaged polystyrene (P-PS) and its underlying mechanisms remain unclear. In this study, locomotion behaviors, neuronal development, neurotransmitter levels, and the expression of neurotransmission-related genes were investigated in Caenorhabditis elegans exposed to P-PS at environment-relevant concentrations (0.1-100 μg/L). The characterization results showed that photoaging accelerated the aging process and changed the physicochemical properties of the MPs. The toxicity results suggested that exposure to 1-100 μg/L P-PS caused more severe neurotoxicity than virgin polystyrene (V-PS) with endpoints of head thrashes, body bends, wavelength, and mean amplitude. Exposure to P-PS also altered the fluorescence intensity and neurodegeneration percentage of serotonergic, glutamatergic, dopaminergic, and aminobutyric acid (GABA) in transgenic nematodes. Similarly, significant reductions in the levels of these neurotransmitters were also observed. Based on Pearson's correlation, locomotion behaviors were negatively correlated with the neurotransmission of serotonin, glutamate, dopamine, and GABA. Further investigation suggested that the expression of neurotransmitter-related genes (e.g., tph-1, eat-4, and unc-46) was significantly altered in the nematodes. Collectively, the neurotoxic effects of P-PS were attributed to abnormal neurotransmission. This study highlights the potential toxicity of MPs photoaged under environmentally relevant conditions.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
5
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
6
|
Zhang X, Ye Y, Sun J, Wang JS, Tang L, Xu Y, Ji J, Sun X. Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by Fumonisin B1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119141. [PMID: 35301029 DOI: 10.1016/j.envpol.2022.119141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Fumonisin B1 (FB1) is a neurodegenerative mycotoxin synthesized by Fusarium spp., but the potential neurobehavioral toxicity effects in organisms have not been characterized clearly. Caenorhabditis elegans (C. elegans) has emerged as a promising model organism for neurotoxicological studies due to characteristics such as well-functioning nervous system and rich behavioral phenotypes. To investigate whether FB1 has neurobehavioral toxicity effects on C. elegans, the motor behavior, neuronal structure, neurotransmitter content, and gene expression related with neurotransmission of C. elegans were determined after exposed to 20-200 μg/mL FB1 for 24 h and 48 h, respectively. Results showed that FB1 caused behavioral defects, including body bends, head thrashes, crawling distance, mean speed, mean amplitude, mean wavelength, foraging behavior, and chemotaxis learning ability in a dose-, and time-dependent manner. In addition, when C. elegans was exposed to FB1 at a concentration of 200 μg/mL for 24 h and above 100 μg/mL for 48 h, the GABAergic and serotonergic neurons were damaged, but no effect on dopaminergic, glutamatergic, and cholinergic neurons. The relative content of GABA and serotonin decreased significantly. Furthermore, abnormal expression of mRNA levels associated with GABA and serotonin were found in nematodes treated with FB1, such as unc-30, unc-47, unc-49, exp-1, mod-5, cat-1, and tph-1. The neurobehavioral toxicity effect of FB1 may be mediated by abnormal neurotransmission of GABA and serotonin. This study provides useful information for understanding the neurotoxicity of FB1.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Yida Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
7
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
8
|
Marine Neurotoxins' Effects on Environmental and Human Health: An OMICS Overview. Mar Drugs 2021; 20:md20010018. [PMID: 35049872 PMCID: PMC8778346 DOI: 10.3390/md20010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin (BTX), tetrodotoxin (TTX), and β-N-methylamino-L-alanine (BMAA), cause severe neurological symptoms in humans. Considerable information is missing, however, notably the consequences of toxin exposures on changes in gene expression, protein profile, and metabolic pathways. This information could lead to understanding the consequence of marine neurotoxin exposure in aquatic organisms and humans. Nevertheless, recent contributions to the knowledge of neurotoxins arise from OMICS-based research, such as genomics, transcriptomics, proteomics, and metabolomics. This review presents a comprehensive overview of the most recent research and of the available solutions to explore OMICS datasets in order to identify new features in terms of ecotoxicology, food safety, and human health. In addition, future perspectives in OMICS studies are discussed.
Collapse
|
9
|
Gu J, Yan M, Leung PTY, Tian L, Lam VTT, Cheng SH, Lam PKS. Toxicity effects of hydrophilic algal lysates from Coolia tropicalis on marine medaka larvae (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105787. [PMID: 33677168 DOI: 10.1016/j.aquatox.2021.105787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Coolia tropicalis is a species of benthic and epiphytic toxic algae, which can produce phycotoxins that intoxicate marine fauna. In this study, the potential toxic effects of C. tropicalis on fish were investigated using larval marine medaka (Oryzias melastigma) as a model to evaluate fish behavior, physiological performance, and stress-induced molecular responses to exposure to two sublethal concentrations (LC10 and LC20) of hydrophilic algal lysates. Exposure to C. tropicalis lysates inhibited swimming activity, activated spontaneous undirected locomotion, altered nerve length ration, and induced early development abnormalities, such as shorter eye diameter, body as well as axon length. Consistent with these abnormalities, changes in the expression of genes associated with apoptosis (CASPASE-3 and BCL-2), the inflammatory response (IL-1β and COX-2), oxidative stress (SOD), and energy metabolism (ACHE and VHA), were also observed. This study advances our understanding of the mechanisms of C. tropicalis toxicity in marine fish in the early life stages and contributes to future ecological risk assessments of toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Li Tian
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
10
|
Li XD, Wang XY, Xu ME, Jiang Y, Yan T, Wang XC. Progress on the usage of the rotifer Brachionus plicatilis in marine ecotoxicology: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105678. [PMID: 33197688 DOI: 10.1016/j.aquatox.2020.105678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The rotifer, Brachionus plicatilis, is a widely used model species in marine ecotoxicology for evaluating pollutions, toxins, and harmful algae. In this paper, the marine ecotoxicology of Brachionus plicatilis was reviewed, including toxicity measurements of harmful algae species and environmental stresses. In addition, marine pollution involving pesticides, heavy metals, drugs, petroleum, and petrochemicals were addressed. Methods for measuring toxicity were also discussed. The standard acute lethal assay and the chronic population dynamics test were indicated as common methods of toxicity evaluating using B. plicatilis. Research on other biomarkers, such as behaviour, enzyme activity, or gene expression, are also reported here, with potential applications for fast detection or the scientific exploration of underlying molecular mechanisms. It is suggested that the methods selected should reflect the experimental purpose. Additionally, series assays should be conducted for comprehensive evaluation of ecotoxicity as well as to elucidate the correct mechanisms. Genetic methods, such as transcriptomics, were suggested as useful tools for exploring the toxicity mechanism using the rotifer B. plicatilis.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Xin-Yi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Meng-En Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Tian Yan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Xiao-Cheng Wang
- National Marine Environmental Monitoring Centre, Dalian, Liaoning Province, 116023, China
| |
Collapse
|
11
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Xue J, Shen Q. Real-time assessing the lipid oxidation of prawn (Litopenaeus vannamei) during air-frying by iKnife coupling rapid evaporative ionization mass spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Shen Q. Electric Soldering Iron Ionization Mass Spectrometry Based Lipidomics for in Situ Monitoring Fish Oil Oxidation Characteristics during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2240-2248. [PMID: 31975589 DOI: 10.1021/acs.jafc.9b06406] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electric soldering iron ion source (ESII) coupling with rapid evaporative ionization mass spectrometry (REIMS) was developed and used for in situ monitoring the dynamic variation trend in oxidation characteristics of fish oil during storage. The lipidomics profiles of fish oil stored at various days were acquired by ESII-REIMS. The fatty acid and triacylglycerol species were structurally identified, and their abundances were analyzed according to multivariate statistical models mainly including principle component analysis as well as orthogonal partial least-squares analysis. On the shared and unique structure plot, the ions of m/z 255.23, 281.24, 877.72, and 901.72 displayed the most significant variation among the oxidized fish oil samples. Based on receiver operating characteristic curve analysis with an optimal Youden index of 0.91, these markers were further verified. The variation of viscosity and volatiles were also evaluated to further verify the oxidation characteristics of fish oil. The study demonstrated that ESII-REIMS technology used as an advanced detection method could ensure fish oil quality during storage.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Linqiu Li
- School of Public Health , Guangdong Medical University , Dongguan , 523000 China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Mengna Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Jie Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| |
Collapse
|