1
|
Xu Z, Zhang J, Qi R, Liu Q, Cao H, Wen F, Liao Y, Shih K, Tang Y. Complex release dynamics of microplastic additives: An interplay of additive degradation and microplastic aging. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137711. [PMID: 40024124 DOI: 10.1016/j.jhazmat.2025.137711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the complex dynamics of additive release from microplastics in aquatic environments under natural ultraviolet (UV) radiation, which is critical for assessing ecotoxicological impacts and developing pollution remediation strategies. We focused on release kinetics of additives (Dimethyl phthalate (DMP), Dibutyl phthalate (DBP), Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Decabromodiphenyl ether (BDE-209)) from polyvinyl chloride (PVC), polyethylene (PE), and acrylonitrile-butadiene-styrene (ABS) microplastics exposed to UV light, exploring the interplay between additive release, photodegradation, and microplastic aging. Initial results showed a consistent release pattern, but under UV exposure, the release became more complex due to additive degradation and changes in the microplastics' structure. Factors such as polymer type, microplastic size, additive content, and environmental conditions (UV or darkness) significantly influenced the release quantity and kinetics. UV-induced additive degradation altered the concentration gradient between the microplastic and water, while aging, marked by changes in surface chemistry and internal polymer breakdown, accelerated additive release. By applying Inner Particle Diffusion (IPD) and Aqueous Boundary Layer Diffusion (ABLD) models, we demonstrated how UV-induced degradation and aging affected key parameters like the diffusion and partition coefficients, impacting the overall release process. These insights lay the foundation for understanding the environmental risks posed by microplastic additives and developing strategies to mitigate their impact in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhe Xu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Jianshuai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruimin Qi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Liu
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, China
| | - Hongmei Cao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Wen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixin Liao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Shafi Kuttiyathil M, Ali L, Altarawneh M. Thermochemical Recycling and Degradation Strategies of Halogenated Polymers (F-, Cl-, Br-): A Holistic Review Coupled with Mechanistic Insights. CHEM REC 2025:e202500022. [PMID: 40195574 DOI: 10.1002/tcr.202500022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Handling the waste associated with halogenated polymers is a daunting task due to the well-documented emission of halogen-bearing toxicants during the disposal or recycling operation. According to the Stockholm Convention treaty, most of these products are classified as persistent organic pollutants due to their potential health hazards. This review aims to provide a holistic overview of the recent updates for treating halogenated polymeric waste through physical, chemical and biological approaches. In the line of inquiry, critical analysis of the obstacles and prospects associated with each degradation technique on the halogenated polymer has been performed, assessing based on the degradation efficiency, treatment upscaling, pollution control, and feasibility. Though many treatments show promising results, they also entail drawbacks. Thermal treatment exploiting various metal oxides, especially calcium additives, is considered the most executable technique for halogenated polymer valorization coupled with mineralization/metal extraction due to its intuitive operational feasibility and potential scalability. Strategies for combating the soaring halogenated polymeric wastes summarized herein tap into promoting a circular economy approach for their sustainable disposal and recycling.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
3
|
Havaei M, Akin O, Locaspi A, John Varghese R, Minette F, Romers E, De Meester S, Van Geem KM. Beyond the Landfill: A critical review of techniques for End-of-Life Polyvinyl chloride (PVC) valorization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:105-134. [PMID: 39657507 DOI: 10.1016/j.wasman.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/12/2024]
Abstract
Polyvinyl chloride (PVC) is a polymer comprised of more than 50% chlorine that offers unmatched versatility at low expense. PVC is irreplaceable in several applications, such as construction materials, medical applications, and cables. This versatility and tunable properties come at the cost of complex formulations for the product and challenging end-of-life (EoL) options for PVC waste. Pure collected and sorted PVC is already recycled successfully to some extent, yet, when PVC ends up in a mixed plastic waste stream, it can be detrimental to the recycling process. PVC waste and its effects at various concentrations remain a focal point for both scholars and policymakers. In this review, the narrative begins at the naissance of PVC and continues to investigate the EoL valorization options when the products are inevitably discarded. Strategies for PVC waste recycling and the technical and legal challenges regarding each method are discussed, focusing on the European recycling market. An effective solution to handle EoL PVC requires a combination of policies and schemes for proper collection and sorting of specific waste streams and considering all available technologies to select the right tools. This review can support appropriate policies and the selection of suitable methods of recycling PVC waste.
Collapse
Affiliation(s)
- Mohammadhossein Havaei
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Oğuzhan Akin
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Andrea Locaspi
- CRECK Modeling Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Robin John Varghese
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Florent Minette
- Research, Technology & Engineering (RTE), INEOS Inovyn, Rue Solvay 39, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Eric Romers
- Research, Technology & Engineering (RTE), INEOS Inovyn, Rue Solvay 39, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Steven De Meester
- Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium.
| |
Collapse
|
4
|
Qi Y, Jing W, Li B, Sun Y, Xiu F, Gao X. Carbon-based materials from waste PVC/iron chips dechlorination as peroxidase mimics for total antioxidant capacity biosensing. Food Chem 2024; 460:140487. [PMID: 39067427 DOI: 10.1016/j.foodchem.2024.140487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
The monitoring of antioxidant capacity is very important to evaluate the quality of antioxidant foods or drugs for market regulation. Herein, dechlorination treatment of waste PVC/scrap irons were conducted in subcritical water to obtain carbon-based Fe composites (CM-Fe-dPVC) with peroxidase-like activity. The electron bonding of C 2p and Fe 3d orbital led to strong electron migration ability. CM-Fe-dPVC exhibited excellent activity of simulated peroxidase. Vitamin C (VC) and CM-Fe-dPVC had competitive behaviors on •OH generation in TMB oxidation reaction. A portable paper based colorimetric test kit was developed for monitoring total antioxidant capacity of beverages and pharmaceuticals on the market (with the detection limit of 0.1 μM for Vc). The results of life cycle assessment (LCA) revealed that the proposed strategy had low global warming potential. This research could provide important reference for high value recycling of organic solid wastes.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Wenxia Jing
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Bingjie Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yiwen Sun
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Furong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
5
|
Xiu FR, Zhan L, Qi Y, Wu T, Ju Y. Upcycling of waste disposable medical masks to high value-added gasoline fuel and surfactants products by sub/supercritical water degradation and partial oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134950. [PMID: 38908183 DOI: 10.1016/j.jhazmat.2024.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The amount of waste disposable medical masks (DMMs) and the potential environmental risk increased significantly due to the huge demand of disposable medical surgical masks. In this study, two effective and environmentally friendly processes, supercritical water degradation (SCWD) and subcritical water partial oxidation (SubCWPO), were proposed for the upcycling of DMMs. The optimal conditions for the SCWD process (conversion ratio>98 %) were 410 ℃, 15 min, and 1:5 g/mL. The oil products obtained from the SCWD process were mainly small molecule hydrocarbons (C7-C12) with a content of 86 % and could be recycled as fuel feedstock for gasoline. Alkyl radicals in the SCWD reaction formed double bonds and ring structures through hydrogen capture reactions, β-scission, and dehydrogenation reactions, and aromatic hydrocarbons were formed by olefin cyclization and cycloalkane dehydrogenation. The introduction of an oxidant (H2O2) to the reaction system could significantly reduce the reaction temperature and shorten the reaction time. At 350 ℃, 15 min, 1:20 g/mL, V(H2O2): V (H2O) of 1:1, the conversion ratio of the SubCWPO process was 88 %, which was higher than that of the SCWD process at 400 ℃ (71.49 %). Oil products produced from the SubCWPO process were rich in alcohols and esters, which could be used as raw materials for nonionic surfactant of polyol and fatty acid ester. The abundant hydroxyl radical in the SubCWPO system trapped hydrogen atoms on PP and reacted with the resulting alkyl radical to form alkanols, which was oxidized to form acids. The esterification of acids and alkanols formed high level of esters. The SCWD and SubCWPO processes proposed in this study are believed to be promising strategies for DMMs degradation and the recovery of high value-added hydrocarbons.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Longsheng Zhan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China.
| | - Tianbi Wu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yawei Ju
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| |
Collapse
|
6
|
Ghalandari V, Reza T. Acidic process fluid from hydrothermal carbonization improves dechlorination of waste PVC and produces clean solid and liquid fuels. CHEMOSPHERE 2024; 363:142969. [PMID: 39089340 DOI: 10.1016/j.chemosphere.2024.142969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/15/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Dechlorination of waste PVC (WPVC) by hydrothermal treatment (HTT) is a potential technology for upcycling WPVC in order to create non-toxic products. Literature suggests that acids can improve the HTT process, however, acid is expensive and also results in wastewater. Instead, the acidic process fluid (PF) of hydrothermal carbonization (HTC) of orange peel was utilized in this study to enhance the dechlorination of WPVC during HTT. Acidic HTT (AHTT) experiments were carried out utilizing a batch reactor at 300-350 °C, and 0.25-4 h. The finding demonstrated that the dechlorination efficiency (DE) is high, which indicates AHTT can considerably eliminate chlorine from WPVC and relocate to the aqueous phase. The maximum DE of 97.57 wt% was obtained at 350 °C and 1 h. The AHTT temperature had a considerable impact on the WPVC conversion since the solid yield decreases from 56.88 % at 300 °C to 49.85 % at 350 °C. Moreover, AHTT char and crude oil contain low chloride and considerably more C and H, leading to a considerably higher heating value (HHV). The HHV increased from 23.48 to 33.07 MJ/kg when the AHTT time was raised from 0.25 to 4 h at 350 °C, indicating that the AHTT time has a beneficial effect on the HHV. The majority fraction of crude oil evaporated in the boiling range of lighter fuels include gasoline, kerosene, and diesel (57.58-83.09 wt%). Furthermore, when the AHTT temperature was raised from 300 to 350 °C at 1 h, the HHV of crude oils increased from 26.11 to 33.84 MJ/kg. Crude oils derived from AHTT primarily consisted of phenolic (50.47-75.39 wt%), ketone (20.1-36.34 wt%), and hydrocarbon (1.08-7.93 wt%) constituents. In summary, the results indicated that AHTT is a method for upcycling WPVC to clean fuel.
Collapse
Affiliation(s)
- Vahab Ghalandari
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | - Toufiq Reza
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
7
|
Qi Y, Li B, Xiu FR, Sun Y, Gao X. Low-cost and sensitive chemiluminescence detection of phthalates in environment by signal sensing of carbon-based materials from PVC/coal gangue dechlorination. Anal Chim Acta 2024; 1314:342803. [PMID: 38876516 DOI: 10.1016/j.aca.2024.342803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The detection of plasticizers in the environment is important to prevent environmental risks and people's health hazards. Improving recycling efficiency of waste PVC still faced challenges. RESULTS In this work, it was found that solid products from waste PVC/coal gangue dechlorination in subcritical water (dPVC) had strong catalysis activity for luminol-H2O2 chemiluminescence (CL) reaction. Phthalates, common plasticizers, could bond and adsorb on dPVC, which greatly inhibited the luminol-H2O2-dPVC CL reaction. Based on this, a low-cost CL analysis was constructed for the detection of phthalates combinations (PACs) and di-(2-ethylhexyl) phthalate (DEHP) in the environment. The detection limit for PACs and DEHP was 0.048 ng/L and 0.13 ng/L, respectively. Compared with HPLC standard method, the dPVC CL analysis had accuracy and reliability for the detection of phthalates in actual environmental samples. Besides, the results of life cycle assessment (LCA) revealed that dPVC for CL sensing materials had significantly small global warming potential (GWP). SIGNIFICANCE The use of dPVC for CL sensing not only improved the recycling efficiency of PVC, but also reduced carbon emissions of obtaining CL sensing materials.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Bingjie Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yiwen Sun
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
8
|
Xiu FR, Bai X, Qi Y, Gao X, Zhao M. Low-temperature subcritical water dechlorination composites of waste PVC/coal fly ash with powerful sensing activity for chemiluminescent detection of acetamiprid and imidacloprid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174675. [PMID: 39002593 DOI: 10.1016/j.scitotenv.2024.174675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Pesticide residues in agricultural products are serious threat to people's health. Real-time monitoring of pesticides residues in the environment and agricultural products posed challenges to sustainable methods with high analytical performance for pesticide detection. Herein, waste PVC/coal fly ash (the mass ratio of PVC and coal fly ash was 4:1) was dechlorinated in subcritical water at low temperature to achieve nearly 100 % dechlorination of PVC and obtain carbon-based composite materials (CM-Fe/Al/Si-dPVC) with strong sening activity. For CM-Fe/Al/Si-dPVC, CFe bonding resulted in strong electron migration, and nano/μm SiO2 and Al2O3 doping in the layered polyene C matrix provided large specific surface area, and silicon hydroxyl created good heterogeneous catalytic interfaces. CM-Fe/Al/Si-dPVC could strongly trigger luminol chemiluminescence (CL) reaction and produce intense CL signals. Neonicotinoid pesticides (acetamiprid and imidacloprid) bonded with CM-Fe/Al/Si-dPVC through coordination chelation and hydrogen bonding, which shielded the catalytic active site and increased the Fermi level of system, thus quenching CL reaction. Inspired by these, a cheap CL assay was constructed for detecting neonicotinoids combinations of acetamiprid and imidacloprid (NICs). The detection limits of NICs were 0.7 ng/L. Satisfactory recoveries were obtained for real agricultural products and environmental samples. The results of life cycle evaluation (LCA) revealed that the strategy had significantly small global warming potential (GWP). This work presented a sustainable method with environmental benefits for the detection of neonicotinoids, and also opened up new way for the recycling of organic solid wastes.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xue Bai
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Man Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
9
|
Choi OK, Song EH, Kim H. Hydrothermal dechlorination strategy for high-quality oil recovery from polyvinyl chloride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174599. [PMID: 38986706 DOI: 10.1016/j.scitotenv.2024.174599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The global production of PVC is around 3.5 million tons each year. Unfortunately, the disposal of PVC waste releases toxic substances such as hydrochloric acid, polychlorinated dioxins, and furans, which can harm the environment. Therefore, there is an urgent need for a safe and environmentally friendly thermochemical treatment method that reduces the damage caused by HCl gas produced during PVC pyrolysis and improves the quality of pyrolysis oil. Hydrothermal treatment technology is one of the potential dechlorination strategies for PVC. However, its efficiency is reduced in the supercritical region, while the additives used result in secondary pollution and increased operating costs. This study is pioneering in its approach, aiming to produce high-quality oil with reduced chlorine through low-temperature hydrothermal treatment of PVC, all without additives. The results are promising, indicating that by administering steam at 250 °C with a 2.0-3.0 g-steam/g-feed ratio, we can significantly reduce chlorine content to 0.13 % while achieving an oil yield of up to 14.9 % from PVC. The hydrothermal process can reduce CO2 emissions by 15-43 % compared to pyrolysis methods, providing a simultaneous opportunity for carbon neutrality and resource recovery.
Collapse
Affiliation(s)
- Oh Kyung Choi
- Bio Resource Center, Institute for Advanced Engineering, Yongin 17180, Republic of Korea.
| | - Eun Hye Song
- Bio Resource Center, Institute for Advanced Engineering, Yongin 17180, Republic of Korea
| | - Ho Kim
- Bio Resource Center, Institute for Advanced Engineering, Yongin 17180, Republic of Korea
| |
Collapse
|
10
|
Feng L, Hong C, Xing Y, Ling W, Hu J, Zhao C, Wang Y. Hydrothermal carbonisation of polyvinyl chloride in ethanol-water/water system for solid fuels: Dechlorination, characteristics analysis of hydrochar, and reaction path. ENVIRONMENTAL RESEARCH 2024; 244:117905. [PMID: 38101723 DOI: 10.1016/j.envres.2023.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Polyvinyl chloride (PVC) waste plastic is a typical solid waste. In this paper, the dechlorination and carbonization behavior of PVC in ethanol-water/water system under different process parameters (temperature, residence time, solid-liquid ratio) was studied, and hydrothermal carbon was characterized by SEM, elemental analysis, TG-DTG, XPS, Py-GC/MS. The results show that temperature is the key to the hydrothermal dechlorination of PVC, and the dechlorination efficiency of PVC is the highest by parameter optimization (220°C-90 min-10% S/D-80% E/D), which can reach 96.33 %. With the removal of Cl, the surface of the PVC matrix changed from full and smooth flocculent to honeycomb with uniform pore size distribution. Thermogravimetric analysis shows that the combustion of hydrochar can be divided into three stages: HCl precipitation and volatile combustion, semi-coke and coke combustion, and fixed carbon combustion. The combustion parameters and kinetic parameters of hydrochar were measured, and it was found that the hydrothermal carbonization of PVC at higher temperatures and ethanol-water ratio could improve the combustion performance of hydrochar. The highest calorific value can reach 36.68 MJ/mol. Py-GC/MS analyzed the distribution of the pyrolysis products, and alkylbenzene and aliphatic were the main products of pyrolysis. The structural analysis of hydrochar showed that C-C and CC accounted for the largest proportion, accompanied by a small amount of C-O and CO and trace C-Cl. The possible reaction mechanism of the hydrothermal carbonization of PVC was analyzed based on the distribution of functional groups and compound composition. This work provides an effective and sustainable method for the recycling of refractory chlorinated plastics.
Collapse
Affiliation(s)
- Lihui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Hong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiashuo Hu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengwang Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Xiu FR, Bai Q, Qi Y, Lei X, Yang R, Wang S, Wang Y, Wang J, Zhan L, Zhou H, Shao W. An alkali-enhanced subcritical water treatment strategy of short-chain chlorinated paraffins: Dechlorination and hydrocarbons recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166574. [PMID: 37647949 DOI: 10.1016/j.scitotenv.2023.166574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
As persistent organic pollutants, short-chain chlorinated paraffins (SCCPs) have attracted wide attention in the field of environmental health risk and hazardous waste management. Efficient dechlorination of high content of SCCPs in plastic waste is the committed step for its detoxification and safety treatment. In this study, a high-efficiency and low-temperature process for dechlorination and hydrocarbons recovery from typical SCCPs (52#SCCPs) by subcritical water (SubCW) with alkali enhancer was developed. The introduction of alkali enhancer in the SubCW process had significantly enhanced effect on the dechlorination of 52#SCCPs, and the order of the enhanced effect of alkali enhancer for the dechlorination was NaOH > Na2CO3 > NaHCO3 > NH3·H2O > KOH. The dechlorination behaviors of 52#SCCPs in the NaOH-enhanced SubCW process were studied systematically under different conditions including temperature, residence time, alkali concentration, and volume ratio. The results showed that high-efficiency dechlorination (100 %) of 52#SCCPs could be achieved by the NaOH-enhanced SubCW process at low temperature for a short time (250 °C, 5 min). All of the chlorine released from the molecular chain of 52#SCCPs was transferred to the aqueous phase in the form of inorganic chlorine. The continuous HCl elimination reaction was the primary dechlorination mechanism for 52#SCCPs in the NaOH-enhanced SubCW process. After the dechlorination of 52#SCCPs, high value-added hydrocarbons such as 2,4-hexadiyne (31.74 %) could be obtained. The alkali-enhanced SubCW process proposed in this study is believed to be an environmentally friendly and high-efficiency method for dechlorination/detoxification and resource recovery of SCCPs.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Qingyun Bai
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China.
| | - Xinyue Lei
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Ruiqi Yang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Siyi Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yixiao Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Jiali Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Longsheng Zhan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Haipeng Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Wenting Shao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| |
Collapse
|
12
|
Zhang L, Wang Q, Xu F, Wang Z. Insights into the evolution of chemical structure and pyrolysis reactivity of PVC-derived hydrochar during hydrothermal carbonization. RSC Adv 2023; 13:27212-27224. [PMID: 37701272 PMCID: PMC10494789 DOI: 10.1039/d3ra04986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Hydrothermal carbonization (HTC) is emerging as an effective technology to convert PVC into highly valuable materials via the removal of chlorine. This means that an in-depth understanding of HTC requires the hydrochar structure, thermal degradation behavior, and relationship between structure and thermal reactivity to be understood. In this work, two typical PVC waste materials were selected for HTC experiments at different temperatures. The structure of the hydrochar was characterized in detail by compositional analysis, FTIR spectroscopy, and 13C NMR analysis. Furthermore, the thermal degradation behavior of the hydrochar was analyzed. The changes after thermal degradation were used to establish a correlation with pyrolysis reactivity. The results showed that the C content and chemical structure of the hydrochar approached that of bituminous coal with increasing HTC temperature. Compared with the untreated PVC feedstock, the hydrochar exhibited higher levels of oxygen-containing functional groups on its surface, and its carbon skeleton structure changed from polymeric straight chains to short-chain paraffins, cycloalkanes, and aromatics. A negative correlation was observed between the CPI value of the hydrochar derived from SPVC and the HTC temperature. The structural evolution path of the hydrochar was altered by additives, which improved its thermal reactivity. These findings are expected to play a significant role in bridging the gap from the creation of a theoretical potential energy source to the development of a sustainable alternative renewable fuel.
Collapse
Affiliation(s)
- Ling Zhang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University Jilin City Jilin 132012 PR China
- Jilin Institute of Chemical Technology Jilin City Jilin 132022 PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University Jilin City Jilin 132012 PR China
| | - Faxing Xu
- Jilin Feite Environmental Protection Co. Ltd, Jilin Key Laboratory of Subcritical Hydrolysis Technology Jilin 132200 PR China
| | - Zhenye Wang
- Jilin Feite Environmental Protection Co. Ltd, Jilin Key Laboratory of Subcritical Hydrolysis Technology Jilin 132200 PR China
| |
Collapse
|
13
|
Zhang L, Wang Q, Xu F, Wang Z. Migration Mechanism of Chlorine during Hydrothermal Treatment of Rigid PVC Plastics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5840. [PMID: 37687533 PMCID: PMC10488432 DOI: 10.3390/ma16175840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Rigid PVC plastics (R-PVC) contain large amounts of chlorine, and improper disposal can adversely affect the environment. Nevertheless, there is still a lack of sufficient studies on hydrothermal treatment (HTT) for the efficient dechlorination of R-PVC. To investigate the migration mechanism of chlorine during the HTT of R-PVC, R-PVC is treated with HTT at temperatures ranging from 220 °C to 300 °C for 30 min to 90 min. Hydrochar is characterized via Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy. The results revealed that the hydrothermal temperature is the key factor that affects the dechlorination of R-PVC. Dramatic dechlorination occurs at temperatures ranging from 240 °C to 260 °C, and the dechlorination efficiency increases with the increase in the hydrothermal temperature. The main mechanism for the dechlorination of R-PVC involves the nucleophilic substitution of chlorine by -OH. CaCO3 can absorb HCl released by R-PVC and hinder the autocatalytic degradation of R-PVC; hence, the dechlorination behavior of R-PVC is different from that of pure PVC resins. Based on these results, a possible degradation process for R-PVC is proposed. This study suggests that HTT technology can be utilized to convert organochlorines in R-PVC to calcium chloride, achieving the simultaneous dechlorination of R-PVC and utilization of products.
Collapse
Affiliation(s)
- Ling Zhang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City 132012, China
- Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City 132012, China
| | - Faxing Xu
- Jilin Feite Environmental Protection Co., Ltd., Jilin City 132200, China
| | - Zhenye Wang
- Jilin Feite Environmental Protection Co., Ltd., Jilin City 132200, China
| |
Collapse
|
14
|
Shukurlu EN, Özek G, Özek T, Vitalini S. Chemical composition of different plant part from Lactuca serriola L. - focus on volatile compounds and fatty acid profile. Z NATURFORSCH C 2023; 78:285-291. [PMID: 36780447 DOI: 10.1515/znc-2022-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
The family Asteraceae comprises many species that have medicinal importance in terms of their chemical components. Some species of the genus Lactuca have been used in folk medicine for a long time ago. One of them is L. serriola L., a wild plant that is a weed in agriculture. To date, few studies have been published on its chemical profile. In this research, we investigated the volatile compounds and fatty acids of L. serriola roots, leaves, and seeds. To this end, a microsteam distillation-solid phase microextraction technique (MSD-SPME) followed by a gas chromatography-mass spectrometry analysis was performed. Aldehydes and terpenoids were predominantly present in the leaves with phenylacetaldehyde as the major compound (up to 18%) while 2-ethyl hexanol (up to 36.9%) was the most abundant substance in the roots. Among the fatty acids, nonadecanoic acid (38.3%) was the main one detected in the leaves, while linoleic acid (57.7%) was predominant in the seeds. Some of the detected constituents have already demonstrated importance in medicinal and industrial areas. As a result, this species could be further investigated for its biological features and be considered as a source of ingredients beneficial in different fields, including pharmaceuticals.
Collapse
Affiliation(s)
- Emil N Shukurlu
- Institute of Botany, Ministry of Science and Education of the Republic of Azerbaijan, Badamdar Highway 40, Baku, AZ1004, Azerbaijan
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye
| | - Sara Vitalini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
15
|
Lu L, Li W, Cheng Y, Liu M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:245-258. [PMID: 37196390 DOI: 10.1016/j.wasman.2023.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The extensive production and consumption of plastics has resulted in significant plastic waste and plastic pollution. Polyvinyl chloride (PVC) waste has a high chlorine content and is the primary source of chlorine in the plastic waste stream, potentially generating hazardous chlorinated organic pollutants if treated improperly. This review discusses PVC synthesis, applications, and the current types and challenges of PVC waste management. Dechlorination is vital for the chemical recycling of PVC waste and PVC-containing plastic waste. We review dehydrochlorination and dechlorination mechanisms of PVC using thermal degradation and wet treatments, and summarize the recent progress in chemical treatments and dechlorination principles. This review provides readers with a comprehensive analysis of chemical recycling technologies for PVC waste and PVC-containing plastic waste to transform them into chemicals, fuels, feedstock, and value-added polymers.
Collapse
Affiliation(s)
- Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weiming Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ying Cheng
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
16
|
Ling M, Ma D, Hu X, Liu Z, Wang D, Feng Q. Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges. CHEMOSPHERE 2023; 316:137718. [PMID: 36592841 DOI: 10.1016/j.chemosphere.2022.137718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Polyvinyl chloride (PVC) plastic wastes can bring a series of problems during pyrolysis or incineration such as the emission of dioxins, corrosion, slagging in the reactors, etc. Hydrothermal treatment of PVC plastics has been intensively studied as it can efficiently remove chlorine from PVC plastics under relatively mild reaction conditions (220-300 °C) to provide value-added products. Meanwhile, the research progress, knowledge gaps, and challenges in this field have not been well addressed yet. This paper gives a comprehensive review of hydrothermal dechlorination of PVC plastics regarding reactors, process variables and fundamentals, possible applications, and challenges. The main pathways of hydrothermal dechlorination of PVC plastics are elimination and -OH nucleophilic substitution. Catalytic hydrothermal and co-hydrothermal optimize the chemical reactions and transportation, boosting the dechlorination of PVC plastics. Hydrochar derived from PVC plastics, on the one hand, is coalified close to sub-bituminous and bituminous coal and can be used as low-chlorine solid fuel. On the other hand, it is also a porous material with aromatic structure and oxygen-containing functional groups, with good potential as adsorbent or energy storage materials. Further studies are expected to focus on waste liquid treatment, revealing the energy and economic balance, reducing the dechlorination temperature and pressure, expanding the application of products, etc. for promoting the implementation of the hydrothermal treatment of PVC plastic wastes.
Collapse
Affiliation(s)
- Mengxue Ling
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China.
| | - Xuan Hu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zheng Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Dongbo Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| |
Collapse
|
17
|
Qi Y, Sun Y, Song D, Wang Y, Xiu F. PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat Chem 2023; 15:222-229. [PMID: 36376389 DOI: 10.1038/s41557-022-01078-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
New approaches are needed to both reduce and reuse plastic waste. In this context, poly(vinyl chloride) (PVC) is an appealing target as it is the least recycled high-production-volume polymer due to its facile release of plasticizers and corrosive HCl gas. Herein, these limitations become advantageous in a paired-electrolysis reaction in which HCl is intentionally generated from PVC to chlorinate arenes in an air- and moisture-tolerant process that is mediated by the plasticizer. The reaction proceeds efficiently with other plastic waste present and a commercial plasticized PVC product (laboratory tubing) can be used directly. A simplified life-cycle assessment reveals that using PVC waste as the chlorine source in the paired-electrolysis reaction has a lower global warming potential than HCl. Overall, this method should inspire other strategies for repurposing waste PVC and related polymers using electrosynthetic reactions, including those that take advantage of existing polymer additives.
Collapse
|
19
|
Xiu FR, Tan X, Qi Y, Wang M. Treatment of DEHP-rich PVC waste in subcritical urine wastewater: Efficient dechlorination, denitrification, plasticizer decomposition, and preparation of high-purity phthalic acid crystals. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129820. [PMID: 36103762 DOI: 10.1016/j.jhazmat.2022.129820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
It is difficult to dispose diethylhexyl phthalate-rich polyvinyl chloride (DEHP-rich PVC) waste due to the high level of chlorine and plasticizer. On the other hand, the denitrification of urine wastewater with high nitrogen content also faces great challenges. In this study, a synergistic treatment strategy was developed for the DEHP-rich PVC waste and urine wastewater by a subcritical water process. Subcritical urine wastewater (SUW) was used as a reaction medium in the synergistic treatment. PVC dechlorination, DEHP decomposition, and denitrification of urine wastewater were synchronously achieved in the one pot SUW. Under the optimal conditions (300 °C, 15 min, 1:5 g/mL), the PVC dechlorination ratio, urine wastewater denitrification ratio and DEHP decomposition ratio could reach 98.4%, 64.9%, and 99.2%, respectively. The decomposition of DEHP mainly included hydrolysis, nucleophilic substitution, and acylation. DEHP could be converted into phthalic acid crystal at 220 °C with a yield of 66.25% due to the efficient hydrolysis action of SUW. All the removed Cl was transferred from PVC matrix to aqueous phase. Hydroxyl nucleophilic substitution is the principal dechlorination path of PVC. The reactions between N-containing species and DEHP in SUW resulted in the high-efficiency denitrification of urine wastewater, and the N element was fixed in solid residue or transferred to oil phase as amides compounds. It is believed that the proposed SUW process is a promising technology for the synergistic treatment of DEHP-rich PVC waste and urine wastewater.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Xiaochun Tan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Mengmeng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hongkong, China
| |
Collapse
|
20
|
Chen X, Bai X. Co-conversion of wood and polyvinyl chloride to valuable chemicals and high-quality solid fuel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:376-386. [PMID: 35452946 DOI: 10.1016/j.wasman.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Polyvinyl chloride (PVC)-containing waste streams are difficult to recycle due to high chlorine content in PVC. Toxic dioxins or corrosive hydrogen chloride (HCl) vapor released from improper management of PVC-containing wastes can cause severe environmental pollution and human health problems. While PVC is usually treated as contamination and burden in waste recycling, a novel recycling approach was developed in this study to leverage PVC as an asset. Specifically, red oak and PVC were co-converted in γ-Valerolactone, a green biomass-derivable solvent. During the co-conversion, PVC-derived HCl in the solvent acted as an acid catalyst to produce up to 14.4% levoglucosenone and 14.3% furfural from red oak. On the other hand, dechlorinated PVC hydrocarbons and lignin fraction of red oak reacted each other to form chlorine-free solid fuels with high thermal stability. The higher heating value of the solids was up to 36.2 MJ/kg, which is even higher than the heating value of anthracite coal. After the co-conversion, more than 80% of PVC-contained chlorine turned into chloride ion and the rest formed 5-chlorovaleric acid. 5-chlorovaleric acid crystals were further recovered from the post-reaction liquid with a purity of 91.2%.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Xianglan Bai
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA.
| |
Collapse
|
21
|
Zhou XL, He PJ, Peng W, Yi SX, Lü F, Shao LM, Zhang H. Upcycling waste polyvinyl chloride: One-pot synthesis of valuable carbon materials and pipeline-quality syngas via pyrolysis in a closed reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128210. [PMID: 34999401 DOI: 10.1016/j.jhazmat.2021.128210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Polyvinyl chloride (PVC) is one of the most commonly used plastics. The treatment and recycling of PVC waste is still challenging, due to its non-biodegradability, low thermal stability, high Cl content and low product value. In this study, a one-pot method was developed to upcycle PVC into valuable carbon materials, pipeline-quality pyrolysis gas and chlorides. The well-designed process included dechlorination by Cl-fixative (ZnO or KOH), carbonization of dechlorinated polyenes, and modification of carbon materials in sequence. ZnO and KOH converted 84.48% and 94.15% of total Cl into corresponding chlorides, respectively. CH4 and H2 accounted for 81.87-99.34 vol% of pyrolysis gas with higher heat values of 30.11-32.84 MJ m-3, which can be used as substitute natural gas. As high as 83.13% of the C element was converted into carbon materials. The morphology, structure and property of carbon materials can be modified by different Cl-fixatives. Millimeter-scale carbon spheres with mono-dispersity and porous carbon with a high specific surface area of 1922 m2 g-1 were obtained when ZnO and KOH were added, respectively. Moreover, the reaction mechanisms of PVC with Cl-fixatives were also deciphered through thermogravimetric analysis and thermodynamic simulation.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211800, PR China
| | - Pin-Jing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Wei Peng
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Shou-Xin Yi
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Li-Ming Shao
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China.
| |
Collapse
|
22
|
Song Z, Xiu FR, Qi Y. Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: Resources transformation and pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127018. [PMID: 34461531 DOI: 10.1016/j.jhazmat.2021.127018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Millions of waste plastic express packaging bags (PEPBs) were generated with the rapid development of the express delivery industry due to the boom of electronic commerce. Waste PEPBs contain polyethylene (PE) material and large number of pollutants such as plasticizers and flame retardants. In this study, two effective and environmental-friendly methods were proposed to produce valuable products and remove pollutants from waste PEPBs by supercritical water degradation (SCWD) and supercritical water partial oxidation (SCWPO) treatments. Both SCWD and SCWPO treatments could effectively obtain valuable products (wax, liquid oil, CaCO3) and remove bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) from waste PEPBs. No obvious difference about the conversion could be found between SCWD and SCWPO treatments. 425 °C, 60 min, solid-to-liquid ratio of 1:20 g/mL, and V(H2O2):V(H2O) ratio of 1:3 mL/mL were the optimal conditions for the conversion of waste PEPBs by SCWD and SCWPO treatments. The maximum conversion could reach 98.13%. The produced wax and liquid oil were easily separated from each other. The produced wax mainly included long-chain olefins or long-chain alkanes, and a small amount of alcohols, ethers and aldehydes. SCWD treatment was favorable for obtaining long-chain alkenes, while SCWPO treatment was favorable for obtaining long-chain alkanes. The main chemical compounds contained in the produced liquid oil were decomposed from DEHP and BPA. DEHP was decomposed to produce 2-ethyl-1-hexanol and acetophenone. BPA was decomposed to produce 4-tert-butylphenol and other alkylated derivatives of benzene and phenol. In comparison with SCWD treatment, DEHP and BPA could be decomposed more thoroughly by SCWPO treatment.
Collapse
Affiliation(s)
- Zhiqi Song
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| |
Collapse
|
23
|
Fonseca S, Cayer MP, Ahmmed KMT, Khadem-Mohtaram N, Charette SJ, Brouard D. Characterization of the Antibacterial Activity of an SiO2 Nanoparticular Coating to Prevent Bacterial Contamination in Blood Products. Antibiotics (Basel) 2022; 11:antibiotics11010107. [PMID: 35052984 PMCID: PMC8773057 DOI: 10.3390/antibiotics11010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Technological innovations and quality control processes within blood supply organizations have significantly improved blood safety for both donors and recipients. Nevertheless, the risk of transfusion-transmitted infection remains non-negligible. Applying a nanoparticular, antibacterial coating at the surface of medical devices is a promising strategy to prevent the spread of infections. In this study, we characterized the antibacterial activity of an SiO2 nanoparticular coating (i.e., the “Medical Antibacterial and Antiadhesive Coating” [MAAC]) applied on relevant polymeric materials (PM) used in the biomedical field. Electron microscopy revealed a smoother surface for the MAAC-treated PM compared to the reference, suggesting antiadhesive properties. The antibacterial activity was tested against selected Gram-positive and Gram-negative bacteria in accordance with ISO 22196. Bacterial growth was significantly reduced for the MAAC-treated PVC, plasticized PVC, polyurethane and silicone (90–99.999%) in which antibacterial activity of ≥1 log reduction was reached for all bacterial strains tested. Cytotoxicity was evaluated following ISO 10993-5 guidelines and L929 cell viability was calculated at ≥90% in the presence of MAAC. This study demonstrates that the MAAC could prevent bacterial contamination as demonstrated by the ISO 22196 tests, while further work needs to be done to improve the coating processability and effectiveness of more complex matrices.
Collapse
Affiliation(s)
- Sahra Fonseca
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Marie-Pierre Cayer
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
| | | | | | - Steve J. Charette
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Danny Brouard
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
- Department of Chemistry, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
24
|
Boaretti C, Donadini R, Roso M, Lorenzetti A, Modesti M. Transesterification of Bis(2-Ethylhexyl) Phthalate for the Recycling of Flexible Polyvinyl Chloride Scraps in the Circular Economy Framework. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlo Boaretti
- University of Padova, Department of Industrial Engineering (DII), Via Marzolo 9, Padova 35131, Italy
| | - Riccardo Donadini
- University of Padova, Department of Industrial Engineering (DII), Via Marzolo 9, Padova 35131, Italy
| | - Martina Roso
- University of Padova, Department of Industrial Engineering (DII), Via Marzolo 9, Padova 35131, Italy
| | - Alessandra Lorenzetti
- University of Padova, Department of Industrial Engineering (DII), Via Marzolo 9, Padova 35131, Italy
| | - Michele Modesti
- University of Padova, Department of Industrial Engineering (DII), Via Marzolo 9, Padova 35131, Italy
| |
Collapse
|
25
|
Lu J, Borjigin S, Kumagai S, Kameda T, Saito Y, Yoshioka T. Machine learning-based discrete element reaction model for predicting the dechlorination of poly (vinyl chloride) in NaOH/ethylene glycol solvent with ball milling. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Zakharyan EM, Petrukhina NN, Dzhabarov EG, Maksimov AL. Pathways of Chemical Recycling of Polyvinyl Chloride. Part 2. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mehr NS, Abdolmohammadi S, Afsharpour M. Activated Carbon/MoO 3: Efficient Catalyst for Green Synthesis of Chromeno[d]pyrimidinediones and Xanthenones. Comb Chem High Throughput Screen 2020; 24:683-694. [PMID: 32972337 DOI: 10.2174/1386207323666200924111602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanoscale metal oxide catalysts have been extensively employed in organic reactions because they have been found to influence the chemical and physical properties of bulk material. The chromene (benzopyran) nucleus constitutes the core structure in a major class of many biologically active compounds, and interest in their chemistry consequently continues because of their numerous biological activities. The xanthene (dibenzopyran) derivatives are classified as highly significant compounds which display a number of various bioactive properties. Pyrimidinones have also gained interest due to their remarkable biological utilization, such as antiviral, antibacterial, antihypertensive, antitumor, and calcium blockers effects. OBJECTIVE The aim of this work presented herein was to prepare activated carbon/MoO3 nanocomposite and explore its role as a green and recyclable catalyst for the synthesis of chromeno[d]pyrimidinediones and xanthenones under ethanol-drop grinding at room temperature. METHODS The activated carbon/MoO3 nanocomposite was prepared successfully via a simple route in which the carbonization of gums as new natural precursors was used for the synthesis of activated carbon. This nanocomposite was then effectively used in a reaction of 3,4-methylenedioxyphenol, aromatic aldehydes, and active methylene compounds, including 1,3-dimethylbarbituric acid and dimedone, to synthesize a series of chromeno[d]pyrimidinediones and xanthenones in high yields. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), Powder x-ray diffractometry (XRD), Scanning electron microscope (SEM), Raman spectroscopy, and also by TGA analysis. Confirmation of the structures of compounds 5(a-g) and 6(a-g) were also established with IR, 1H NMR, and 13C NMR spectroscopic data and also by elemental analyses. RESULTS A number of 6,8-dimethyl-10-phenyl-6,10-dihydro-7H-[1,3]dioxolo[4´,5´:6,7]chromeno[2,3- d]pyrimidine-7,9(8H)-diones and 7,7-dimethyl-10-(4-methylphenyl)-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[ 4,5-b]xanthen-9-ones were effectively synthesized using activated carbon/MoO3 nanocomposite (0.05 gr) as a catalyst under ethanol-drop grinding at room temperature. The desired products were obtained in high yields (93-97%) within short reaction times (15-20 min). CONCLUSION This paper investigates the catalytic potential of the synthesized activated carbon/MoO3 nanocomposite for the preparation of chromeno[d]pyrimidinediones and xanthenones under the ethanol-drop grinding procedure. The mildness of the reaction conditions, high yields of products, short reaction times, experimental simplicity, and avoiding the use of harmful solvents or reagents makes this procedure preferable for the synthesis of these compounds.
Collapse
Affiliation(s)
- Niloofar Sabet Mehr
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Shahrzad Abdolmohammadi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Maryam Afsharpour
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
| |
Collapse
|
28
|
Liquid phase oxidation of benzyl alcohol to benzaldehyde over chromium borophosphate catalyst synthesized by solution combustion method using different types of fuel. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Qi Y, Chen Y, He J, Gao X. Highly sensitive and simple colorimetric assay of hydrogen peroxide and glucose in human serum via the smart synergistic catalytic mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118233. [PMID: 32182569 DOI: 10.1016/j.saa.2020.118233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Due to the own defects of natural enzymes, artificial simulated enzymes are always concerned. Here, the fabricated graphene oxide (GO)/AuNPs nanocomposite exhibits strong synergistic catalysis of peroxidase-mimicking enzymes in combination with the novel property of GO catalytic interface and AuNPs-mediated electron transfer. It can efficiently catalyze the oxidation of enzyme substrate TMB by hydrogen peroxide to form blue TMB oxide. Based on this, the rapid and highly sensitive colorimetric detection of hydrogen peroxide was achieved. Because of the wonderfully synergistic coupling catalysis from GO/AuNPs nanocomposites, the developed artificial enzyme has ultra-strong catalytic activity. For the detection of hydrogen peroxide, the detection limit of this colorimetric analysis is as low as 4.2 × 10-8 M, which is about 1-2 orders of magnitude lower than that of the assays using other single nanoparticles as nanozymes. And it shows high sensitivity. The catalytic oxidation of the prepared nanocomposites to TMB can be completed in minutes, and the response is extremely fast. Combined with the reaction of glucose and glucose oxidase, the colorimetric analysis also realizes the rapid and highly sensitive detection of glucose in human serum. The research results infer that the smart synergy is an effective way to improve the catalytic activity of mimic enzyme. Together with its simplicity in preparation, the GO/AuNPs nanocomposite has excellent development potential in biomedical detection and biosensor design.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Yiting Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiahuan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| |
Collapse
|
30
|
Xiu FR, Lu Y, Qi Y. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study. CHEMOSPHERE 2020; 249:126138. [PMID: 32045755 DOI: 10.1016/j.chemosphere.2020.126138] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
In this study, subcritical water-NaOH (CW-NaOH) and subcritical water-C2H5OH (CW-C2H5OH) processes were developed for diethylhexyl phthalate (DEHP) degradation and dechlorination of polyvinyl chloride (PVC) waste. The introduction of NaOH or C2H5OH in subcritical water had a noticeable influence on the mechanism of DEHP degradation and dechlorination. For both CW-NaOH and CW-C2H5OH treatments, the increase in temperature could increase dechlorination efficiency (DE) of PVC. The DE of CW-NaOH is much higher than that of CW-C2H5OH under the same conditions. The DE of CW-NaOH could exceed 95% at 300 °C. Hydroxyl nucleophilic substitution was the main dechlorination mechanism in CW-NaOH, while nucleophilic substitution and direct dehydrochlorination were equally important in CW-C2H5OH. In CW-NaOH treatment, 2-ethyl-1-hexanol, benzaldehyde, and toluene were obtained by hydrolysis and reduction reactions of DEHP. Acetophenone was produced by the further cyclization, dehydrogenation and rearrangement reactions of 2-ethyl-1-hexanol. Transesterification was the main degradation pathway of DEHP in CW-C2H5OH at 300 °C. The cyclization and dehydration of 2-ethyl-1-hexanol resulted in producing a high level of ethyl-cyclohexane and 1-ethyl-cyclohexene in CW-C2H5OH at 350 °C. Furthermore, high concentration of ethyl palmitate and ethyl stearate could be prepared in CW-C2H5OH system by the strong reactivity of C2H5OH with the lubricants in PVC.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China.
| | - Yongwei Lu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China
| |
Collapse
|
31
|
Xiu FR, Li Y, Qi Y. Efficient low-temperature debromination and high selectivity products recovery from brominated epoxy resin waste by subcritical water-urea treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:171-180. [PMID: 32408100 DOI: 10.1016/j.wasman.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, a subcritical water-urea (SubCW-urea) process was developed for the treatment of brominated epoxy resin powder (BRP) waste. The SubCW-urea process had two significant advantages: efficient low-temperature debromination and highly selective products recovery. The NH3 and CO2 released from urea in the SubCW medium had a prominent enhancement effect on the decomposition and debromination of BRP waste when the SubCW temperature was below 300 °C. The debromination efficiency of SubCW-urea treatment was significantly enhanced in comparison with that of SubCW-NH3 and single SubCW treatments. The debromination efficiency of BRP could reach 38.21%, 85.3%, and 99.92% at 200 °C, 250 °C, and 300 °C, respectively. The debromination rate constant of BRP in SubCW-urea, SubCW-NH3, and single SubCW system was 0.1363, 0.1254, and 0.0146 min-1, respectively. No brominated chemical compound could be detected in the oil phase products when the treatment temperature was higher than 250 °C. The decomposition products of BRP waste could be easily regulated by controlling the treatment temperature of SubCW-urea. 2-bromo-phenol with the purity of 72.5% could be selectively prepared from BRP by SubCW-urea process at 200 °C. The purity of the recovered phenol could reach as high as 81.5% at 250 °C. The selectivity of the products decreased greatly at 300 °C due to the secondary reactions. The SubCW-urea process has an application prospect in the safe treatment of BRP waste with the aim of high-efficiency debromination and high selectivity products recovery at low temperature.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Yifan Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| |
Collapse
|
32
|
Gao X, Liu J, Zuo X, Feng X, Gao Y. Recent Advances in Synthesis of Benzothiazole Compounds Related to Green Chemistry. Molecules 2020; 25:E1675. [PMID: 32260500 PMCID: PMC7181030 DOI: 10.3390/molecules25071675] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
Benzothiazoles have played an important role in the field of biochemistry and medicinal chemistry due to their highly pharmaceutical and biological activity. The development of synthetic processes is undoubtedly one of the most significant problems facing researchers. In this review paper, we provided recent advances in the synthesis of benzothiazole compounds related to green chemistry from condensation of 2-aminobenzenethiol with aldehydes/ketones/acids/acyl chlorides and the cyclization of thioamide or carbon dioxide (CO2) as raw materials, and the future development trend and prospect of the synthesis of benzothiazoles were anticipated.
Collapse
Affiliation(s)
- Xiang Gao
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (J.L.); (X.Z.); (X.F.)
| | - Jiao Liu
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (J.L.); (X.Z.); (X.F.)
| | - Xin Zuo
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (J.L.); (X.Z.); (X.F.)
| | - Xinyue Feng
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (J.L.); (X.Z.); (X.F.)
| | - Ying Gao
- Department of Teaching Quality Evaluation, Yan’an University, Yan’an 716000, China
| |
Collapse
|
33
|
Gao X, Liu J, Liu Z, Zhang L, Zuo X, Chen L, Bai X, Bai Q, Wang X, Zhou A. DBU coupled ionic liquid-catalyzed efficient synthesis of quinazolinones from CO 2 and 2-aminobenzonitriles under mild conditions. RSC Adv 2020; 10:12047-12052. [PMID: 35496607 PMCID: PMC9050631 DOI: 10.1039/d0ra00194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 01/30/2023] Open
Abstract
Efficient and green strategy for the chemical conversion and fixation of CO2 is an attractive topic. In this work, we reported an efficient catalytic system of organic base coupled ionic liquids that could catalyse the synthesis of quinazolinones via cyclization of 2-aminobenzonitriles with CO2 under mild conditions (e.g., 60 °C, 0.1 MPa). It was found that 1,8-diazabicyclo[5.4.0]undec-7-ene coupled 1-butyl-3-methylimidazole acetate ionic liquids (DBU/[Bmim][OAc]) displayed excellent performance in catalysing the reactions of CO2 with 2-aminobenzonitriles, and a series of quinazolinones were obtained in high yields at atmospheric pressure. Moreover, the ILs had high stability and reusability, and can be reused at least five times without considerable decrease in catalytic activity. This protocol could also be conducted on a gram scale, and may have promising and practical applications in the production of quinazolinones.
Collapse
Affiliation(s)
- Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Jiao Liu
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Zhaopeng Liu
- School of Chemical Engineering and Technology, China University of Mining and Technology Xuzhou 221000 China
| | - Lei Zhang
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xin Zuo
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Leyuan Chen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xue Bai
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Qingyun Bai
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xinlin Wang
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Anning Zhou
- A School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|
34
|
Kumar A, Lingfa P. Acid-activated Sodium Bentonite and Kaolin Clay: Comparative Study by Physicochemical Properties. Comb Chem High Throughput Screen 2020; 23:433-445. [PMID: 32160844 DOI: 10.2174/1386207323666200311114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE This paper aims to reveal the useful industrial aspects of kandite and montmorillonite group of clays using as a catalyst after acid activation. A comparative study of modified characteristics of clay samples has been explored based on industrial requirements. MATERIALS AND METHODS In this study sodium bentonite and kaolin clay have been focused. The modified characteristics of clay samples are investigated by characterization methods of FT-IR, XRD, SEM/EDAX, TGA and DSC before and after treated with 4M of Hydrochloric acid. Clay samples were refluxed at 105ºC and calcined at 500ºC consecutively for 3 hours at room temperature. RESULTS Maximum crystalline size 104.02 nm has been evaluated for acid-activated sodium bentonite. Alkyl halides compounds have a strong band position for all samples and have more extent on acid activation. The small numbers of manganese particles have been noticed in the acidactivated samples. 14% of decrement and 61.02% of increment of aluminates have been found respectively for acid-activated kaolin and acid-activated sodium bentonite. CONCLUSION The novelty of this study is about sodium bentonite characterization and the results show the prominent behaviour with structural, elemental, morphological, and thermal analysis. Acid-activated kaolin sample has less effect in comparison with acid-activated sodium bentonite. As the removal of the hydroxyl group of compounds has been reported through FT-IR and XRD analysis also some other industries like ceramic and paper industries may have accepted these types of modified minerals for special production with a simple process.
Collapse
Affiliation(s)
- Awinash Kumar
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| | - Pradip Lingfa
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| |
Collapse
|
35
|
Kumar A, Lingfa P. Physico-chemical Characterization of Hydrochloric Acid-treated Kaolin Clay: An Industry Approach as a Potential Catalyst. Comb Chem High Throughput Screen 2020; 23:205-213. [PMID: 32072897 DOI: 10.2174/1386207323666200219123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE This study explains the FT-IR, XRD, XRF, SEM/EDX, TGA, and DSC/DTA characterization of commercially available kaolin clay. The objective of this paper is to explore the prominent utilization of kandites clay and useful chemical aspects for the modification of kaolin clay minerals. MATERIALS AND METHODS The untreated kaolin sample has been procured in this experimental work from AksharChem, Gujrat, India. The kaolin clay was treated with 4M hydrochloric acid. FT-IR, XRD, XRF, SEM/EDX, TGA, and DSC/DTA characterization methods have been used. RESULTS Loss on ignition was found at 10.89%. The fingerprint region of the acid-treated sample has broad and more bending vibrations than untreated samples. The high weight percentage of Ti and CaCO3 were spotted in the scanning electron micrograph by both atomic % and weight %. The FT-IR revealed the functional group of Al-O, A1-OH, and Si-O. CONCLUSION The morphology indicates that the presences of large particles are in the form of agglomerates. It was found that impurity like scandium vanished and manganese traced by the same atomic % 0.01 of zinc which had no presence after acid treatment. Thermogravimetric analysis indicates the sharp increments in heat flow in-between temperatures 0°C to 200°C and consequently increments in between 500°C to 550°C, a suitable range for the pyrolysis. Low amount of alumina and high amount of silica has been found out. TGA and DTA analysis satisfy the waste plastic valorization temperature ranges.
Collapse
Affiliation(s)
- Awinash Kumar
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| | - Pradip Lingfa
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| |
Collapse
|
36
|
Surface-Bound Humic Acid Increased Propranolol Sorption on Fe 3O 4/Attapulgite Magnetic Nanoparticles. NANOMATERIALS 2020; 10:nano10020205. [PMID: 31991558 PMCID: PMC7074867 DOI: 10.3390/nano10020205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
This study explored the feasibility of utilizing a novel sorbent humic acid (HA) coated Fe3O4/attapulgite (MATP) magnetic nanoparticles (HMATP) for the sorption of propranolol from aqueous solutions. MATP and bare Fe3O4 nanoparticles were also synthesized under similar preparation conditions. The FTIR, Zeta potential, XRD, VSM, TEM, and TGA analyses were conducted to characterize the sorbent materials. The effects of pH, sorbent dosage, ionic strength, HA in the aqueous solution, contact time and initial sorbate concentration on sorption of propranolol were investigated using batch sorption experiments. The results suggested that the sorption capacity of HMATP showed little change from pH 4 to 10. Na+ and Ca2+ slightly inhibited the sorption of propranolol on HMATP. While HA in solution enhanced both MATP and HMATP, which indicated that HMATP can resist HA interference in water. Further, the less leaching amounts of Fe and HA suggested a good stability of HMATP. In all conditions, sorption capacity of propranolol on HMATP was obviously higher than that on MATP, which indicated that surface-coated HA played an important role in the propranolol sorption process. Electrostatic interaction, cation exchange, hydrogen bonding, and π–π electron donor acceptor interactions were considered as the sorption mechanisms.
Collapse
|