1
|
Abou Jaoude L, H Mohtar R, Kamaleddine F, Dbaibo R, Bou Said R, Keniar I, F Yanni S. Impact of treated wastewater sludge on soil and wheat growth characteristics in a semi-arid climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179166. [PMID: 40138910 DOI: 10.1016/j.scitotenv.2025.179166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Sludge accumulation as a byproduct of wastewater treatment is an increasingly growing concern which can be addressed by utilizing the sludge as a soil amendment. A two-year study was conducted to valorize sludge as an organic amendment on soil cultivated with rainfed wheat (Triticum icaversea) and its impact on soil properties, microbial activity, wheat yield and grain quality. The study was conducted in Lebanon, where the sludge accumulation problem is especially important given the absence of proper treatment and disposal methods. Baseline characterization of sewage sludge collected from secondary (SS) and tertiary (TS) wastewater treatment plants showed that both sludge types can be classified as suitable for restricted agricultural use (Class B), which cannot be used on soils to grow fruits or vegetables that are eaten raw. Post-harvest analysis of the amended soils revealed a significant enhancement in organic matter (OM), soil moisture, wheat yield and grain quality in both seasons in SS and TS treatments compared to the control. All tested heavy metals in the sludge were much lower than the allowable limits for agricultural soils, except for zinc (Zn). Wheat biomass and grain quality improved with a significant increase in grain yield (61-76 %) in both treated soils (SS: 74 g/m2, TS: 81 g/m2) compared to the control (46 g/m2). Under the TS treatment the grain had the highest protein content (14.5 %) in the first season. Soil microbial analysis were not consistent in the two seasons, but showed a potential risk of total coliforms contamination with SS application in the second season. This research provides valuable insights into the positive effects of treated sewage sludge application on soil fertility and wheat grain quality emphasizing the potential benefits of this sludge in sustainable agriculture. It also highlights the need for monitoring sludge and soil quality.
Collapse
Affiliation(s)
- Lena Abou Jaoude
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Rabi H Mohtar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon; Biological and Agricultural Engineering, Zachry Department of Civil Engineering, Energy Institute, Texas A&M University, College Station, TX, USA.
| | - Farah Kamaleddine
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Razan Dbaibo
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Rania Bou Said
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Imad Keniar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Sandra F Yanni
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, KW Neatby, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
2
|
Visconti D, Carrino L, Fiorentino N, El-Nakhel C, Todisco D, Fagnano M. Phytomanagement of shooting range soils contaminated by Pb, Sb, and as using Ricinus communis L.: effects of compost and AMF on PTE stabilization, growth, and physiological responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:129. [PMID: 40121371 DOI: 10.1007/s10653-025-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Shooting ranges represent a critical case of soil contamination due to the accumulation of Pb, Sb, and As from bullet residues. Effective and sustainable remediation strategies are required to mitigate environmental and health risks while enabling land valorization. This study investigates the potential of Ricinus communis L. for phytomanagement of Pb-, Sb-, and As-contaminated soils, evaluating the combined effects of compost, mineral fertilizer, and arbuscular mycorrhizal fungi (AMF) on plant growth, PTE accumulation and bioavailability, and biomass production. A mesocosm experiment was conducted using highly contaminated soil (about 5000 mg kg⁻1 Pb, 100 mg kg⁻1 Sb). Despite severe contamination, Ricinus communis L. achieved stable biomass and seed yield (about 5.7 Mg ha⁻1 seeds, 2-3 Mg ha⁻1 oil), similar to values reported in non-contaminated soils of the Mediterranean area. Compost and AMF increased PTE bioavailability in the rhizosphere, likely due to root exudate activity, but maintained low translocation factors (TF < 1), indicating limited PTE uptake into aerial biomass. These findings confirm the phytostabilization potential of Ricinus communis L., reducing PTE dispersion while promoting renewable energy production preventing competition for land used for growing food crops.
Collapse
Affiliation(s)
- Donato Visconti
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy.
| | - Linda Carrino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy.
| | - Nunzio Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Daniele Todisco
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Massimo Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| |
Collapse
|
3
|
Pan G, Geng S, Wang L, Xing J, Fan G, Gao Y, Lu X, Zhang Z. Effects of Modified Biochar on Growth, Yield, and Quality of Brassica chinensis L. in Cadmium Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2025; 14:524. [PMID: 40006782 PMCID: PMC11859143 DOI: 10.3390/plants14040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in vegetables, which can be transferred to humans through the food chain, posing a significant threat to human health, and requires urgent measures to combat it. Modified biochar may have the potential to remediate Cd pollution in farmland soils. In this experiment, bulk biochar (YC) derived from reed straw or modified biochar by ball milling (Q) either alone or combined with a combination of several passivation agents {potassium hydroxide (K), attapulgite (A), calcium magnesium phosphate fertilizer (M), and polyacrylamide (P)} was applied to soils polluted with Cd, to investigate the growth, yield, and quality of pakchoi (Brassica chinensis L.). The results showed that bulk biochar (YC) provided pakchoi with plenty of nitrogen, phosphorus, and potassium, while passivation agents enhance macronutrient accumulation. Compared to YC, modified biochar improved pakchoi yields and nutritional quality. Among them, concentrations of nitrates in pakchoi significantly decreased by 51.8% and 51.0%, while vitamin C levels increased by 29.6% and 19.0%, respectively, in QKAMP and QKAM treatments. The contents of Cd in pakchoi significantly decreased by 21.6% and 18.6%, respectively, in QKAMP and QKAM treatments. The implementation of QKAMP led to the cadmium contents in edible vegetables being lower than the maximum stipulated content as defined by the national standard, but QKAM failed to accomplish it. In conclusion, QKAMP effectively reduced the bioavailability of Cd in the middle to slightly Cd-polluted alkaline soils, making it a suitable soil amendment to improve the yield and quality and mitigate Cd accumulation in vegetables.
Collapse
Affiliation(s)
- Guojun Pan
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Shufang Geng
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Liangliang Wang
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Jincheng Xing
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
| | - Guangping Fan
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Yan Gao
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
| | - Xin Lu
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenhua Zhang
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.P.)
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
- The School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Abou Jaoude L, Kamaleddine F, Bou Said R, Mohtar RH, Dbaibo R, Yanni SF. Treated wastewater reuse and its impact on soil properties and potato and corn growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178130. [PMID: 39708745 DOI: 10.1016/j.scitotenv.2024.178130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Water scarcity is a growing challenge in semi-arid regions. Many farmers have resorted to treated wastewater (TWW) as an available and low-cost water source. This study investigated the impact of irrigating potato (Solanum Tuberosum) and corn (Zea mays) with tertiary-treated (TW) and secondary-treated (SW) wastewater compared to freshwater, over two years. We studied the impact of TWW reuse on soil properties, soil microbes, crop yield, and potato tuber health. Irrigation of both corn and potato with TW significantly increased organic matter (OM) content; on average across both years and crops OM increased by about 35 % under SW and 42 % under TW. TWW irrigation also increased cation exchange capacity (CEC) by the second year under SW and TW in potato (average 67 %), and by the second year under TW in corn (average 13 %). TWW also enhanced soil fertility with no heavy metals contamination. However, potato field irrigated with SW showed high levels of total and thermotolerant coliforms in soil, exceeding predefined thresholds, in the second season. No microbial contamination was recorded in TW-irrigated fields, however, it raised salinity concerns compared to control with 935 mg Na /kg in TW soil compared to 465 mg/kg in control soil during the first season in potato soil. Significant increases in potato tillers, number of tubers (average 6 tubers/plant in TW vs 3 tubers/plant in the control), and tuber weight were recorded in season two under TW irrigation. Both SW and TW increased corn biomass during both seasons. In conclusion, TW is a sustainable alternative water source that enhances crop yields and improves soil quality. This study highlighted the critical role of TWW management and monitoring to address challenges such as salinity and microbial contamination. Further research is required to optimize TWW long-term reuse sustainable agriculture, balancing crop benefits while safeguarding human health.
Collapse
Affiliation(s)
- Lena Abou Jaoude
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Farah Kamaleddine
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Rania Bou Said
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Rabi H Mohtar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon; Biological and Agricultural Engineering5, Zachry Department of Civil Engineering, Energy Institute, Texas A&M University, College Station, TX, USA.
| | - Razan Dbaibo
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Sandra F Yanni
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa K1A 0C6, ON, Canada.
| |
Collapse
|
5
|
Zou X, Cao K, Wang Q, Kang S, Wang Y. Enhanced degradation of polylactic acid microplastics in acidic soils: Does the application of biochar matter? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135262. [PMID: 39047572 DOI: 10.1016/j.jhazmat.2024.135262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable plastics, as an alternative to petroleum plastics, are fiercely increasing, but their incomplete degradation under natural conditions may lead to the breakdown into microplastics (MPs). Here, we explored the impacts of chicken manure-derived (MBC) and wood waste-derived biochar (WBC) on the degradation of polylactic acid microplastics (PLA-MPs) during soil incubation for one year. Both biochars induced more pronounced degradation characteristics in PLA-MPs, including enhanced surface roughness, the proportion of MPs < 100 µm by 12.89 %-25.67 %, oxygen loading and O/C ratio to 71.74 %-75.87 % and 1.70-1.76, as well as accelerated carbon loss and the cleavage of ester group and C-C bond. Also, biochar increased soil pH, depleted inorganic nitrogen and available phosphorus, and changed enzymic activity in PLA-MP-polluted soils. We proposed that both biochars accelerated the PLA-MP degradation by inducing alkaline, aminolysis/ammonolysis, oxidative, and microbial degradation. Among these, MBC induced aminolysis/ammonolysis by NH4+ via Fe2+-driven NO3-/NO2- reduction and microbial nitrogen fixation, and oxidative degradation by radicals generated through Fenton/Fenton-like reaction. WBC caused aminolysis/ammonolysis and oxidative degradation mainly through dissimilatory nitrate reduction to ammonium and surface free radicals on biochar. These findings indicate that biochar has the potential to accelerate PLA-MP degradation, and its regulatory mechanism depends on the type of biochar.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Kaibo Cao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shilei Kang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
6
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
7
|
Shilev S, Mitkov A, Popova V, Neykova I, Minev N, Szulc W, Yordanov Y, Yanev M. Fertilization Type Differentially Affects Barley Grain Yield and Nutrient Content, Soil and Microbial Properties. Microorganisms 2024; 12:1447. [PMID: 39065216 PMCID: PMC11279231 DOI: 10.3390/microorganisms12071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The use of artificial fertilizers follows the intensification of agricultural production as a consequence of population growth, which leads to soil depletion, loss of organic matter, and pollution of the environment and production. This can be overcome by increasing the use of organic fertilizers in agriculture. In the present study, we investigated the effect of using vermicompost, biochar, mineral fertilizer, a combination of vermicompost and mineral fertilizer, and an untreated control on alluvial-meadow soil on the development of fodder winter barley Hordeum vulgare L., Zemela cultivar. We used a randomized complete block design of four replications per treatment. Barley grain yield, number of plants, and soil and microbiological parameters were studied. We found statistically proven highest grain yield and grain protein values when applying vermicompost alone, followed by the combined treatment and mineral fertilizer. The total organic carbon was increased by 70.2% in the case of vermicompost and by 44% in the case of combined treatment, both compared to the control. Thus, soil microbiome activity and enzyme activities were higher in vermicompost treatment, where the activity of β-glucosidase was 29.4% higher in respect to the control, 37.5% to the mineral fertilizer, and 24.5% to the combined treatments. In conclusion, our study found the best overall performance of vermicompost compared to the rest of the soil amendments.
Collapse
Affiliation(s)
- Stefan Shilev
- Department of Microbiology and Environmental Biotechnologies, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria; (V.P.); (I.N.)
| | - Anyo Mitkov
- Department of General Agriculture and Herbology, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria; (A.M.); (M.Y.)
| | - Vanya Popova
- Department of Microbiology and Environmental Biotechnologies, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria; (V.P.); (I.N.)
| | - Ivelina Neykova
- Department of Microbiology and Environmental Biotechnologies, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria; (V.P.); (I.N.)
| | - Nikolay Minev
- Department of Agrochemistry and Soil Science, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Wieslaw Szulc
- Department of Soil Environmental Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Yordan Yordanov
- Department of Crop Science, Agricultural University–Plovdiv, 12 Mendeleev Str., 4000 Plovdiv, Bulgaria;
| | - Mariyan Yanev
- Department of General Agriculture and Herbology, Agricultural University—Plovdiv, 4000 Plovdiv, Bulgaria; (A.M.); (M.Y.)
| |
Collapse
|
8
|
Jaffar MT, Chang W, Zhang J, Mukhtar A, Mushtaq Z, Ahmed M, Zahir ZA, Siddique KHM. Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121418. [PMID: 38852408 DOI: 10.1016/j.jenvman.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.
Collapse
Affiliation(s)
| | - Wenqian Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jianguo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zain Mushtaq
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
9
|
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:284. [PMID: 38256837 PMCID: PMC10818981 DOI: 10.3390/plants13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% w/w), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.e., 2362 mg kg-1 of Sb and 2801 mg kg-1 of Zn). Compost and its mixtures promoted an increase in soil fertility (e.g., total N; extractable P; and exchangeable K, Ca, and Mg), which was not found in the soil treated with biochar alone. All the tested amendments substantially reduced labile Zn in soil, while biochar alone was the most effective in reducing labile Sb in the treated soils (-11% vs. control), followed by compost (-4%) and biochar-compost mixtures (-8%). Compost (especially alone) increased soil biochemical activities (e.g., dehydrogenase, urease, and β-glucosidase), as well as soil respiration and the potential catabolic activity of soil microbial communities, while biochar alone (probably due to its high adsorptive capacity towards nutrients) mostly exhibited an inhibitory effect, which was partially mitigated in soils treated with both amendments. Overall, the biochar-compost combinations had a synergistic effect on both amendments, i.e., reducing PTE mobility and restoring soil biological functionality at the same time. This finding was supported by plant growth trials which showed increased Sb and Zn mineralomass values for rigid ryegrass (Lolium rigidum Gaud.) grown on biochar-compost mixtures, suggesting a potential use of rigid ryegrass in the compost-biochar-assisted phytoremediation of PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
- Nucleo Ricerca Desertificazione, University of Sassari, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| |
Collapse
|
10
|
Hassanzadeh Moghimi O, Nabi Bidhendi G, Daryabeigi Zand A, Rabiee Abyaneh M, Nabi Bidhendi A. Effect of forest-based biochar on maturity indices and bio-availability of heavy metals during the composting process of organic fraction of municipal solid waste (OFMSW). Sci Rep 2023; 13:15977. [PMID: 37749149 PMCID: PMC10519951 DOI: 10.1038/s41598-023-42835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The main objective of this study was to investigate the effect of biochar on the composting process of the organic fraction of municipal solid waste (OFMSW) under real conditions. Different doses of biochar (1%, 3%, and 5%) were mixed with compost piles to evaluate the variation of temperature, moisture content (MC), organic matter (OM), carbon (C), nitrogen (N), C/N ratio, and heavy metal (HM) contents in comparison with the control treatment (with 0% biochar addition). The results of this study showed that the compost piles combined with different doses of biochar had higher MC. The use of biochar as an additive, even at low doses (1%), was able to increase the compost quality through the reduction of N losses during the composting process. The highest reduction of OM during the composting process was observed in the control pile (without biochar addition) by 48.06%, whereas biochar affected the biodegradability of OM and prevented the reduction of nutrients during the composting process under real conditions. The contents of HMs (Pb, Zn, Ni, Cd, and Cu) showed a significant reduction in all of the compost piles combined with biochar in comparison with the control treatment. Considering that in terms of all compost quality indicators, the piles combined with biochar can regarded as high standard product, the composts obtained from combining the OFMSW with different biochar doses have desirable features to be used as an amendment agent to improve agricultural soil quality.
Collapse
Affiliation(s)
- Omid Hassanzadeh Moghimi
- Department of Environmental Engineering, Kish International Campus, University of Tehran, Kish, Iran.
| | | | | | - Maryam Rabiee Abyaneh
- Department of Environmental Engineering, Kish International Campus, University of Tehran, Kish, Iran
| | - Amir Nabi Bidhendi
- Department of Environmental Engineering, Aras International Campus, University of Tehran, Jolfa, Iran
| |
Collapse
|
11
|
Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M. Soil acidification and salinity: the importance of biochar application to agricultural soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1206820. [PMID: 37780526 PMCID: PMC10537949 DOI: 10.3389/fpls.2023.1206820] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Soil acidity is a serious problem in agricultural lands as it directly affects the soil, crop production, and human health. Soil acidification in agricultural lands occurs due to the release of protons (H+) from the transforming reactions of various carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has emerged as an excellent tool to manage soil acidity owing to its alkaline nature and its appreciable ability to improve the soil's physical, chemical, and biological properties. The application of BC to acidic soils improves soil pH, soil organic matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity and diversity, and enzyme activities which mitigate the adverse impacts of acidity on plants. Further, BC application also reduce the concentration of H+ and Al3+ ions and other toxic metals which mitigate the soil acidity and supports plant growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it has a direct impact on global production and food security. Due to its appreciable liming potential BC is also an important amendment to mitigate the adverse impacts of SS. The addition of BC to saline soils improves nutrient homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic activity, and water uptake and reduces the accumulation of toxic ions sodium (Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by improving antioxidant activity, photosynthesis efficiency, stomata working, and decrease oxidative damage in plants. Thus, in the present review, we discussed the various mechanisms through which BC improves the soil properties and microbial and enzymatic activities to counter acidity and salinity problems. The present review will increase the existing knowledge about the role of BC to mitigate soil acidity and salinity problems. This will also provide new suggestions to readers on how this knowledge can be used to ameliorate acidic and saline soils.
Collapse
Affiliation(s)
- Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Mingquan Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Rongpeng Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sobia Shahzad
- Islamia University of Bahawalpur, Bahawalnagar, Pakistan
| | - Changhong Wu
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Guoqin Huang
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Saad Almari
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Muhammad Aamer
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
12
|
Kumar Awasthi S, Verma S, Zhou Y, Liu T, Kumar Awasthi M, Zhang Z. Effect of scleral protein shell amendment on bacterial community succession during the pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127644. [PMID: 35868462 DOI: 10.1016/j.biortech.2022.127644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The impact of scleral protein shell (SPS) amendment on bacterial community succession during pig manure (PM) composting were evaluated in the present work. Five treatments representing different dry weight dosage of SPS [0 % (T1), 2.5 % (T2), 5 % (T3), 7.5 % (T4), 10 % (T5) and 12 % (T6)] were applied with initial mixture of raw materials (Wheat straw along with the PM) and composted for 42 days. Results indicated that the dominant of phyla were Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes. The relative abundance (RA) of genus un-identified, Ruminofilibacter, Thermovum, Longispora and Pseudomonas were greater among the all treatments but interestingly genus Ruminofilibacter was also higher in control treatment. The network analysis was confirmed that T6 treatment with higher dosage of SPS amendment could enhance the bacterial population and rate of organic matter mineralization. Compared with T1, the T5 has greater potential impact to enhance the bacterial population and significant correlation among the pH and temperature.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
13
|
Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10081627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution in soil seriously harms human health and animal and plant growth. Among them, cadmium pollution is one of the most serious issues. As a promising remediation material for cadmium pollution in soil, functionalized biochar has attracted wide attention in the last decade. This paper summarizes the preparation technology of biochar, the existing forms of heavy metals in soil, the remediation mechanism of biochar for remediating cadmium contamination in soil, and the factors affecting the remediation process, and discusses the latest research advances of functionalized biochar for remediating cadmium contamination in soil. Finally, the challenges encountered by the implementation of biochar for remediating Cd contamination in soil are summarized, and the prospects in this field are highlighted for its expected industrial large-scale implementation.
Collapse
|
14
|
Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:96-110. [PMID: 35576892 DOI: 10.1016/j.plaphy.2022.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jiaxuan Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
15
|
Garau M, Sizmur T, Coole S, Castaldi P, Garau G. Impact of Eisenia fetida earthworms and biochar on potentially toxic element mobility and health of a contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151255. [PMID: 34710424 DOI: 10.1016/j.scitotenv.2021.151255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the influence of Eisenia fetida (Savigny), added to an acidic soil contaminated with potentially toxic elements (PTEs; As, Sb, Cd, Pb, Zn) and amended with a softwood-derived biochar (2 and 5% w/w), on the mobility of PTEs and soil health (i.e. nutrient availability, enzyme activity and soil basal respiration). The PTEs bioaccumulation by E. fetida and the acute ecotoxicity effects of the amended soils were also evaluated. The interaction between earthworms and biochar led to a significant increase in soil pH, organic matter, dissolved organic carbon content, cation exchange capacity, and exchangeable Ca compared to the untreated soil. Moreover, the water-soluble and readily exchangeable PTE fraction decreased (with the exception of Sb) between 1.2- and 3.0-fold in the presence of biochar and earthworms. Earthworms, biochar, and their combination, led to a reduction of phosphomonoesterase activity which in soils amended with biochar and earthworms decreased between 2.2- and 2.5-fold with respect to the untreated soil. On the other hand, biochar and earthworms also enhanced soil basal respiration and protease activity. Although the survival rate and the weight loss of E. fetida did not change significantly with the addition of 2% biochar, adding the highest biochar percentage (5%) resulted in a survival rate that was ~2-fold lower and a weight loss that was 2.5-fold higher than the other treatments. The PTE bioaccumulation factors for E. fetida, which were less than 1 for all elements (except Cd), followed the order Cd > As>Zn > Cu > Pb > Sb and were further decreased by biochar addition. Overall, these results highlight that E. fetida and biochar, especially at 2% rate, could be used for the restoration of soil functionality in PTE-polluted environments, reducing at the same time the environmental risks posed by PTEs, at least in the short time.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Sean Coole
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
16
|
Güleç F, Şimşek EH, Tanıker Sarı H. Prediction of Biomass Pyrolysis Mechanisms and Kinetics: Application of the Kalman Filter. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fatih Güleç
- University of Nottingham Department of Chemical Engineering, Faculty of Engineering NG7 2RD Nottingham UK
| | - Emir Hüseyin Şimşek
- Ankara University Department of Chemical Engineering, Faculty of Engineering 06100 Ankara Turkey
| | - Hilal Tanıker Sarı
- Ankara University Department of Chemical Engineering, Faculty of Engineering 06100 Ankara Turkey
| |
Collapse
|
17
|
Effect of Municipal Solid Waste Compost on Antimony Mobility, Phytotoxicity and Bioavailability in Polluted Soils. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of a municipal solid waste compost (MSWC), added at 1 and 2% rates, on the mobility, phytotoxicity, and bioavailability of antimony (Sb) was investigated in two soils (SA: acidic soil; SB: alkaline soil), spiked with two Sb concentrations (100 and 1000 mg kg−1). The impact of MSWC on microbial activity and biochemical functioning within the Sb-polluted soils was also considered. MSWC addition reduced water-soluble Sb and favored an increase in residual Sb (e.g., by 1.45- and 1.14-fold in SA-100 and SA-1000 treated with 2% MSWC, respectively). Significant increases in dehydrogenase activity were recorded in both the amended soils, as well as a clear positive effect of MSWC on the metabolic activity and catabolic diversity of respective microbial communities. MSWC alleviated Sb phytotoxicity in triticale plants and decreased Sb uptake by roots. However, increased Sb translocation from roots to shoots was recorded in the amended soils, according to the compost rate. Overall, the results obtained indicated that MSWC, particularly at a 2% rate, can be used for the recovery of Sb-polluted soils. It also emerged that using MSWC in combination with triticale plants can be an option for the remediation of Sb-polluted soils, by means of assisted phytoextraction.
Collapse
|
18
|
Radziemska M, Gusiatin ZM, Cydzik-Kwiatkowska A, Cerdà A, Pecina V, Bęś A, Datta R, Majewski G, Mazur Z, Dzięcioł J, Danish S, Brtnický M. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump phytostabilized with composted, pyrolyzed or gasified wastes. CHEMOSPHERE 2021; 272:129576. [PMID: 33482516 DOI: 10.1016/j.chemosphere.2021.129576] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 05/27/2023]
Abstract
The soil system is a key component of the environment that can serve as a sink of pollutants. Using processed waste for aided phytostabilization of metals (HMs) in contaminated soils is an attractive phytoremediation technique that integrates waste utilization and recycling. In this study, we evaluated the effect of biologically and thermally processed wastes, i.e. sewage sludge compost (CSS), poultry feather ash (AGF) and willow chip biochar (BWC), on phytostabilization of contaminated soil from a steel disposal dump. Greenhouse experiments with Lupinus luteus L. and amendments (dosage: 3.0%, w/w) were conducted for 58 days. Soil toxicity was evaluated with Ostracodtoxkit and Phytotoxkit tests. At the end of the experiment, soil pH, plant biomass yield, and HM accumulation in plant tissues were determined. HM distribution, HM stability (reduced partition index) and potential environmental risk (mRI index) in the soil were assessed. During phytostabilization, changes in the diversity of the rhizospheric bacterial community were monitored. All amendments significantly increased soil pH and biomass yield and decreased soil phytotoxicity. AGF and BWC increased accumulation of individual HMs by L. luteus roots better than CSS (Cu and Cr, and Ni and Zn, respectively). The soil amendments did not improve Pb accumulation by the roots. Improvements in HM stability depended on amendment type: Ni and Pb stability were improved by all amendments; Zn stability, by AGF, and BWC; Cd stability, by AGF; and Cr stability, by BWC. AGF reduced the mRI most effectively. Microbial diversity in amended soils increased with time of phytostabilization and was up to 9% higher in CSS amended soil than in control soil. AGF application favored the abundance of the genera Arenimonas, Brevundimonas, Gemmatimonas and Variovorax, whose metabolic potential could have contributed to the better plant growth and lower mRI in that soil. In conclusion, AGF and BWC have great potential for restoring steel disposal dump areas, and the strategies researched here can contribute to achieving targets for sustainable development.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Zygmunt M Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719, Olsztyn, Poland.
| | - Agnieszka Cydzik-Kwiatkowska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719, Olsztyn, Poland
| | - Artemi Cerdà
- Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Blasco Ibañez 28, Valencia, 46 010, Spain
| | - Vaclav Pecina
- Faculty of AgriSciences, Mendel University in Brno, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, 61300, Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, 61200, Brno, Czech Republic
| | - Agnieszka Bęś
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727, Olsztyn, Poland
| | - Rahul Datta
- Faculty of AgriSciences, Mendel University in Brno, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, 61300, Brno, Czech Republic
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Zbigniew Mazur
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727, Olsztyn, Poland
| | - Justyna Dzięcioł
- Water Centre Laboratory, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Martin Brtnický
- Faculty of AgriSciences, Mendel University in Brno, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, 61300, Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, 61200, Brno, Czech Republic
| |
Collapse
|
19
|
Tang L, Hamid Y, Chen Z, Lin Q, Shohag MJI, He Z, Yang X. A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L.) in continuous cropping greenhouse soil. CHEMOSPHERE 2021; 270:128634. [PMID: 33082004 DOI: 10.1016/j.chemosphere.2020.128634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination and continuous cropping obstacle often coexist in greenhouse soil and seriously restrict cucumber production. In this study, hyperaccumulator Sedum alfredii Hance was intercropped with spring cucumber (Cucumis sativus L.), then rotated with low accumulator water spinach and autumn cucumber under rational water regime, composited amendment was applied to soil before transplanting autumn cucumber. The results showed that, compared with conventional crop rotation system (Chinese cabbage and cucumber rotation), superposition management practice suppressed Fusarium wilt disease by 28.4 and 57.4% and increased yield by 35.2 and 383% for spring and autumn cucumbers, respectively. Meanwhile, photosynthetic characteristics, antioxidant system and fruit quality were significantly improved. Furthermore, this mode modified soil microbial community structure, enhanced soil enzyme activities, and simultaneously reduced soil total and phytoavailable Cd by 30.3 and 47.7%, respectively. These results demonstrated a feasible technical system to achieve phytoremediation coupled with argo-production in Cd contaminated greenhouse soil with continuous cropping obstacle and provided useful information for further revelation of interaction mechanisms between multicropping and comprehensive biofortification measurements.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiang Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Md Jahidul Islam Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
20
|
Zheng C, Yang Z, Si M, Zhu F, Yang W, Zhao F, Shi Y. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124376. [PMID: 33144008 DOI: 10.1016/j.jhazmat.2020.124376] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Chromium (Cr) is one of the most toxic pollutants that has accumulated in terrestrial and aqueous systems, posing serious risks towards living beings on a worldwide scale. The immobilization, removal, and detoxification of active Cr from natural environment can be accomplished using multiple advanced materials. Biochar, a carbonaceous pyrolytic product made from biomass waste, is considered as a promising material for the elimination of Cr contamination. The preparation and properties of biochar as well as its remediation process for Cr ions have been well investigated. However, the distinct correlation of the manufacturing, characteristics, and mechanisms involved in the remediation of Cr contamination by various designed biochars is not summarized. Herein, this review provides information about the production, modification, and characteristics of biochars along with their corresponding effects on Cr stabilization. Biochar could be modified via physical, hybrid, chemical, and biological methods. The remediating mechanisms of Cr contamination using biochars involve adsorption, reduction, electron shuttle, and photocatalysis. Moreover, the coexisting ions and organic pollutants change the pattern of the remediating process of biochar in actual Cr contaminated water and soil. Finally, the present limitations and future perspectives are proposed.
Collapse
Affiliation(s)
- Chujing Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
21
|
Mamirova A, Pidlisnyuk V, Amirbekov A, Ševců A, Nurzhanova A. Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16092-16106. [PMID: 33245538 DOI: 10.1007/s11356-020-11609-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The organochlorine pesticides (OCPs) have raised concerns about being persistent and toxic to the environment. Phytoremediation techniques show promise for the revitalization of polluted soils. The current study focused on optimizing the phytoremediation potential of Miscanthus sinensis And. (M. sinensis), second-generation energy crop, by exploring two soil amendments: Tween 20 and activated carbon (AC). The results showed that when M. sinensis grew in OCP-polluted soil without amendments to it, the wide range of compounds, i.e., α-HCH, β-HCH, γ-HCH, 2.4-DDD, 4.4-DDE, 4.4-DDD, 4.4-DDT, aldrin, dieldrin, and endrin, was accumulated by the plant. The introduction of soil amendments improved the growth parameters of M. sinensis. The adding of Tween 20 enhanced the absorption and transmigration to aboveground biomass for some OCPs; i.e., for γ-HCH, the increase was by 1.2, for 4.4-DDE by 8.7 times; this effect was due to the reduction of the hydrophobicity which made pesticides more bioavailable for the plant. The adding of AC reduced OCPs absorption by plants, consequently, for γ-HCH by 2.1 times, 4.4-DDD by 20.5 times, 4.4-DDE by 1.4 times, 4.4-DDT by 8 times, α-HCH was not adsorbed at all, and decreased the translocation to the aboveground biomass: for 4.4-DDD by 31 times, 4.4-DDE by 2.8 times, and γ-HCH by 2 times; this effect was due to the decrease in the bioavailability of pesticides. Overall, the amendment of OCP-polluted soil by Tween 20 speeds the remediation process, and incorporation of AC permitted to produce the relatively clean biomass for energy.
Collapse
Affiliation(s)
- Aigerim Mamirova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.
- Faculty of Environment, Jan Evangelista Purkyně University, Usti nad Labem, Czech Republic.
| | - Valentina Pidlisnyuk
- Faculty of Environment, Jan Evangelista Purkyně University, Usti nad Labem, Czech Republic
| | - Aday Amirbekov
- Faculty of Mechatronics, Technical University of Liberec, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Asil Nurzhanova
- Institute of Plant Biology and Biotechnology MES RK, Almaty, Kazakhstan
| |
Collapse
|
22
|
Awasthi SK, Duan Y, Liu T, Zhou Y, Qin S, Liu H, Varjani S, Awasthi MK, Zhang Z, Pandey A, Taherzadeh MJ. Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process. JOURNAL OF CLEANER PRODUCTION 2021; 291:125947. [DOI: 10.1016/j.jclepro.2021.125947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
23
|
Wang G, Wang L, Ma F, Yang D, You Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115980. [PMID: 33189450 DOI: 10.1016/j.envpol.2020.115980] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0-120 mg kg-1). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15-60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg-1 Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22-117%), chlorophyll content (17-63%), antioxidant levels (SOD 10-18%, POD 9-25%, total polyphenols 17-22%, flavonoids 15-29%, and glutathione 7-61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20-27%), superoxide anion (29-36%), and hydrogen peroxide (19-30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
Collapse
Affiliation(s)
- Gen Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| |
Collapse
|
24
|
Garau M, Castaldi P, Patteri G, Roggero PP, Garau G. Evaluation of Cynara cardunculus L. and municipal solid waste compost for aided phytoremediation of multi potentially toxic element-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3253-3265. [PMID: 32910403 PMCID: PMC7788029 DOI: 10.1007/s11356-020-10687-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/30/2020] [Indexed: 05/29/2023]
Abstract
The suitability for aided phytoremediation of Cynara cardunculus L. var. altilis and municipal solid waste compost (MSWC) applied at 2% and 4 % rates was evaluated in a multi potentially toxic element (PTE)-contaminated mining soil (Pb ~ 15,383 mg kg-1, Zn ~ 4076 mg kg-1, As ~ 49 mg kg-1, Cd ~ 67 mg kg-1, Cu ~ 181 mg kg-1, and Sb ~ 109 mg kg-1). The growth of C. cardunculus significantly increased with compost amendment and followed the order: MSWC-4% > MSWC-2% > Control. PTE concentrations in the roots of plants grown on amended soils decreased compared with control plants (i.e., less than ~ 82, 94, and 88% for Pb, Zn, and Cd respectively). PTE translocation from roots to shoots depended on both PTE and amendment rate but values were generally low (i.e., < 1). However, PTE mineralomasses were always higher for plants grown on MSWC-amended soils because of their higher biomass production, which favored an overall PTE bioaccumulation in roots and shoots. After plant growth, labile As and Sb increased in amended soils, while labile Pb, Zn, Cu, and Cd significantly decreased. Likewise, dehydrogenase and urease activities increased significantly in planted soils amended with MSWC. Also, the potential metabolic activity and the catabolic versatility of soil microbial communities significantly increased in planted soils amended with MSWC. Overall, our results indicate that C. cardunculus and MSWC can be effective resources for the aided phytoremediation of multi PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
| | - Giacomo Patteri
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo di Ricerca sulla Desertificazione, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.
| |
Collapse
|
25
|
Manzano R, Diquattro S, Roggero PP, Pinna MV, Garau G, Castaldi P. Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139946. [PMID: 32554112 DOI: 10.1016/j.scitotenv.2020.139946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Softwood-derived biochar (5% w/w) was added to two mining soils (S1 and S2) contaminated with Cd (4.8-74 mg kg-1), Pb (318-1899 mg kg-1) and Zn (622-3803 mg kg-1), to evaluate its immobilization capabilities towards such potentially toxic elements (PTEs). Biochar addition (S + B) increased soil pH, organic carbon content, extractable phosphorous and calcium. Sequential extractions showed that biochar reduced the labile pools of PTEs (e.g. -29, 55 and 79% of water-soluble and exchangeable Cd, Zn and Pb respectively in S1 + B compared to S1) and at the same time increased their most stable and less mobile fractions. Leaching experiments revealed a significant decrease of DOC, N-NO3-, P and PTEs in biochar-treated soils, and an increase of leached K. Kinetic equations derived from leaching data showed that PTEs in control soils were quickly mobilized, while those in biochar-treated soils needed longer time to leachate. In vitro tests showed that biochar was effective at reducing the bioaccessibility of Cd and Pb in the gastric phase of S2 and that of Zn and Pb in the intestinal phase of S1. The results obtained showed that biochar could be used as alternative amendment for the recovery of PTEs-contaminated soils.
Collapse
Affiliation(s)
- Rebeca Manzano
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| |
Collapse
|