1
|
Cui M, Song L, Mao R, Lyu Y, Ding L, Wang Z, Pei R, Yan J, Wu C, Li X, Jia H, Zhang L, Zhang M, Wang J, Wang J. Exposure to polycyclic aromatic hydrocarbons promotes the progression of low-grade cervical intraepithelial neoplasia: A population-based cohort study in China. Int J Cancer 2024; 155:1162-1171. [PMID: 38733360 DOI: 10.1002/ijc.34990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024]
Abstract
Low-grade cervical intraepithelial neoplasia (CIN1) is an early stage of cervical cancer development. Previously, we reported that exposure to polycyclic aromatic hydrocarbons (PAHs) increases the risk of cervical precancerous lesions, especially in females with a high-risk human papillomavirus (HR-HPV) infection. However, the effects of PAHs on CIN1 progression remain unclear. A community-based prospective cohort study was conducted to evaluate the role of exposure to PAHs in the progression of CIN1. A total of 564 patients diagnosed with CIN1 were followed-up at 6, 12, and 24 months, post-diagnosis, to determine CIN1 reversion, persistence, and progression. Exposure to PAHs was determined by the urine 1-hydroxipayrene (1-OHP) level. Our results showed that the 1-OHP level was significantly higher in patients with CIN1 persistence/progression than in those with reversion (P < .05). High exposure to PAHs increased the risk of CIN1 persistence/progression, with hazard ratios (HR), 95% confidence intervals (CI) of (1.62, 1.24-2.67), (1.98, 1.42-2.75), and (2.37, 1.61-3.49) at 6, 12, and 24 months, post-diagnosis, respectively. The effect was enhanced with HR-HPV positivity, as determined at 6 (1.82, 1.24-2.67), 12 (3.02, 1.74-5.23), and 24 (2.51, 1.48-4.26) months, post-diagnosis. Moreover, the predictive value of exposure to PAHs for CIN1 persistence/progression was higher in HR-HPV-positive patients than in HR-HPV-negative patients. The results revealed that exposure to PAHs facilitated the malignant progression of CIN1 and hindered its reversal, particularly in patients with HR-HPV infection. Our findings provide novel insights into early prevention and intervention targeting the initiation and progression of cervical neoplasia.
Collapse
Affiliation(s)
- Meng Cui
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Rui Mao
- Questrom School of Business, Boston University, Boston, Massachusetts, USA
| | - Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhilian Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixin Pei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jiaxin Yan
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Caihong Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoxue Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Cancer Hospital, Taiyuan, China
| | - Le Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Mingxuan Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jiahao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Li X, Duan X, Wang W. MEG3 polymorphisms associated with peripheral blood leukocyte mitochondrial DNA copy number in PAHs-exposure workers. CHEMOSPHERE 2023; 344:140335. [PMID: 37778642 DOI: 10.1016/j.chemosphere.2023.140335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Epidemiological studies have shown that exposure to Polycyclic aromatic hydrocarbons (PAHs) is associated with reduced mitochondrial DNA copy number (mtDNA-CN). Long non-coding RNA maternally expressed gene 3 (MEG3) is involved in mitochondrial function regulation. However, it is unknown whether single-nucleotide polymorphisms in the MEG3 can regulate the mtDNAcn in PAHs exposed populations. The aim of this study was to examine the effect of MEG3 genetic polymorphisms on the mtDNA-CN in PAHs exposed populations. MATERIALS AND METHODS We recruited 544 coke oven workers and 238 controls using random cluster sampling. High-performance liquid chromatography was used to detect the concentrations of four OH-PAHs (1-hydroxypyrene [1-OHPyr], 1-hydroxynathalene [1-OHNap], 2-hydroxynathalene [2-OHNap], and 3-hydroxyphenanthrene [3-OHPhe]) in urine. The mtDNA-CN of peripheral blood leukocytes was measured using the quantitative polymerase chain reaction method. Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform was used to detect ten polymorphisms in MEG3. RESULTS The OH-PAHs levels in the exposure group were significantly higher than those in the control group (P < 0.001). The mtDNA-CN in the exposure group was significantly lower than that in the control group (P < 0.001). A linear regression model revealed that PAHs-exposure (β [95% confidence interval, CI], -0.428 [-0.475, -0.381], P < 0.001), male gender (-0.052 [-0.098, -0.005], P = 0.029), genotype TT for MEG3 rs11859 (-0.088 [-0.142, -0.035], P = 0.001), and genotype GG for MEG3 rs7155428 (-0.114 [-0.210, -0.017], P = 0.021) were associated with decreased mtDNA-CN. CONCLUSION PAHs-exposure, male gender, genotype TT for rs11859, and genotype GG for rs7155428 were risk factors for mtDNA-CN.
Collapse
Affiliation(s)
- Xinling Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
3
|
Zhang H, Liu R, Yang L, Cheng H, Wang S, Zhang B, Shao J, Ma S, Norbäck D, Zhang X, An T. Exposure to polycyclic aromatic hydrocarbons (PAHs) in outdoor air and respiratory health, inflammation and oxidative stress biomarkers: A panel study in healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165582. [PMID: 37467979 DOI: 10.1016/j.scitotenv.2023.165582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) can be associated with different types of health effects. However, the systemic changes of health effects between fluctuations of PAHs exposure have not been established. In this study, urinary hydroxylated PAHs (OH-PAHs) and 12 biomarkers were determined among 36 students from the urban to the suburb in Taiyuan in 2019. The concentration of Σ12OH-PAHs in urban areas (28.2 and 21.4 μg/g Cr) was significantly higher than that in suburban area (16.8 μg/g Cr). The regression showed that hydroxy-phenanthrene (OH-Phe, 1/2/3/4/9-OH-Phe) was significantly positively correlated with lung function (PEF25 and PEF50), 8-hydroxydeoxyguanosine (8-OHdG), interleukin-8 (IL-8), and fractional exhaled nitric oxide (FeNO). Moreover, there were negative associations of 2-hydroxyfluorene (2-OH-Flu) with FVC and FEV1. 1 unit increase of 1-hydroxypyrene (1-OH-Pyr) was negatively associated with 18.8% FVC, 17.3% FEV1, and 26.4% PEF25 in the suburban location, respectively. During urban2, each unit change of 2-OH-Flu was associated with 10.9% FVC and 10.5% FEV1 decrease, which were higher than those in suburban location. 8-OHdG decreased by 32.0% with each unit increase in 3-hydroxyfluorene (3-OH-Flu) during urban2 (p < 0.05), while 1.9% in the suburban location. During the suburban period, the increase in OH-Phe was correlated with the decrease in malondialdehyde (MDA). The respiratory damage caused by PAHs in the urban disappeared after backing to the urban from the suburban area. Notably, despite the total significant liner mixed regression association of FeNO with multiple OH-PAHs, the association of FeNO with OH-PAHs was not significant during different periods except for 2-OH-Flu. Our findings suggested that short-term exposure to different concentrations of PAHs might cause changes in health effects and called for further research to investigate possible alterations between health effects and PAH exposure.
Collapse
Affiliation(s)
- Huilin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ranran Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250062, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Hong Cheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengchun Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Bin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jiyuan Shao
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, Uppsala SE-751, Sweden
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Yan P, Kong L, Qin T, Luo Z, Zhang X, Tie C. Disturbance of OH-PAH metabolites in urine induced by single PAH lab exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91226-91236. [PMID: 37470974 DOI: 10.1007/s11356-023-28600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Due to the high exposure toxicity and individual variability of polycyclic aromatic hydrocarbons (PAHs), it is difficult to accurately characterize the actual exposure of exposed individuals through external exposure detection. In this study, the monohydroxyl metabolites of naphthalene, phenanthrene, pyrene, and 9-fluorenone were identified in the urine of low-dose PAH-exposed individuals based on ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS), and their concentrations were monitored for 15 consecutive days after exposure. The results showed that the metabolite concentrations of naphthalene, phenanthrene, and pyrene were basically the same, and all of them reached the maximum value at day 8. In contrast, the metabolite of 9-fluorenone reached its maximum value on day 2. This study showed that the four metabolites were strongly correlated with their parent PAH exposure, with a wide detection window, and their assays were specific, sensitive, and reliable, while the sampling difficulty was low, so the four hydroxylated PAHs may be potential low-dose biomarkers of PAH internal exposure. This study will provide methodological and data support for further health risk studies involving internal exposure to organic pollutants such as PAHs.
Collapse
Affiliation(s)
- Pan Yan
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Lingfei Kong
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Tuo Qin
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Zhonggeng Luo
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Xiaona Zhang
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China.
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
5
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
6
|
Barangi S, Ghodsi P, Mehrabi A, Mehri S, Hayes AW, Karimi G. Melatonin attenuates cardiopulmonary toxicity induced by benzo(a)pyrene in mice focusing on apoptosis and autophagy pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33113-33123. [PMID: 36474038 DOI: 10.1007/s11356-022-24546-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon and a serious environmental pollutant. BaP is formed by the incomplete combustion of organic matter at high temperatures. In addition, tobacco smoke and many foods, especially charbroiled food and grilled meats, contain BaP and can cause it to enter human body. Melatonin, a pineal gland hormone, has antioxidant, anti-apoptosis, and autophagy regulatory properties. The possible protective impact of melatonin on cardiopulmonary toxicity induced by BaP was investigated by examining the antioxidant effects and the apoptosis and autophagy properties of melatonin. Thirty male mice were divided into 5 groups and treated for 28 days as follows: (I) control (BaP and melatonin solvent), (II) BaP (75 mg/kg, oral gavage), (III and IV) BaP (75 mg/kg) + melatonin (10 and 20 mg/kg, intraperitoneally), (V) melatonin (20 mg/kg). The oxidative stress factors (MDA and GSH content) were assessed in the heart and lung tissues. The levels of apoptotic (Caspase-3 and the Bax/Bcl-2 ratio) and autophagic (the LC3 ӀӀ/Ӏ, Beclin-1, and Sirt1) proteins were examined by using western blot analysis. Following the administration of BaP, MDA, the Bax/Bcl-2 ratio, and the Caspase-3 proteins increased in the heart and lung tissues, while GSH, Sirt1, Beclin-1, and the LC3 II/I ratio diminished. The coadministration of melatonin along with BaP, MDA, and apoptotic proteins returned to the control values, while GSH and the autophagy proteins were enhanced in both the heart and lungs. Melatonin exhibited a protective effect against BaP-induced heart and lung injury through the suppression of oxidative stress and apoptosis and the induction of the Sirt1/autophagy pathway.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pardis Ghodsi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adeleh Mehrabi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
8
|
Lu L, Ni R. Bibliometric analysis of global research on polycyclic aromatic hydrocarbons and health risk between 2002 and 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84034-84048. [PMID: 36241831 DOI: 10.1007/s11356-022-23047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
During the last 20 years, the association between polycyclic aromatic hydrocarbons (PAHs) and health risk has become one of the hotspots in the fields of public health and the environment. A bibliometric study of 1392 research articles retrieved from the Web of Science Core Collection (WoSCC) published between 2002 and 2021 was performed to give an in-depth statistical evaluation of research progress and future trends on PAHs and health risk (PHR). According to the findings, the annual output of significant scientific papers increased exponentially. China ranked first among the 86 nations in terms of the number of publications (NP), followed by the USA and India. Logistic regression analysis showed that there was a positive relationship between the second tertile of 180-day usage count (AOR = 1.62; 95% CI: 1.16-2.26) and increased odds of open access publishing after adjustment for the confounders, indicating that open access papers on PHR were more preferred over the preceding 6 months than non-open access articles. The most popular terms were "PAHs," "risk assessment," and "source identification." According to the bibliometric study, the research hotspots that require more exploration include identifying PAH sources in media such as soil, water, dust, and food and evaluating their linkages to health hazards using appropriate risk models. Understanding the environmental behavior, bioavailability, and health concerns of PAHs and their derivatives in various media is critical for environmental and public health protection. This paper provides an overview of current research status and future perspectives for PHR research.
Collapse
Affiliation(s)
- Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, No. 50 Yongchuan Road, Shanghai, 200237, China
| | - Rong Ni
- Xuhui District Center for Disease Control and Prevention, No. 50 Yongchuan Road, Shanghai, 200237, China.
| |
Collapse
|
9
|
Marques C, Fiolet T, Frenoy P, Severi G, Mancini FR. Association between polycyclic aromatic hydrocarbons (PAH) dietary exposure and mortality risk in the E3N cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156626. [PMID: 35697224 DOI: 10.1016/j.scitotenv.2022.156626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Most studies have explored the adverse health effects of polycyclic aromatic hydrocarbons (PAH) occupational exposure. However, the general population is also exposed to PAH, mainly through the diet. The goal of the present study is thus to investigate the association between PAH dietary exposure and mortality risk in middle-aged women of the E3N (Étude Épidémiologique auprès de femmes de la mutuelle générale de l'Éducation Nationale) French prospective cohort. The study included 72,513 women, whom completed a validated semi-quantitative food frequency questionnaire on 208 food items in 1993. Food contamination levels were assessed using data provided by the Anses (French Agency for Food, Environmental and Occupational Health & Safety) in the framework of the French second total diet study. PAH dietary exposure was studied as the sum of four PAH (PAH4), namely benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA) and benzo[b]fluoranthene (BbF). Cox proportional hazard models were used to estimate hazard ratios (HR) and their 95 % confidence intervals (CI) for the risk of all-cause mortality as well as all-cancer, specific cancer (separately from breast, lung/tracheal, and colorectal cancer), cardiovascular disease (CVD), and specific CVD (including only stroke and coronary heart disease) mortality. During follow-up (1993-2011), 4620 validated deaths were reported, of which 2726 due to cancer and 584 to CVD. The median PAH4 dietary intake was 66.1 ng/day. There was no significant association between PAH4 dietary intake and the risk of all-cause, all-cancer, breast cancer, colorectal cancer, all-CVD and stroke and coronary heart disease mortality. On the contrary, we observed a positive and statistically significant association between PAH4 dietary intake and lung/tracheal cancer mortality risk, with a stronger association among current smokers than among former smokers and never smokers. In this study, we observed an association between PAH dietary exposure and lung/tracheal cancer mortality risk, especially among current smokers.
Collapse
Affiliation(s)
- Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94807 Villejuif, France
| | - Thibault Fiolet
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94807 Villejuif, France
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94807 Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94807 Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94807 Villejuif, France.
| |
Collapse
|
10
|
Abulikemu A, Wang D, Hu W, Shen M, Sun X, Duan H. Trend Analysis of Occupational Lung Cancer from Coke Oven Emission Exposure - China, 2008-2019. China CDC Wkly 2022; 4:353-357. [PMID: 35547635 PMCID: PMC9081898 DOI: 10.46234/ccdcw2022.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
What is already known about this topic? Coke oven emissions are a complex mixture of particulate matter and gases, some with carcinogenicity, released during coke production. Lung cancer caused by coke oven emissions has been listed as a statutory occupational cancer in China and many countries. What is added by this report? In this study, coke oven emissions-induced lung cancer was mainly found in the manufacturing industries. Coke oven workers exposed to higher levels of polycyclic aromatic hydrocarbons in different workplaces had a high risk of occupational lung cancer. What are the implications for public health practice? It is necessary to take efforts to greatly reduce emissions from coke production and effectively monitor the health of workers.
Collapse
Affiliation(s)
- Alimire Abulikemu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijiang Hu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meili Shen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China,Huawei Duan,
| |
Collapse
|
11
|
Qin N, Zhu Y, Zhong Y, Tian J, Li J, Chen L, Fan R, Wei F. External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020847. [PMID: 35055669 PMCID: PMC8775548 DOI: 10.3390/ijerph19020847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
Benzene, toluene, ethylbenzene and xylene isomers (BTEX) have raised increasing concern due to their adverse effects on human health. In this study, a coking factory and four communities nearby were selected as the research area. Atmospheric BTEX samples were collected and determined by a preconcentrator GC-MS method. Four biomarkers in the morning urine samples of 174 participants from the communities were measured by LC-MS. The health risks of BTEX exposure via inhalation were estimated. This study aimed to investigate the influence of external BTEX exposure on the internal biomarker levels and quantitatively evaluate the health risk of populations near the coking industry. The results showed that the average total BTEX concentration in residential area was 7.17 ± 7.24 μg m-3. Trans,trans-muconic acid (T,T-MA) was the urinary biomarker with the greatest average level (127 ± 285 μg g-1 crt). Similar spatial trends can be observed between atmospheric benzene concentration and internal biomarker levels. The mean values of the LCR for male and female residents were 2.15 × 10-5 and 2.05 × 10-5, respectively. The results of the risk assessment indicated that special attention was required for the non-occupational residents around the area.
Collapse
Affiliation(s)
- Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (F.W.)
| | - Yuanyuan Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (F.W.)
- China National Environmental Monitoring Center, Beijing 100012, China
- Correspondence:
| | - Yan Zhong
- Anshan Ecological Environment Monitoring Center of Liaoning Province, Anshan 114000, China; (Y.Z.); (J.T.)
| | - Jing Tian
- Anshan Ecological Environment Monitoring Center of Liaoning Province, Anshan 114000, China; (Y.Z.); (J.T.)
| | - Jihua Li
- Qujing Center for Disease Control and Prevention, Qujing 655011, China;
| | - Laiguo Chen
- Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou 510655, China;
- Air Pollution Control Engineering Laboratory of Guangdong Province, South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Fusheng Wei
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (F.W.)
- China National Environmental Monitoring Center, Beijing 100012, China
| |
Collapse
|
12
|
Retegui G, Etxeberria J, Ugarte MD. Estimating LOCP cancer mortality rates in small domains in Spain using its relationship with lung cancer. Sci Rep 2021; 11:22273. [PMID: 34782680 PMCID: PMC8593013 DOI: 10.1038/s41598-021-01765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
The distribution of lip, oral cavity, and pharynx (LOCP) cancer mortality rates in small domains (defined as the combination of province, age group, and gender) remains unknown in Spain. As many of the LOCP risk factors are preventable, specific prevention programmes could be implemented but this requires a clear specification of the target population. This paper provides an in-depth description of LOCP mortality rates by province, age group and gender, giving a complete overview of the disease. This study also presents a methodological challenge. As the number of LOCP cancer cases in small domains (province, age groups and gender) is scarce, univariate spatial models do not provide reliable results or are even impossible to fit. In view of the close link between LOCP and lung cancer, we consider analyzing them jointly by using shared component models. These models allow information-borrowing among diseases, ultimately providing the analysis of cancer sites with few cases at a very disaggregated level. Results show that males have higher mortality rates than females and these rates increase with age. Regions located in the north of Spain show the highest LOCP cancer mortality rates.
Collapse
Affiliation(s)
- Garazi Retegui
- Statistics, Computer Science and Mathematics, Public University of Navarre, 31006, Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, 31006, Pamplona, Spain
- Institute of Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Jaione Etxeberria
- Statistics, Computer Science and Mathematics, Public University of Navarre, 31006, Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, 31006, Pamplona, Spain
- Institute of Health Research (IdiSNA), 31008, Pamplona, Spain
| | - María Dolores Ugarte
- Statistics, Computer Science and Mathematics, Public University of Navarre, 31006, Pamplona, Spain.
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, 31006, Pamplona, Spain.
- Institute of Health Research (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
13
|
Qin N, Tuerxunbieke A, Wang Q, Chen X, Hou R, Xu X, Liu Y, Xu D, Tao S, Duan X. Key Factors for Improving the Carcinogenic Risk Assessment of PAH Inhalation Exposure by Monte Carlo Simulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111106. [PMID: 34769626 PMCID: PMC8583189 DOI: 10.3390/ijerph182111106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023]
Abstract
Monte Carlo simulation (MCS) is a computational technique widely used in exposure and risk assessment. However, the result of traditional health risk assessment based on the MCS method has always been questioned due to the uncertainty introduced in parameter estimation and the difficulty in result validation. Herein, data from a large-scale investigation of individual polycyclic aromatic hydrocarbon (PAH) exposure was used to explore the key factors for improving the MCS method. Research participants were selected using a statistical sampling method in a typical PAH polluted city. Atmospheric PAH concentrations from 25 sampling sites in the area were detected by GC-MS and exposure parameters of participants were collected by field measurement. The incremental lifetime cancer risk (ILCR) of participants was calculated based on the measured data and considered to be the actual carcinogenic risk of the population. Predicted risks were evaluated by traditional assessment method based on MCS and three improved models including concentration-adjusted, age-stratified, and correlated-parameter-adjusted Monte Carlo methods. The goodness of fit of the models was evaluated quantitatively by comparing with the actual risk. The results showed that the average risk derived by traditional and age-stratified Monte Carlo simulation was 2.6 times higher, and the standard deviation was 3.7 times higher than the actual values. In contrast, the predicted risks of concentration- and correlated-parameter-adjusted models were in good agreement with the actual ILCR. The results of the comparison suggested that accurate simulation of exposure concentration and adjustment of correlated parameters could greatly improve the MCS. The research also reveals that the social factors related to exposure and potential relationship between variables are important issues affecting risk assessment, which require full consideration in assessment and further study in future research.
Collapse
Affiliation(s)
- Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
| | - Ayibota Tuerxunbieke
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
| | - Qin Wang
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Beijing 100021, China; (Q.W.); (D.X.)
| | - Xing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
| | - Rong Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
| | - Xiangyu Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
| | - Yunwei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
| | - Dongqun Xu
- Chinese Center for Disease Control and Prevention, China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Beijing 100021, China; (Q.W.); (D.X.)
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (A.T.); (X.C.); (R.H.); (X.X.); (Y.L.)
- Correspondence: ; Tel./Fax: +86-10-6233-4308
| |
Collapse
|
14
|
Qin N, Kong XZ, He W, He QS, Liu WX, Xu FL. Dustfall-bound polycyclic aromatic hydrocarbons (PAHs) over the fifth largest Chinese lake: residual levels, source apportionment, and correlations with suspended particulate matter (SPM)-bound PAHs in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55388-55400. [PMID: 34132961 DOI: 10.1007/s11356-021-14873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Residual levels and temporal-spatial distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in dustfall were studied at the seasonal scale between June 2010 and May 2011 in the fifth largest shallow lake in China. PAHs flux of atmospheric deposition and the impact on the PAHs in the lake water column were estimated. The major sources of PAHs were identified by multiple methods. We found that (1) the seasonal residual levels of 16 priority controlled PAHs (PAH16) were spring (8.89 ± 3.93 μg g-1) > summer (6.68 ± 4.31 μg g-1) > winter (6.06 ± 2.95 μg g-1) > autumn (3.55 ± 2.21 μg g-1). (2) Significant positive correlations were found between the PAH levels in the dustfall and the suspended particle material (SPM) content, as well as between the deposition flux and the PAH content in the water in all four seasons. (3) Vehicle emissions, coal combustion, biomass combustion, and coke ovens were the four major sources in Lake Chaohu, accounting for 12.7%, 40.9%, 14.5%, and 31.9% of the total PAHs, respectively. (4) Compared to long-distance trajectories, short-distance trajectories played a more important role in the external sources of atmospheric PAHs in the region of Lake Chaohu.
Collapse
Affiliation(s)
- Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiang-Zhen Kong
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Brückstr. 3a, 39114, Magdeburg, Germany
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
- China Univ Geosci Beijing, MOE Key Lab Groundwater Circulat & Environm Evolu, Beijing, 100083, People's Republic of China
| | - Qi-Shuang He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
- Beijing Municipal Key Lab Agr Environm Monitoring, Beijing, 100097, People's Republic of China
| | - Wen-Xiu Liu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
- Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing, 100012, People's Republic of China
| | - Fu-Liu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Multi-Media Exposure to Polycyclic Aromatic Hydrocarbons at Lake Chaohu, the Fifth Largest Fresh Water Lake in China: Residual Levels, Sources and Carcinogenic Risk. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The residual levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) in environment media and freshwater fish were collected and measured from Lake Chaohu by using Gas chromatography-mass spectrometry. Potential atmospheric sources were identified by molecular diagnostic ratios and the positive matrix factorization (PMF) method. PAH exposure doses through inhalation, intake of water and freshwater fish ingestion were estimated by the assessment model recommended by US EPA. The carcinogenic risks of PAH exposure were evaluated by probabilistic risk assessment and Monte Carlo simulation. The following results were obtained: (1) The PAH16 levels in gaseous, particulate phase, water and fish muscles were 59.4 ng·m−3, 14.2 ng·m−3, 170 ng·L−1 and 114 ng·g−1, respectively. No significant urban-rural difference was found between two sampling sites except gaseous BaPeq. The relationship between gaseous PAHs and PAH in water was detected by the application of Spearman correlation analysis. (2) Three potential sources were identified by the PMF model. The sources from biomass combustions, coal combustion and vehicle emission accounted for 43.6%, 30.6% and 25.8% of the total PAHs, respectively. (3) Fish intake has the highest lifetime average daily dose (LADD) of 3.01 × 10−6 mg·kg−1·d−1, followed by the particle inhalation with LADD of 2.94 × 10−6 mg·kg−1·d−1. (4) As a result of probabilistic cancer risk assessment, the median ILCRs were 3.1 × 10−5 to 3.3 × 10−5 in urban and rural residents, which were lower than the suggested serious level but higher than the acceptable level. In summary, the result suggests that potential carcinogenic risk exists among residents around Lake Chaohu. Fish ingestion and inhalation are two major PAH exposure pathways.
Collapse
|
16
|
Cheng S, Zhang H, Wang P, Zou K, Duan X, Wang S, Yang Y, Shi L, Wang W. Benchmark dose analysis for PAHs hydroxyl metabolites in urine based on mitochondrial damage of peripheral blood leucocytes in coke oven workers in China. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103675. [PMID: 34033865 DOI: 10.1016/j.etap.2021.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The aim was to explore the dose-response relationship between occupational polycyclic aromatic hydrocarbons (PAHs) exposure and mitochondrial damage in coke oven plants workers. METHODS 544 workers and 238 healthy people were recruited. The ultra-high performance liquid chromatography was used to determine the level of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene. The real-time fluorescence quantitative polymerase chain reaction was used to determine the mitochondrial DNA copy number (mtDNAcn). The benchmark dose software was used to analyze the benchmark dose. RESULTS The mtDNAcn in the exposure group was lower than that in the control group. The concentrations of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene in the exposure group were higher than those in the control group. There is a dose-response relationship between 1-hydroxypyrene, 3-hydroxyphenanthrene and mitochondrial DNA damage. The benchmark dose lower confidence limit (BMDL) of 1-hydroxypyrene were 0.045, 0.004, and 0.058 pg/μg creatinine in the total, male, and female population, respectively. The BMDL of 3-hydroxyphenanthrene were 5.142, 6.099, and 2.807 pg/μg creatinine in the total, male, and female population, respectively. CONCLUSIONS The BMDL of 1-hydroxypyrene and 3-hydroxyphenanthrene initially explored can provide a reference to establish occupational exposure biological limits.
Collapse
Affiliation(s)
- Shuai Cheng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Henan Provincial Institute of Occupational Health, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuhua Shi
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
17
|
Zou K, Wang S, Wang P, Duan X, Yang Y, Yazdi MD, Stowell J, Wang Y, Yao W, Wang W. Estimations of benchmark dose for urinary metabolites of coke oven emissions among workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116434. [PMID: 33517169 DOI: 10.1016/j.envpol.2021.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/20/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Coke oven emissions (COEs), usually composed of polycyclic aromatic hydrocarbons (PAHs) and so on, may alter the relative telomere length of exposed workers and have been linked with adverse health events. However, the relevant biological exposure limits of COEs exposure has not been evaluated from telomere damage. The purpose of this study is to estimate benchmark dose (BMD) of urinary PAHs metabolites from COEs exposure based on telomere damage with RTL as a biomarker. A total of 544 exposed workers and 238 controls were recruited for participation. High-performance liquid chromatography and qPCR were used to detect concentrations of urinary mono-hydroxylated PAHs and relative telomere length in peripheral blood leukocytes for all subjects. The benchmark dose approach was used to estimate benchmark dose (BMD) and its lower 95% confidence limit (BMDL) of urinary OH-PAHs of COEs exposure based on telomere damage. Our results showed that telomere length in the exposure group (0.75 (0.51, 1.08)) was shorter than that in the control group (1.05 (0.76,1.44))(P < 0.05), and a dose-response relationship was shown between telomere damage and both 1-hydroxypyrene and 3-hydroxyphenanthrene in urine. The BMDL of urinary 1-hydroxypyrene from the optimal model for telomere damage was 1.96, 0.40, and 1.01 (μmol/mol creatinine) for the total, males, and females group, respectively. For 3-hydroxyphenanthrene, the BMDL was 0.94, 0.33, and 0.49 (μmol/mol creatinine) for the total, males, and females. These results contribute to our understanding of telomere damage induced by COEs exposure and provide a reference for setting potential biological exposure limits.
Collapse
Affiliation(s)
- Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute of Occupational Health, Zhengzhou, 450052, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Jennifer Stowell
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yanbin Wang
- Department of Safety Management Office, Anyang Iron and Steel Group Corporation, Anyang, 455000, China
| | - Wu Yao
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J. Benzo(a)pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem Toxicol 2020; 45:741-749. [PMID: 32506967 DOI: 10.1080/01480545.2020.1774602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) compound, which has been implicated in cancer initiation and promotion. Although BaP is one of the most extensively studied pollutants, the underlying mechanisms through which BaP affects reactive oxygen species (ROS)/hypoxia-inducible factor 1α (HIF-1α)/heme oxygenase 1(HO-1) signaling during lung or breast carcinogenesis are not yet fully understood. In this study, we analyzed the effects of 0 (control), 1, 5, or 25 µM BaP exposure on A549 and MCF-7 cancer cells, by evaluating cell viability, cell cycle, and regulatory protein expression, metabolic gene expression, and ROS/HIF-1α/HO-1 signaling. Cell viability increased following exposure to 1 and 5 µM BaP in A549 cells but decreased following exposure to all concentrations of BaP in MCF-7 cells. BaP significantly increased the proportions of cells in S and G2/M phases, with concomitant reductions in the proportions of cells in G0/G1 phase, following 5 and 25 µM exposure, which was accompanied by the upregulation of the regulatory proteins cyclin A, cyclin B, cyclin-dependent kinase (CDK)1, and CDK2. The subsequent upregulation of cytochrome p450 (CYP)1A1, CYP1B1, CYP3A4, epoxide hydrolase (EH), aldo-keto reductase (AKRC1) expression, and the attenuation of multi-drug resistance protein 4 (MRP4), glutathione-S-transferase (GST)1A1, and GST1B1 were also observed in both cell lines. Moreover, the induction of ROS and the modulation of HIF-1α and HO-1 were observed after BaP exposure. Taken together, these findings suggest that BaP affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, PR China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaojing Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianghong Gao
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|