1
|
Kim MS, Lee S, Park M, Jang H, Choi M, Lee JY, Song M, Kim C, Ahn J, Wu Z, Natsagdorj A, Seo J, Lee TK, Kim YH, Jang KS. Region-specific characterization and ecotoxicity assessment of PAH compounds in winter PM 2.5 from three capital cities in Northeast Asia. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138536. [PMID: 40344826 DOI: 10.1016/j.jhazmat.2025.138536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Industrialization and urbanization in Northeast Asia have heightened PM2.5 pollution, posing significant public health risks. This study examined the spatial and chemical variability of polycyclic aromatic hydrocarbons (PAHs) and their ecotoxicity in winter PM2.5 from three capitals-Ulaanbaatar (UB, Mongolia), Beijing (BJ, China), and Seoul (SE, South Korea)-using two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS). PM2.5 samples collected between December 15, 2020 and January 14, 2021 revealed UB had the highest concentrations (85.7 ± 36.7 μg m-3) and PAH levels (758.9 ± 224.7 ng m-3), primarily from coal combustion and biomass burning. BJ (30.3 ± 16.9 μg m-3; 41.4 ± 18.4 ng m-3) and SE (26.0 ± 14.4 μg m-3; 6.2 ± 2.4 ng m-3) had lower PAH levels but a higher share of secondary products, including oxygenated (OPAHs) and nitrogen-containing PAHs (NPAHs). Overall, 646 PAH compounds were identified: UB was dominated by methylated alkyl and sulfur-containing PAHs, while BJ and SE had more hydroxylated and carbonylated PAHs. QSAR ecotoxicity analysis indicated the highest toxicity in SE from hydroxylated PAHs and a broader toxic range in UB. These findings support air quality strategies to reduce coal combustion in UB and secondary PAH formation in BJ and SE.
Collapse
Affiliation(s)
- Min Sung Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea; Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Seulgidaun Lee
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Moonhee Park
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyemi Jang
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea; Division of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mira Choi
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea; Division of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mijung Song
- Department of Earth and Environmental Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Changhyuk Kim
- School of Civil and Environmental Engineering, Pusan National University, Pusan 46241, Republic of Korea; Institute of Environment and Energy, Pusan National University, Pusan 46241, Republic of Korea
| | - Junyoung Ahn
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Zhijun Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Amgalan Natsagdorj
- Department of Chemistry, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Jungju Seo
- Division of R&D Equipment Industry, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Young Hwan Kim
- Research Center for Material Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Kyoung-Soon Jang
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea; Division of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
2
|
Pogner CE, Antunes C, Apangu GP, Bruffaerts N, Celenk S, Cristofori A, González Roldán N, Grinn-Gofroń A, Lara B, Lika M, Magyar D, Martinez-Bracero M, Muggia L, Muyshondt B, O'Connor D, Pallavicini A, Marchã Penha MA, Pérez-Badia R, Ribeiro H, Rodrigues Costa A, Tischner Z, Xhetani M, Ambelas Skjøth C. Airborne DNA: State of the art - Established methods and missing pieces in the molecular genetic detection of airborne microorganisms, viruses and plant particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177439. [PMID: 39549753 DOI: 10.1016/j.scitotenv.2024.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Bioaerosol is composed of different particles, originating from organisms, or their fragments with different origin, shape, and size. Sampling, analysing, identification and describing this airborne diversity has been carried out for over 100 years, and more recently the use of molecular genetic tools has been implemented. However, up to now there are no established protocols or standards for detecting airborne diversity of bacteria, fungi, viruses, pollen, and plant particles. In this review we evaluated commonalities of methods used in molecular genetic based studies in the last 23 years, to give an overview of applicable methods as well as knowledge gaps in diversity assessment. Various sampling techniques show different levels of effectiveness in detecting airborne particles based on their DNA. The storage and processing of samples, as well as DNA processing, influences the outcome of sampling campaigns. Moreover, the decisions on barcode selection, method of analysis, reference database as well as negative and positive controls may severely impact the results obtained. To date, the chain of decisions, methodological biases and error propagation have hindered DNA based molecular sequencing from offering a holistic picture of the airborne biodiversity. Reviewing the available studies, revealed a great diversity in used methodology and many publications didn't state all used methods in detail, making comparisons with other studies difficult or impossible. To overcome these limitations and ensure genuine comparability across studies, it is crucial to standardize protocols. Publications need to include all necessary information to enable comparison among different studies and to evaluate how methodological choices can impacts the results. Besides standardization, implementing of automatic tools and combining of different analytical techniques, such as real-time evaluation combined with sampling and molecular genetic analysis, could assist in achieving the goal of accurately assessing the actual airborne biodiversity.
Collapse
Affiliation(s)
- C-E Pogner
- Unit Bioresources, Center of Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - C Antunes
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - G P Apangu
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - N Bruffaerts
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - S Celenk
- Bursa Uludag University, Arts and Science Faculty, Biology Department, Görükle-Bursa, Turkey
| | - A Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Via Mach 1, 38098 San Michele all'Adige, TN, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - N González Roldán
- Pollen Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 41390 Gothenburg, Sweden
| | - A Grinn-Gofroń
- Institute of Biology, University of Szczecin, Wąska 13 Street, 71-415 Szczecin, Poland
| | - B Lara
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - M Lika
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - D Magyar
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Martinez-Bracero
- Department of Botany, Ecology and Plant Physiology, Córdoba University, 14071 Córdoba, Spain
| | - L Muggia
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - B Muyshondt
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - D O'Connor
- School of Chemical Sciences, Dublin City University, Dublin D09 V209, Ireland
| | - A Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - M A Marchã Penha
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - R Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - H Ribeiro
- Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - A Rodrigues Costa
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Z Tischner
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Xhetani
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - C Ambelas Skjøth
- Department of Environmental Science, iCLIMATE, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| |
Collapse
|
3
|
Hernández-Ceballos MA, López-Orozco R, Ruiz P, Galán C, García-Mozo H. Exploring the influence of meteorological conditions on the variability of olive pollen intradiurnal patterns: Differences between pre- and post-peak periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177231. [PMID: 39471956 DOI: 10.1016/j.scitotenv.2024.177231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Olive trees hold a significant economical, ecological and ornamental value, especially in the Mediterranean area. It is a wind-pollinated species emitting huge quantities of pollen with a high degree of allergenic sensitization. Andalusia region (southern Spain), where 15 % of the global olive tree population is cultivated, present a high density of this crop, reaching daily airborne olive pollen concentrations up to 6.000 pollen/m3. Although daily variations during the pollen season have been widely investigated in bibliography, factors influencing the intradiurnal dynamics of olive pollen concentrations remains underexplored in aerobiology. The present paper focuses on it, characterizing main intradiurnal patterns, identifying potential pollen source areas and the influence of wind dynamics on Córdoba city olive pollen data. The results reveal the presence of different pollen peaks at various hours of the day, depending on the stage of the pollen season (pre- and post-peak) and wind dynamics. Nevertheless, the main one is detected at midday during the pre-peak season, with secondary peaks at night, morning and late afternoon. A thorough examination of wind dynamics highlighted the significant influence of distant and local sources on the hourly pollen peaks and hence, on intradiurnal patterns. The analysis of the intradiurnal pattern associated with different air mass patterns demonstrated a considerable variability in the occurrence of peak concentrations and hence, in the contribution of sources. The characterization of surface winds confirms the substantial differences in the dynamics of atmospheric transport processes that influence the primary intradiurnal patterns of olive pollen in this region.
Collapse
Affiliation(s)
| | - R López-Orozco
- Department of Botany, Ecology and Plant Physiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Rabanales Campus, Celestino Mutis Building, E-14071 Córdoba, Spain; Andalusian Inter-University Institute for Earth System IISTA, University of Córdoba, Spain
| | - P Ruiz
- Department of Physics, University of Córdoba, Spain
| | - C Galán
- Department of Botany, Ecology and Plant Physiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Rabanales Campus, Celestino Mutis Building, E-14071 Córdoba, Spain; Andalusian Inter-University Institute for Earth System IISTA, University of Córdoba, Spain
| | - H García-Mozo
- Department of Botany, Ecology and Plant Physiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Rabanales Campus, Celestino Mutis Building, E-14071 Córdoba, Spain; Andalusian Inter-University Institute for Earth System IISTA, University of Córdoba, Spain
| |
Collapse
|
4
|
Sobieraj K, Grewling Ł, Bogawski P. Assessing allergy risk from ornamental trees in a city: Integrating open access remote sensing data with pollen measurements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122051. [PMID: 39098080 DOI: 10.1016/j.jenvman.2024.122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Platanus sp. pl. (plane trees) are common ornamental tree in Poland that produces a large amount of wind-transported pollen, which contains proteins that induce allergy symptoms. Allergy sufferers can limit their contact with pollen by avoiding places with high pollen concentrations, which are restricted mainly to areas close to plane trees. Their location is thus important, but creating a detailed street tree inventory is expensive and time-consuming. However, high-resolution remote sensing data provide an opportunity to detect the location of specific plants. But acquiring high-resolution spatial data of good quality also incurs costs and requires regular updates. Therefore, this study explored the potential of using open access remote sensing data to detect plane trees in the highly urbanized environment of Poznań (western Poland). Airborne light detection and ranging (LiDAR) was used to detect training treetops, which were subsequently marked as young plane trees, mature plane trees, other trees or artefacts. Spectral and spatial variables were extracted from circular buffers (r = 1 m) around the treetops to minimize the influence of shadows and crown overlap. A random forest machine learning algorithm was applied to assess the importance of variables and classify the treetops within a radius of 6.2 km around the functioning pollen monitoring station. The model performed well during 10-fold cross-validation (overall accuracy ≈ 92%). The predicted Platanus sp. pl. locations, aggregated according to 16 wind directions, were significantly correlated with the hourly pollen concentrations. Based on the correlation values, we established a threshold of prediction confidence, which allowed us to reduce the fraction of false-positive predictions. We proposed the spatially continuous index of airborne pollen exposure probability, which can be useful for allergy sufferers. The results showed that open-access geodata in Poland can be applied to recognize major local sources of plane pollen.
Collapse
Affiliation(s)
- Kacper Sobieraj
- Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Łukasz Grewling
- Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland; Laboratory of Aerobiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Paweł Bogawski
- Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Alarcón M, Casas-Castillo MDC, Rodríguez-Solà R, Periago C, Belmonte J. Projections of the start of the airborne pollen season in Barcelona (NE Iberian Peninsula) over the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173363. [PMID: 38795995 DOI: 10.1016/j.scitotenv.2024.173363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The effects of global warming are numerous and recent studies reveal that they can affect the timing of pollination. Temperature is the meteorological variable that presents a clearer relationship with the start of the pollination season of most of the observed airborne pollen taxa. In Catalonia, in the last fifty years, the average annual air temperature has increased by +0.23 °C/decade, and the local warming has been slightly higher than the one on a global scale. Projections point to an increase in temperature in the coming decades, which would be more marked towards the middle of the century. To analyse the effect of the increase in temperature due to global warming on the starting date of pollen season in Barcelona, a forecasting model has been applied to a set of projected future temperatures estimated by the European RESCCUE project. This model, largely used in the literature, is based on determining the thermal needs of the plant for the pollen season to begin. The model calibration to obtain the initial parameters has been made by using 20 years of pollen data (2000-2019), and the model effectiveness has subsequently been tested through an internal evaluation over the period of the calibration and an external evaluation on 4 years not included in the calibration (2020-2023). The mean bias error in the internal calibration ranged between -0.4 and - 0.6 days, and between +0.5 and - 8.3 in the external one, depending on the taxon. The results of the application of the model to the temperature projections over the 21st century point to a progressive advancement in the pollination dates of several pollen types abundant in the city, allergenic most of them. These advances ranged, at the end of the century, between 15 and 27 days, depending on the climate model, for the scenario of the highest concentrations (RCP8.5) and between 7 and 12 days for the emissions stabilization scenario (RCP4.5).
Collapse
Affiliation(s)
- Marta Alarcón
- Departament de Física, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, Eduard Maristany 16, 08019 Barcelona, Spain.
| | | | - Raül Rodríguez-Solà
- Departament de Física, ETSEIB, Universitat Politècnica de Catalunya - BarcelonaTech, Diagonal 647, 08028 Barcelona, Spain.
| | - Cristina Periago
- Departament de Física, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Jordina Belmonte
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Bellaterra, 08193 Bellaterra, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
6
|
Bayr D, Plaza MP, Gilles S, Kolek F, Leier-Wirtz V, Traidl-Hoffmann C, Damialis A. Pollen long-distance transport associated with symptoms in pollen allergics on the German Alps: An old story with a new ending? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163310. [PMID: 37028681 DOI: 10.1016/j.scitotenv.2023.163310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 06/01/2023]
Abstract
Pollen grains are among the main causes of respiratory allergies worldwide and hence they are routinely monitored in urban environments. However, their sources can be located farther, outside cities' borders. So, the fundamental question remains as to how frequent longer-range pollen transport incidents are and if they may actually comprise high-risk allergy cases. The aim was to study the pollen exposure on a high-altitude location where only scarce vegetation exists, by biomonitoring airborne pollen and symptoms of grass pollen allergic individuals, locally. The research was carried out in 2016 in the alpine research station UFS, located at 2650 m height, on the Zugspitze Mountain in Bavaria, Germany. Airborne pollen was monitored by use of portable Hirst-type volumetric traps. As a case study, grass pollen-allergic human volunteers were registering their symptoms daily during the peak of the grass pollen season in 2016, during a 2-week stay on Zugspitze, 13-24 June. The possible origin of some pollen types was identified using back trajectory model HYSPLIT for 27 air mass backward trajectories up to 24 h. We found that episodes of high aeroallergen concentrations may occur even at such a high-altitude location. More than 1000 pollen grains m-3 of air were measured on the UFS within only 4 days. It was confirmed that the locally detected bioaerosols originated from at least Switzerland, and up to northwest France, even eastern American Continent, because of frequent long-distance transport. Such far-transported pollen may explain the observed allergic symptoms in sensitized individuals at a remarkable rate of 87 % during the study period. Long-distance transport of aeroallergens can cause allergic symptoms in sensitized individuals, as evidenced in a sparse-vegetation, low-exposure, 'low-risk' alpine environment. We strongly suggest that we need cross-border pollen monitoring to investigate long-distance pollen transport, as its occurrence seems both frequent and clinically relevant.
Collapse
Affiliation(s)
- Daniela Bayr
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Maria P Plaza
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany
| | - Franziska Kolek
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany
| | - Vivien Leier-Wirtz
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany; Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Athanasios Damialis
- Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, 86156 Augsburg, Germany; Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
7
|
Ma X, Zhu X, Xie Q, Jin J, Zhou Y, Luo Y, Liu Y, Tian J, Zhao Y. Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications. GLOBAL CHANGE BIOLOGY 2022; 28:7186-7204. [PMID: 36114727 PMCID: PMC9827868 DOI: 10.1111/gcb.16436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Collapse
Affiliation(s)
- Xuanlong Ma
- College of Earth and Environmental Sciences, Lanzhou UniversityLanzhouChina
| | - Xiaolin Zhu
- Department of Land Surveying and Geo‐InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Qiaoyun Xie
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Jiaxin Jin
- College of Hydrology and Water Resources, Hohai UniversityNanjingChina
| | - Yuke Zhou
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
| | - Yunpeng Luo
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental System ScienceETH ZurichZurichSwitzerland
| | - Yuxia Liu
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
- Geospatial Sciences Center of Excellence (GSCE)South Dakota State UniversityBrookingsSouth DakotaUSA
| | - Jiaqi Tian
- Department of Land Surveying and Geo‐InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
- Department of GeographyNational University of SingaporeSingaporeSingapore
| | - Yuhe Zhao
- College of Earth and Environmental Sciences, Lanzhou UniversityLanzhouChina
| |
Collapse
|
8
|
Biological-based and remote sensing techniques to link vegetative and reproductive development and assess pollen emission in Mediterranean grasses. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Grewling Ł, Magyar D, Chłopek K, Grinn-Gofroń A, Gwiazdowska J, Siddiquee A, Ianovici N, Kasprzyk I, Wójcik M, Lafférsová J, Majkowska-Wojciechowska B, Myszkowska D, Rodinkova V, Bortnyk M, Malkiewicz M, Piotrowska-Weryszko K, Sulborska-Różycka A, Rybniček O, Ščevková J, Šikoparija B, Skjøth CA, Smith M, Bogawski P. Bioaerosols on the atmospheric super highway: An example of long distance transport of Alternaria spores from the Pannonian Plain to Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153148. [PMID: 35041944 DOI: 10.1016/j.scitotenv.2022.153148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Alternaria spores are pathogenic to agricultural crops, and the longest and the most severe sporulation seasons are predominantly recorded in rural areas, e.g. the Pannonian Plain (PP) in South-Central Europe. In Poland (Central Europe), airborne Alternaria spore concentrations peak between July and August. In this study, we test the hypothesis that the PP is the source of Alternaria spores recorded in Poland after the main sporulation season (September-October). Airborne Alternaria spores (2005-2019) were collected using volumetric Hirst spore traps located in 38 locations along the potential pathways of air masses, i.e. from Serbia, Romania and Hungary, through the Czech Republic, Slovakia and Ukraine, to Northern Poland. Three potential episodes of Long Distance Transport (LDT) were selected and characterized in detail, including the analysis of Alternaria spore data, back trajectory analysis, dispersal modelling, and description of local weather and mesoscale synoptic conditions. During selected episodes, increases in Alternaria spore concentrations in Poznań were recorded at unusual times that deviated from the typical diurnal pattern, i.e. at night or during morning hours. Alternaria spore concentrations on the PP were very high (>1000 spores/m3) at that time. The presence of non-local Ambrosia pollen, common to the PP, were also observed in the air. Air mass trajectory analysis and dispersal modelling showed that the northwest part of the PP, north of the Transdanubian Mountains, was the potential source area of Alternaria spores. Our results show that Alternaria spores are transported over long distances from the PP to Poland. These spores may markedly increase local exposure to Alternaria spores in the receptor area and pose a risk to both human and plant health. Alternaria spores followed the same atmospheric route as previously described LDT ragweed pollen, revealing the existence of an atmospheric super highway that transports bioaerosols from the south to the north of Europe.
Collapse
Affiliation(s)
- Łukasz Grewling
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland.
| | - Donat Magyar
- National Public Health Institute, Budapest, Hungary
| | | | | | - Julia Gwiazdowska
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| | - Asad Siddiquee
- Laboratory of Aerobiology, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| | - Nicoleta Ianovici
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, Romania
| | - Idalia Kasprzyk
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Magdalena Wójcik
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Janka Lafférsová
- Department of Environmental Biology, Public Health Office, Banská Bystrica, Slovakia
| | | | - Dorota Myszkowska
- Jagiellonian University Medical College, Department of Clinical and Environmental Allergology, Kraków, Poland
| | | | - Mykyta Bortnyk
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine; Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
| | | | | | | | - Ondrej Rybniček
- Paediatric Department, Allergy Unit, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Branko Šikoparija
- BioSense Institute - Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, Serbia
| | - Carsten Ambelas Skjøth
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Matt Smith
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Paweł Bogawski
- Laboratory of Biological Spatial Information, Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
10
|
Alarcón M, Periago C, Pino D, Mazón J, Casas-Castillo MDC, Ho-Zhang JJ, De Linares C, Rodríguez-Solà R, Belmonte J. Potential contribution of distant sources to airborne Betula pollen levels in Northeastern Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151827. [PMID: 34813812 DOI: 10.1016/j.scitotenv.2021.151827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Betula (birch) pollen is one of the most important causes of respiratory allergy in Northern and Central Europe. While birch trees are abundant in Central, Northern, and Eastern Europe, they are scarce in the Mediterranean territories, especially in the Iberian Peninsula (IP), where they grow only in the northern regions and as ornamental trees in urban areas. However, the airborne birch pollen patterns in Catalonia (Northeastern IP) show abrupt high concentrations in areas with usually low local influence. The intensity of the derived health problems can be increased by outbreaks due to long-range pollen transport. The present work evaluates the different potential contributions to Catalonia from the main source regions: Pyrenees, Cantabria, and the forests of France and Central Europe. To this end, we computed the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectories of air masses associated with the main Betula pollen peaks occurring simultaneously over different Catalan monitoring stations, and we studied their provenance over a 15-year period. The Vielha aerobiological station on the northern slopes of the Central Pyrenees was used to identify the dates of the pollen season in the Pyrenean region. In order to better understand the role of the Pyrenees, which is the nearest of the four birch forested regions, we classified the pollen peaks in the other Catalan stations into three groups based on the relationship between the peak and the pollen season in the Pyrenees. Our analysis of back-trajectory residence time, combined with the associated pollen concentration, reveals that two principal routes other than the Pyrenean forest sustain the northerly fluxes that enter Catalonia and carry significant concentrations of Betula pollen. This study has also allowed quantifying the differentiated contributions of the potential source regions. In addition, the Weather Research Forecast (WRF) mesoscale model has been used to study three specific episodes. Both models, HYSPLIT and WRF, complement each other and have allowed for better understanding of the main mechanisms governing the entry of birch pollen to the region.
Collapse
Affiliation(s)
- Marta Alarcón
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| | - Cristina Periago
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - David Pino
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Jordi Mazón
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | | | - Jiang Ji Ho-Zhang
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Concepción De Linares
- Department of Botany, University of Granada, Granada, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raül Rodríguez-Solà
- Departament de Física, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Jordina Belmonte
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
11
|
Potential Risks of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals from Inland and Marine Directions for a Marine Background Site in North China. TOXICS 2022; 10:toxics10010032. [PMID: 35051074 PMCID: PMC8779893 DOI: 10.3390/toxics10010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/02/2023]
Abstract
Ambient PM2.5-bound ions, OC, EC, heavy metals (HMs), 18 polycyclic aromatic hydrocarbons (PAHs), 7 hopanes, and 29 n-alkanes were detected at Tuoji Island (TI), the only marine background atmospheric monitoring station in North China. The annual PM2.5 average concentration was 47 ± 31 μg m-3, and the average concentrations of the compositions in PM2.5 were higher in cold seasons than in warm seasons. The cancer and non-cancer risks of HMs and PAHs in cold seasons were also higher than in warm seasons. BaP, Ni, and As dominated the ∑HQ (hazard quotient) in cold seasons, while the non-carcinogenic risk in warm seasons was mainly dominated by Ni, Mn, and As. The ILCR (incremental lifetime cancer risk) values associated with Cr and As were higher in the cold season, while ILCR-Ni values were higher in the warm season. The backward trajectory was calculated to identify the potential directions of air mass at TI. Through the diagnostic ratios of organic and inorganic tracers, the sources of particulate matter in different directions were judged. It was found that ship emissions and sea salt were the main sources from marine directions, while coal combustion, vehicles emissions, industrial process, and secondary aerosols were the main source categories for inland directions. In addition, potential HM and PAH risks from inland and marine directions were explored. The non-cancerous effects of TI were mainly affected by inland transport, especially from the southeast, northwest, and west-northwest. The cancerous effects of TI were mainly simultaneously affected by the inland direction and marine direction of transport.
Collapse
|
12
|
Grinn-Gofroń A, Bogawski P, Bosiacka B, Nowosad J, Camacho I, Sadyś M, Skjøth CA, Pashley CH, Rodinkova V, Çeter T, Traidl-Hoffmann C, Damialis A. Abundance of Ganoderma sp. in Europe and SW Asia: modelling the pathogen infection levels in local trees using the proxy of airborne fungal spore concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148509. [PMID: 34175598 DOI: 10.1016/j.scitotenv.2021.148509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ganoderma comprises a common bracket fungal genus that causes basal stem rot in deciduous and coniferous trees and palms, thus having a large economic impact on forestry production. We estimated pathogen abundance using long-term, daily spore concentration data collected in five biogeographic regions in Europe and SW Asia. We hypothesized that pathogen abundance in the air depends on the density of potential hosts (trees) in the surrounding area, and that its spores originate locally. We tested this hypothesis by (1) calculating tree cover density, (2) assessing the impact of local meteorological variables on spore concentration, (3) computing back trajectories, (4) developing random forest models predicting daily spore concentration. The area covered by trees was calculated based on Tree Density Datasets within a 30 km radius from sampling sites. Variations in daily and seasonal spore concentrations were cross-examined between sites using a selection of statistical tools including HYSPLIT and random forest models. Our results showed that spore concentrations were higher in Northern and Central Europe than in South Europe and SW Asia. High and unusually high spore concentrations (> 90th and > 98th percentile, respectively) were partially associated with long distance transported spores: at least 33% of Ganoderma spores recorded in Madeira during days with high concentrations originated from the Iberian Peninsula located >900 km away. Random forest models developed on local meteorological data performed better in sites where the contribution of long distance transported spores was lower. We found that high concentrations were recorded in sites with low host density (Leicester, Worcester), and low concentrations in Kastamonu with high host density. This suggests that south European and SW Asian forests may be less severely affected by Ganoderma. This study highlights the effectiveness of monitoring airborne Ganoderma spore concentrations as a tool for assessing local Ganoderma pathogen infection levels.
Collapse
Affiliation(s)
| | - Paweł Bogawski
- Department of Systematic and Environmental Botany, Laboratory of Biological Spatial Information, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Beata Bosiacka
- Institute of Marine and Environmental Sciences, University of Szczecin, 70-383 Szczecin, Poland
| | - Jakub Nowosad
- Institute of Geoecology and Geoinformation, Adam Mickiewicz University, 10 Krygowskiego Street, 61-680 Poznań, Poland
| | - Irene Camacho
- Madeira University, Faculty of Life Sciences, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Magdalena Sadyś
- Hereford & Worcester Fire and Rescue Service, Headquarters, Performance & Information, Hindlip Park, Worcester WR3 8SP, United Kingdom; University of Worcester, School of Science and the Environment, Henwick Grove, Worcester WR2 6AJ, United Kingdom
| | - Carsten Ambelas Skjøth
- University of Worcester, School of Science and the Environment, Henwick Grove, Worcester WR2 6AJ, United Kingdom
| | - Catherine Helen Pashley
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Talip Çeter
- Kastamonu University, Arts and Sciences Faculty, Department of Biology, 37100 Kuzeykent, Kastamonu, Turkey
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich - Research Center for Environmental Health, Augbsurg, Germany
| | - Athanasios Damialis
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
13
|
Rojo J, Oteros J, Picornell A, Maya-Manzano JM, Damialis A, Zink K, Werchan M, Werchan B, Smith M, Menzel A, Timpf S, Traidl-Hoffmann C, Bergmann KC, Schmidt-Weber CB, Buters J. Effects of future climate change on birch abundance and their pollen load. GLOBAL CHANGE BIOLOGY 2021; 27:5934-5949. [PMID: 34363285 DOI: 10.1111/gcb.15824] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Climate change impacts on the structure and function of ecosystems will worsen public health issues like allergic diseases. Birch trees (Betula spp.) are important sources of aeroallergens in Central and Northern Europe. Birches are vulnerable to climate change as these trees are sensitive to increased temperatures and summer droughts. This study aims to examine the effect of climate change on airborne birch pollen concentrations in Central Europe using Bavaria in Southern Germany as a case study. Pollen data from 28 monitoring stations in Bavaria were used in this study, with time series of up 30 years long. An integrative approach was used to model airborne birch pollen concentrations taking into account drivers influencing birch tree abundance and birch pollen production and projections made according to different climate change and socioeconomic scenarios. Birch tree abundance is projected to decrease in parts of Bavaria at different rates, depending on the climate scenario, particularly in current centres of the species distribution. Climate change is expected to result in initial increases in pollen load but, due to the reduction in birch trees, the amount of airborne birch pollen will decrease at lower altitudes. Conversely, higher altitude areas will experience expansions in birch tree distribution and subsequent increases in airborne birch pollen in the future. Even considering restrictions for migration rates, increases in pollen load are likely in Southwestern areas, where positive trends have already been detected during the last three decades. Integrating models for the distribution and abundance of pollen sources and the drivers that control birch pollen production allowed us to model airborne birch pollen concentrations in the future. The magnitude of changes depends on location and climate change scenario.
Collapse
Affiliation(s)
- Jesús Rojo
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center Munich, Munich, Germany
- Department of Pharmacology, Pharmacognosy and Botany, Complutense University of Madrid, Madrid, Spain
| | - Jose Oteros
- Department of Botany, Ecology and Plant Physiology, University of Cordoba, Cordoba, Spain
| | - Antonio Picornell
- Department of Botany and Plant Physiology, University of Malaga, Malaga, Spain
| | - José M Maya-Manzano
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center Munich, Munich, Germany
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Environmental Medicine, University of Augsburg, Augsburg, Germany
- Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Katrin Zink
- Bayerisches Landesamt für Umwelt, Schwerpunkt Klima und Energie, Referat KliZ: Klima-Zentrum, Hof/Saale, Germany
| | - Matthias Werchan
- German Pollen Information Service Foundation (PID), Berlin, Germany
| | - Barbora Werchan
- German Pollen Information Service Foundation (PID), Berlin, Germany
| | - Matt Smith
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Annette Menzel
- School of Life Sciences, Technische Universität München, Freising, Germany
| | - Sabine Timpf
- Institute of Geography, Geoinformatics Group, University of Augsburg, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, University of Augsburg, Augsburg, Germany
- Helmholtz Center Munich - German Research Center for Environmental Health, Augsburg, Germany
| | - Karl-Christian Bergmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center Munich, Munich, Germany
| | - Jeroen Buters
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
14
|
Yang S, Li J, Ye S, Mackenzie L, Yuan H, He L, Zhao G, Pei S, Ding X. Pollen distribution and transportation patterns in surface sediments of Liaodong Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144883. [PMID: 33736155 DOI: 10.1016/j.scitotenv.2020.144883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Understanding pollen transport pathways and dispersal mechanism from the land to sea is a prerequisite for marine palynological study. Palynological analysis of 164 surface sediment samples in Liaodong Bay, and 39 analogous surface alluvium samples from its five inflowing rivers, identifies the distribution patterns, pathways and possible sources of pollen and spores. The results show that pollen and spore assemblages in surface sediments are well correlated to regional vegetation distribution, and the variations of pollen assemblage in different parts of Liaodong Bay reflected local vegetation changes along the coast. High pollen concentrations are mainly distributed in the estuaries of inflowing rivers, coastal waters and sea muddy areas. The pollen assemblage characteristics of alluvial samples are similar to those from coastal waters with water depths <8.5 m. Samples from the alluvium and surface sediments of coastal waters were dominated by herbaceous pollen taxa including Artemisia, Amaranthaceae, Poaceae, Cyperaceae and Typha. Herbaceous pollen percentages and concentrations decreased as the water depth increased, indicating that pollen and spores in the coastal waters of Liaodong Bay are mainly carried by the inflowing rivers. However, pollen assemblages for samples with water depth >8.5 m are significantly different from those of the alluvium. In samples taken below a depth of 8.5 m, the arboreal pollen is dominated by airborne Pinus, and there is a high number of the waterborne Selaginella fern spores, both of which are sourced from a wider region. In the Liaodong Bay, both wind and ocean current transportation determines the pollen distribution patterns in deeper waters, while fluvial and longshore current transportation determines the pollen assemblages found in shallow waters. The dispersal characteristics of pollen assemblages between the land and the sea in Liaodong Bay provide a theoretical basis for the interpretation of fossil pollen assemblages and past sea level changes.
Collapse
Affiliation(s)
- Shixiong Yang
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China.
| | - Jie Li
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China.
| | - Siyuan Ye
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Lydia Mackenzie
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China
| | - Hongming Yuan
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China
| | - Lei He
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China
| | - Guangming Zhao
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Shaofeng Pei
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xigui Ding
- Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, Shandong, China
| |
Collapse
|
15
|
Inferring long-distance connectivity shaped by air-mass movement for improved experimental design in aerobiology. Sci Rep 2021; 11:11093. [PMID: 34045612 PMCID: PMC8159928 DOI: 10.1038/s41598-021-90733-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
The collection and analysis of air samples for the study of microbial airborne communities or the detection of airborne pathogens is one of the few insights that we can grasp of a continuously moving flux of microorganisms from their sources to their sinks through the atmosphere. For large-scale studies, a comprehensive sampling of the atmosphere is beyond the scopes of any reasonable experimental setting, making the choice of the sampling locations and dates a key factor for the representativeness of the collected data. In this work we present a new method for revealing the main patterns of air-mass connectivity over a large geographical area using the formalism of spatio-temporal networks, that are particularly suitable for representing complex patterns of connection. We use the coastline of the Mediterranean basin as an example. We reveal a temporal pattern of connectivity over the study area with regions that act as strong sources or strong receptors according to the season of the year. The comparison of the two seasonal networks has also allowed us to propose a new methodology for comparing spatial weighted networks that is inspired from the small-world property of non-spatial networks.
Collapse
|
16
|
Clustering approach for the analysis of the fluorescent bioaerosol collected by an automatic detector. PLoS One 2021; 16:e0247284. [PMID: 33705418 PMCID: PMC7951810 DOI: 10.1371/journal.pone.0247284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022] Open
Abstract
Automatically operating particle detection devices generate valuable data, but their use in routine aerobiology needs to be harmonized. The growing network of researchers using automatic pollen detectors has the challenge to develop new data processing systems, best suited for identification of pollen or spore from bioaerosol data obtained near-real-time. It is challenging to recognise all the particles in the atmospheric bioaerosol due to their diversity. In this study, we aimed to find the natural groupings of pollen data by using cluster analysis, with the intent to use these groupings for further interpretation of real-time bioaerosol measurements. The scattering and fluorescence data belonging to 29 types of pollen and spores were first acquired in the laboratory using Rapid-E automatic particle detector. Neural networks were used for primary data processing, and the resulting feature vectors were clustered for scattering and fluorescence modality. Scattering clusters results showed that pollen of the same plant taxa associates with the different clusters corresponding to particle shape and size properties. According to fluorescence clusters, pollen grouping highlighted the possibility to differentiate Dactylis and Secale genera in the Poaceae family. Fluorescent clusters played a more important role than scattering for separating unidentified fluorescent particles from tested pollen. The proposed clustering method aids in reducing the number of false-positive errors.
Collapse
|
17
|
Menzel A, Ghasemifard H, Yuan Y, Estrella N. A First Pre-season Pollen Transport Climatology to Bavaria, Germany. FRONTIERS IN ALLERGY 2021; 2:627863. [PMID: 35386987 PMCID: PMC8974717 DOI: 10.3389/falgy.2021.627863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/21/2021] [Indexed: 12/05/2022] Open
Abstract
Climate impacts on the pollen season are well-described however less is known on how frequently atmospheric transport influences the start of the pollen season. Based on long-term phenological flowering and airborne pollen data (1987–2017) for six stations and seven taxa across Bavaria, Germany, we studied changes in the pollen season, compared pollen and flowering season start dates to determine pollen sources, and analyzed the likelihood of pollen transport by HYSPLIT back trajectories. Species advanced their pollen season more in early spring (e.g., Corylus and Alnus by up to 2 days yr−1) than in mid spring (Betula, Fraxinus, Pinus); Poaceae and Artemisia exhibited mixed trends in summer. Annual pollen sums mainly increased for Corylus and decreased for Poaceae and Artemisia. Start of pollen season trends largely deviated from flowering trends, especially for Corylus and Alnus. Transport phenomena, which rely on comparisons between flowering and pollen dates, were determined for 2005–2015 at three stations. Pre-season pollen was a common phenomenon: airborne pollen was predominantly observed earlier than flowering (median 17 days) and in general, in 63% of the cases (except for Artemisia and Poaceae, and the alpine location) the pollen sources were non-local (transported). In 54% (35%) of these cases, back trajectories confirmed (partly confirmed) the pre-season transport, only in 11% of the cases transport modeling failed to explain the records. Even within the main pollen season, 70% of pollen season start dates were linked to transport. At the alpine station, non-local pollen sources (both from outside Bavaria as well as Bavarian lowlands) predominated, in only 13% of these cases transport could not be confirmed by back trajectories. This prominent role of pollen transport has important implications for the length, the timing, and the severity of the allergenic pollen season, indicating only a weak dependency on flowering of local pollen sources.
Collapse
Affiliation(s)
- Annette Menzel
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
- Institute for Advanced Study, Technical University of Munich (TUM), Garching, Germany
| | - Homa Ghasemifard
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ye Yuan
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
- *Correspondence: Ye Yuan
| | - Nicole Estrella
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
18
|
Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain. FORESTS 2020. [DOI: 10.3390/f11101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sweet chestnut (Castanea sativa Mill.) is the only native species of this genus in Europe, where it faces various threats that are causing a severe decrease in populations, with the resulting loss of genetic diversity. In the Iberian Peninsula, it is of high economic and ecological importance, being well represented, especially in northern areas, whilst it is limited to isolated populations in medium-range mountains in southern Spain (Andalusia region). Taking advantage of this fragmented distribution, this study analyzes the dynamics of atmospheric transport of Castanea pollen through Andalusia region in order to obtain a better understanding of the pollination pathways as a key aspect of the floral biology of this partially anemophilous species. The aerobiological characteristics of this species are also of special interest since its pollen has been recognized as allergenic. Pollen transport pathways were studied by applying back-trajectories analysis together with aerobiological, phenological, land cover, and meteorological data. The results reveal that airborne Castanea pollen concentrations recorded in the city of Cordoba, in the center of Andalusia region, reach medium- and even long-range distances. The backward-trajectory analysis indicates that most of the pollen data detected outside the Castanea flowering season were related to westerly slow and easterly airflows. Furthermore, some of the case studies analyzed indicate the presence of southerly airflow patterns, which could influence medium- and long-range transport events from chestnut populations further south, even from those located in north African mountains. The integrated analysis of the results offers us better knowledge of the cross-pollination pathways of this endangered species, which help us to understand its genetic flows, as a basis for designing conservation strategies for this highly fragmented species in southern Spain.
Collapse
|
19
|
Flowering Phenology and Characteristics of Pollen Aeroparticles of Quercus Species in Korea. FORESTS 2020. [DOI: 10.3390/f11020232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, airborne allergens for allergic respiratory diseases have been found to increase significantly by a process of converting coniferous forests into broad-leaved forests in Korea. This study was conducted to evaluate factors, including airborne pollen counts, micromorphology, and flowering phenology, that can affect oak pollen-related allergic symptoms. The catkin of Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) showed the most rapidly blooming catkin on Julian day 104 in flower development. Among six species, the last flowering was observed on Julian day 119 in Korean oak (Quercus dentata Thunb.). The pollen dispersal was persisted for about 32 days from Julian day 104 to Julian day 136. Airborne pollen was observed about 2 weeks after flowering phase H, the senescence phase. Pollen size varied by species, with the largest from Q. mongolica (polar axis length, PL = 31.72 µm, equatorial axis length, EL = 39.05 µm) and the smallest from Jolcham oak (Quercus serrata Murray) (PL = 26.47 µm, EL = 32.32 µm). Regarding pollen wall structure, endexine of Q. dentata was coarsely laminated or fragmented. The endexine thicknesses of Sawtooth oak (Quercus acutissima Carruth.) and Q. serrata were thick and stable, whereas Galcham oak (Quercus aliena Blume), Q. mongolica, and Oriental cork oak (Quercus variabilis Blume) had thinner endexines. The area occupied by pollenkitt of Q. variabilis was significantly larger than that of Q. acutissima. Importantly, Q. variabilis had a distinctly thick 17 kDa protein band, a presumed major allergen. Oak species differ in pollen protein composition, and thus there is a possibility that the allergenic activity of pollen proteins vary depending on oak species. This study highlights the fact that native oak species in Korea differ in flowering pattern of male flowers, pollen morphology, and pollen chemical constituents. These discrepancies in flowering and pollen properties imply variable allergic responses to oak pollen from different species.
Collapse
|
20
|
Land-Use and Height of Pollen Sampling Affect Pollen Exposure in Munich, Germany. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Airborne pollen concentrations vary depending on the location of the pollen trap with respect to the pollen sources. Two Hirst-type pollen traps were analyzed within the city of Munich (Germany): one trap was located 2 m above ground level (AGL) and the other one at rooftop (35 m AGL), 4.2 km apart. In general, 1.4 ± 0.5 times higher pollen amounts were measured by the trap located at ground level, but this effect was less than expected considering the height difference between the traps. Pollen from woody trees such as Alnus, Betula, Corylus, Fraxinus, Picea, Pinus and Quercus showed a good agreement between the traps in terms of timing and intensity. Similar amounts of pollen were recorded in the two traps when pollen sources were more abundant outside of the city. In contrast, pollen concentrations from Cupressaceae/Taxaceae, Carpinus and Tilia were influenced by nearby pollen sources. The representativeness of both traps for herbaceous pollen depended on the dispersal capacity of the pollen grains, and in the case of Poaceae pollen, nearby pollen sources may influence the pollen content in the air. The timing of the pollen season was similar for both sites; however, the season for some pollen types ended later at ground level probably due to resuspension processes that would favor recirculation of pollen closer to ground level. We believe measurements from the higher station provides a picture of background pollen levels representative of a large area, to which local sources add additional and more variable pollen amounts.
Collapse
|
21
|
Lidar-Derived Tree Crown Parameters: Are They New Variables Explaining Local Birch (Betula sp.) Pollen Concentrations? FORESTS 2019. [DOI: 10.3390/f10121154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Birch trees are abundant in central and northern Europe and are dominant trees in broadleaved forests. Birches are pioneer trees that produce large quantities of allergenic pollen efficiently dispersed by wind. The pollen load level depends on the sizes and locations of pollen sources, which are important for pollen forecasting models; however, very limited work has been done on this topic in comparison to research on anthropogenic air pollutants. Therefore, we used highly accurate aerial laser scanning (Light Detection and Ranging—LiDAR) data to estimate the size and location of birch pollen sources in 3-dimensional space and to determine their influence on the pollen concentration in Poznań, Poland. LiDAR data were acquired in May 2012. LiDAR point clouds were clipped to birch individuals (mapped in 2012–2014 and in 2019), normalised, filtered, and individual tree crowns higher than 5 m were delineated. Then, the crown surface and volume were calculated and aggregated according to wind direction up to 2 km from the pollen trap. Consistent with LIDAR data, hourly airborne pollen measurements (performed using a Hirst-type, 7-day volumetric trap), wind speed and direction data were obtained in April 2012. We delineated 18,740 birch trees, with an average density of 14.9/0.01 km2, in the study area. The total birch crown surface in the 500–1500 m buffer from the pollen trap was significantly correlated with the pollen concentration aggregated by the wind direction (r = 0.728, p = 0.04). The individual tree crown delineation performed well (r2 ≥ 0.89), but overestimations were observed at high birch densities (> 30 trees/plot). We showed that trees outside forests substantially contribute to the total pollen pool. We suggest that including the vertical dimension and the trees outside the forest in pollen source maps have the potential to improve the quality of pollen forecasting models.
Collapse
|