1
|
Liao X, Huang L, Luo X, Zhang L, Lu L, Luo D, Luo W. Distribution and health risk of chromium in wheat grains at the national scale in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134846. [PMID: 38852247 DOI: 10.1016/j.jhazmat.2024.134846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Chromium (Cr) pollution may threaten food safety in China. In this study, the concentration, pollution level, distribution, and non-cancer risk of Cr in wheat grains grown in 186 areas across 28 provinces in China were investigated. Results indicated that mean concentration of Cr was 0.28 ± 2.5 mg/kg, dry mass (dm). Of the samples, 7.5 % were found to be polluted with Cr. The mean concentrations were in the following order: Northwest > Northeast > South > East > North > Southwest > Central China. Based on deterministic models, mean hazard quotient (HQ) values for adult males, adult females, and children were 0.11 ± 3.4, 0.11 ± 3.4, and 0.13 ± 3.5, respectively with < 6 % of HQ values ≥ 1. Eleven sites in northern China were identified as hotspots, whereas Gansu Province and Northwestern China were labeled as priority provinces and regions for risk control. The mean HQ values estimated by probabilistic risk assessment were two times greater than those estimated using deterministic models. The risk probabilities for adult males, adult females, and children were 4.81 %, 3.78 %, and 6.55 %, respectively. This study provides valuable information on Cr pollution in wheat grains and its risks at a national scale in China.
Collapse
Affiliation(s)
- Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dezhao Luo
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 100096, China
| | - Wei Luo
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Niu C, Yan M, Yao Z, Dou J. Antibiotic residues in milk and dairy products in China: occurrence and human health concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113138-113150. [PMID: 37851252 DOI: 10.1007/s11356-023-30312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Although veterinary antibiotics are essential in preventing and treating clinical diseases in cattle, the frequent use of antibiotics leads to antibiotic residues in milk and dairy products, consequently threatening human health. The massive milk consumption makes it necessary to assess antibiotic pollution and health impact comprehensively. Hence, we conducted a systematic review to evaluate antibiotics in milk and dairy products and their potential health risk. We searched four databases using multiple keyword combinations to retrieve 1582 pieces of literature and finally included eighteen articles to analyze antibiotic residues in milk and dairy products. These studies detected seven antibiotics in different regions of China. Quinolones and β-lactam antibiotics exceeded the MRL for raw and commercial milk. The maximum levels of sulfonamides and tetracyclines were detected in the same raw milk sample, exceeding the MRL. The estimated THQ and HI values in milk and dairy products are less than 1 for adults, indicating negligible noncarcinogenic health risk of antibiotics through consuming milk and dairy products. Children face higher health risks than adults, with the HI and THQ of quinolones exceeding 1. It is worth noting that quinolones accounted for nearly 89% of health risks associated with all antibiotics. Finally, we put forward possible research directions in the future, such as specific health effects of total dietary exposure to low levels of antibiotics. In addition, policymakers should effectively improve this problem from the perspectives of antibiotic use supervision, antibiotic residue analysis in food, and continuous environmental monitoring and control.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Jiahang Dou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
3
|
Du Z, Tian Z, Yin Y, Wei J, Mu Y, Cai J, Song Z, Cen K. Bioavailability-based risk assessment of various heavy metals via multi-exposure routes for children and teenagers in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114985-115002. [PMID: 37878177 DOI: 10.1007/s11356-023-30436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Assessing the health risks of sensitive population, such as children and teenagers, through multiple exposure routes (MERs) such as ingestion, inhalation, and dermal contact is critical for policy creation that protects or reduces exposure to pollutants for all populations. Heavy metal (HM) contents in food and environmental media in Beijing, capital of China, were collected. Furthermore, on the basis of considering the bioavailability of HMs, we evaluated the multiple environmental routes and health risks to HMs in children and teenagers of eight age groups (2-<3, 3-<4, 4-<5, 5-<6, 6-<9, 9-<12, 12-<15, and 15-<18) in Beijing, China by Monte Carlo simulation approach. The main findings are as follows: lead exposure in children aged 2-<3 years exceeds the exposure dose (0.3 μg·kg-1·d-1) of 0.5 point reduction in intelligence quotient. Moreover, children aged 2-<3 and 6-<9 years have relatively high non-carcinogenic risk (NCR) of 1.32 and 1.30, respectively. The carcinogenic risk (CR) for children aged 6-<9 and 9-<12 years is 2.73×10-6 and 2.39×10-6, respectively. Specifically, the contributions of oral ingestion, dermal contact, and inhalation to the NCR were 69.5%, 18.9%, and 11.6%, respectively. Moreover, the combined NCR contributions of copper, cadmium, mercury, and arsenic (As) were about 69.4%. The contributions of the above three routes to the CR were 93.4%, 4.1%, and 2.5%, in that order, with the largest CR contribution of As being about 92.0%. This study can provide new ideas for accurately assessing the exposure and health risks of HMs in the population, and we believe that it is necessary to update the national standards for food and soil based on the bioavailability of HMs.
Collapse
Affiliation(s)
- Zhongwen Du
- Baoding University of Technology, Baoding, 071000, China
| | - Zuguang Tian
- Baoding Productivity Promotion Center, Baoding, 071000, China
| | - Yelan Yin
- No. 4 Drilling Engineering Branch Company, CNPC Bohai Drilling Engineering Company Limited, Hejian, 062400, Hebei, China
| | - Junxiao Wei
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Jianjun Cai
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zefeng Song
- Institute of Resources and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, China
| | - Kuang Cen
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Proshad R, Idris AM. Evaluation of heavy metals contamination in cereals, vegetables and fruits with probabilistic health hazard in a highly polluted megacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27977-0. [PMID: 37289387 DOI: 10.1007/s11356-023-27977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Heavy metals (HMs) contamination in foodstuffs could pose serious health issues for public health and humans are continually exposed to HMs through the consumption of cereals, fruits, and vegetables. The present study was conducted to assess 11 HMs in foodstuffs to investigate pollution levels and health risks to children and adults. The mean contents of Cd, Cr, Cu, Ni, Zn, Fe, Pb, Co, As, Mn and Ba in foodstuffs were 0.69, 2.73, 10.56, 6.60, 14.50, 9.63, 2.75, 0.50, 0.94, 15.39 and 0.43 mg/kg, respectively and the concentration of Cd, Cr, Cu, Ni and Pb were higher than maximum permissible concentrations (MPCs) showing that these foods may be contaminated with metals and constitute a danger to consumers. Vegetables had relatively higher metal contents followed by cereals and fruits. The average value of the Nemerrow composite pollution index (NCPI) for cereals, fruits, and vegetables were 3.99, 6.53, and 11.34, respectively indicating cereal and fruits were moderately contaminated whereas vegetables were heavily contaminated by the studied metals. The total estimated daily and weekly intakes for all studied metals were higher than the maximum tolerable daily intake (MTDI) and provisional tolerance weekly intake (PTWI) recommended by FAO/WHO. The target hazard quotients and hazard index of all studied metals exceeded the standard limit for adults and children suggesting significant non-carcinogenic health hazards. The total cancer risk value of Cd, Cr, Ni, Pb, and As from food intake exceeded the threshold range (1.0E-04), suggesting potential carcinogenic risks. Based on practical and sensible evaluation techniques, the current work will assist policymakers in controlling metal contamination in foodstuffs.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
5
|
Jin J, Zhao X, Zhang L, Hu Y, Zhao J, Tian J, Ren J, Lin K, Cui C. Heavy metals in daily meals and food ingredients in the Yangtze River Delta and their probabilistic health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158713. [PMID: 36113791 DOI: 10.1016/j.scitotenv.2022.158713] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal exposure via food consumption is inadequately investigated and deserves considerable attention. We collected hundreds of food ingredients and daily meals and assessed their probabilistic health risk using a Monte Carlo simulation based on an ingestion rate investigation. The detected concentrations of four heavy metals (Cr, Cd, Pb, and Hg) in all daily meal samples were within the limits stipulated in the National Food Safety Standard (GB 2762-2017), while that for As level was excessive in 0.3 % of daily meal samples. The same results were also observed in most food ingredient samples, and a standard-exceeding ratio of 23 % of As was observed in aquatic food or products, especially seafood, which was with the highest concentration reaching 1.24 mg/kg. Combining the detected heavy metal amounts with the ingestion rate investigation, the hazard quotients (HQs) of As, Cr, Cd, Pb, and Hg in daily meals and food ingredients were all calculated as lower than 1 (no obvious harm), while the incremental lifetime cancer risk (ILCR) of As and Cr (>1 × 10-4), indicating that the residual As posed potential health effects to human health. It was noteworthy that the proportion of aquatic foods only accounted for 6.3 % of daily meals, but they occupied 41.1 % of the heavy metal exposure, which could be attributed to the high amounts of heavy metals in aquatic foods. This study not only provided basic data of heavy metal exposure and potential health risks through daily oral dietary intake, but also illuminated the contribution of different kinds of food ingredients. Specifically, the study highlighted the contamination of aquatic foods with As, especially seafood such as shellfish and bivalves.
Collapse
Affiliation(s)
- Jialu Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfeng Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Tian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Li J, Du H, Peng F, Manyande A, Xiong S. Evaluation of the Effect of Different Cooking Methods on the Heavy Metal Levels in Crayfish Muscle. Biol Trace Elem Res 2022:10.1007/s12011-022-03476-0. [PMID: 36418635 DOI: 10.1007/s12011-022-03476-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
The current study investigated the effects of various cooking styles (boiling, frying, and steaming) and seasoning methods (home cooking and ready-to-eat commodity) on levels of nine heavy metals in the crayfish (Procambarus clarkii) muscle. The estimated daily intake (EDI), target hazard quotients (THQ), and target cancer risk (TCR) were used to assess the health risk in the crayfish muscle. The results showed that cooking processes significantly increased the concentration of Cu, which raises a potential risk for children (the THQ values > 1). The levels of toxic heavy metals in the ready-to-eat crayfish muscle were significantly higher than those in household cooking. Especially for As, the THQ values rose to 7.1 and 13.2 for adults and children respectively. Therefore, home cooking is safer than ready-to-eat crayfish, and children should consume crayfish within a limited range. The recommended consumption of the cooked abdominal muscle of crayfish should be 257 and 58 g/day, for children (16 kg) and adults (70 kg), respectively.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei, 430070, People's Republic of China.
| | - Fangjun Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei, 430070, People's Republic of China
| |
Collapse
|
7
|
Rashid MH, Rahman MM, Naidu R. Zinc Biofortification through Basal Zinc Supply Reduces Grain Cadmium in Mung Beans: Metal Partitioning and Health Risks Assessment. TOXICS 2022; 10:689. [PMID: 36422897 PMCID: PMC9692611 DOI: 10.3390/toxics10110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Grain zinc (Zn) biofortification with less cadmium (Cd) accumulation is of paramount importance from human health and environmental point of view. A pot experiment was carried out to determine the influence of Zn and Cd on their accumulations in Mung bean tissues (Vigna radiata) in two contrast soil types (Dermosol and Tenosol). The soil types with added Zn and Cd exerted a significant effect on translocation and accumulation of metals in different tissues. The accumulation of Zn and Cd was higher for Tenosol than that for Dermosol. At control, the concentration of Cd followed a pattern, e.g., root > stem > petiole > pod > leaflet > grain for both soils. A basal Zn supply (5 mg kg−1) increased the grain Zn concentration to a significant amount (up to 67%). It also reduced Cd accumulation in tissues, including grains (up to 34%). No non-carcinogenic effect was observed for either the children or the adults as the EDI and PTDI values were below the safety limit; however, the ILCR values exceeded the safety limit, indicating the possibility of some carcinogenic effects. Added Zn helped to reduce the carcinogenic and non-carcinogenic health risks on humans.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
Topal M, Arslan Topal EI, Öbek E, Aslan A. Potential human health risks of toxic/harmful elements by consumption of Pseudevernia furfuracea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1889-1896. [PMID: 33970715 DOI: 10.1080/09603123.2021.1925635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The potential human health risks of some toxic/harmful elements related to the consumption of Pseudevernia furfuracea (L.) Zopf. were investigated. The toxic/harmful elements (cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn)) were determined in P. furfuracea. According to the analysis result, the maximum (max.) toxic/harmful element value was 62 ± 3.1 mg/kg for Mn and minimum (min.) value was 0.19 ± 0.01 mg/kg for Cd. The estimated daily exposure doses (EDEXDs) for men, women and children were dietary (bread) > dietary (tea) > dermal. For dietary (bread) and dietary (tea) non-carcinogenic (HQ) risk was children > women > men. For dermal, HQ risk was women > children > men. Hazard index (HI) value for men was >1 for Cr. HI value for men was 1.36 for Cr. HI value for women was >1 for Cr and Mn. HI values for women were 1.54 for Cr and 1.01 for Mn. Also, the HI value for children was >1 for Cr, Mn, and Pb. HI values for children were 3.44 for Cr, 2.24 for Mn, and 1.66 for Pb. This situation showed that there was a non-carcinogenic risk. Carcinogenic risk values were dietary (bread) > dietary (tea) > dermal. The total max. carcinogenic value was 1.97E-03 for Cr while the total min. carcinogenic value was 1.31E-05 for Pb. As a result, it has been determined that there may be a risk of cancer due to the consumption of lichen as bread and this situation may adversely affect human health.
Collapse
Affiliation(s)
- Murat Topal
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
| | - E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| | - Ali Aslan
- Department of Biology, Faculty of Arts and Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
9
|
Fural Ş, Kükrer S, Cürebal İ, Aykır D. Ecological degradation and non-carcinogenic health risks of potential toxic elements: a GIS-based spatial analysis for Doğancı Dam (Turkey). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:269. [PMID: 35274171 DOI: 10.1007/s10661-022-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This study was carried out to determine the ecological degradation and non-carcinogenic health risks at Doğancı Dam, Bursa, Turkey. Potentially toxic element (PTE) concentrations (ppm) were as follows: Fe (55.030) > Al (27.220) > Mn (1053) > Cr (181) > Ni (180) > Zn (95) > Cu (62) > As (17) > Pb (11) > Cd (0.20) > Hg (0.108). As, Pb, Cd, and Hg were enriched anthropogenically, while other PTEs were of natural origin. The contamination severity index (CSI) indicated a moderate PTE contamination in the dam, mostly due to lithogenic effects. According to the modified hazard quotient (mHQ), ecological risk was identified at the level of extreme severity for Ni of lithological origin, of high severity for Cr of considerable severity for As of anthropogenic origin, and of moderate severity for Cu. According to the ecological contamination index (ECI), the dam had an ecological risk of a slight-to-moderate contamination. Health risk index showed no non-carcinogenic health risks in the dam. Mining, highways, and agricultural activities were identified as the primary anthropogenic drivers to be monitored. The ongoing anthropogenic activities in the Nilüfer Stream basin and natural factors affect the ecological degradation and non-carcinogenic health risk level of the dam.
Collapse
Affiliation(s)
- Şakir Fural
- Department of Geography, Faculty of Arts and Sciences, Kırşehir Ahi Evran University, Kirsehir, Turkey.
| | - Serkan Kükrer
- Department of Geography, Faculty of Humanities and Literature, Ardahan University, Ardahan, Turkey
| | - İsa Cürebal
- Department of Geography, Faculty of Arts and Sciences, Balıkesir University, Balikesir, Turkey
| | - Dilek Aykır
- Department of Geography, Faculty of Humanities and Literature, Ardahan University, Ardahan, Turkey
| |
Collapse
|
10
|
Topal M, Arslan Topal EI, Öbek E. Preliminary assessment of health risks associated with consumption of grapevines contaminated with mining effluents in Turkey: Persistent trace elements and critical raw materials. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:517-527. [PMID: 34255427 DOI: 10.1002/ieam.4491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, some persistent trace elements and critical raw materials were investigated in grapevines contaminated with Pb-Zn mining effluents. The persistent trace elements under certain conditions remain without any change in form in the environment over long periods. The critical raw materials are the ones that have economic importance and have the risks associated with their supply. The health risks of persistent trace elements and critical raw materials in the leaves of grapevine that are consumed by humans were determined. The highest persistent trace elements concentrations followed the order of root > stem > leaf for Mn, Cu, Cd, Ni, and Cr while root > leaf > stem for Zn and leaf > root > stem for Pb. The maximum critical raw material concentrations for Co and V followed the order of root > stem > leaf. For Sb and La, these were leaf > root > stem and root > stem > leaf, respectively. The maximum critical raw materials concentrations for W was leaf > stem = root. The total maximum carcinogenic value was 0.146 for Cd while the total minimum carcinogenic value was 0.0054 for Pb. In this study, potential carcinogenic risk values in terms of ingestion of contaminated soil (Cr, Cd, and Ni) and dietary take of grapevine leaves (Ni, Cr, Cd, and Pb) are higher than acceptable levels (1 × 10-4 - 1 × 10-6 ). Maximum cancer risk on human health was determined as dietary intake of grapevine leaves. When hazard quotient for dietary (HQdie ), hazard quotient for ingestion (HQing ), and hazard quotient for inhalation (HQinh ) values of critical raw materials were examined, the maximum values were observed for children. Also, the highest hazard quotient for dermal (HQder ) value was determined for men. The hazard index and total hazard index values were >1 for critical raw materials. As a result, values >1 indicated potential non-carcinogenic human health risk associated with the consumption of grapevines contaminated with mining effluents. Actual region-specific exposure estimates for consumption of grapevines, however, were not evaluated. Integr Environ Assess Manag 2022;18:517-527. © 2021 SETAC.
Collapse
Affiliation(s)
- Murat Topal
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
- Munzur University Rare Earth Elements Application and Research Center, Tunceli, Turkey
| | - E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| |
Collapse
|
11
|
Arslan Topal EI, Topal M, Öbek E. Assessment of heavy metal accumulations and health risk potentials in tomatoes grown in the discharge area of a municipal wastewater treatment plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:393-405. [PMID: 32378418 DOI: 10.1080/09603123.2020.1762071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Some heavy metals were detected in organs of the tomatoes grown in the discharge area of effluents of a municipal wastewater treatment plant. Also, the health risk potentials of heavy metals in the tomatoes consumed by human were investigated. The highest concentrations for Cu, Ni, Cr, Mn and Pb were followed the order of root>leaf>stem>fruit. When the bioconcentration factors values calculated for bioconcentration of metals from effluent to stem and root were examined, the highest values were determined for Cu. When translocation factors values are examined, the highest translocation from root to leaf was determined for Cd. The highest translocation from stem to leaf was determined for Pb. The estimated total exposure dose for male, female and children was listed as Zn>Mn>Cu>Cr>Ni>Pb>Cd. In terms of dietary, we can list the non-carcinogenic risks of heavy metals as children> female> male. The highest carcinogenic risk was calculated for Cr via dietary intake.
Collapse
Affiliation(s)
- E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| | - Murat Topal
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| |
Collapse
|
12
|
Productivity and food safety of grain crops and forage species grown in iron ore tailings. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Ikem A, Ayodeji OJ, Wetzel J. Human health risk assessment of selected metal(loid)s via crayfish ( Faxonius virilis; Procambarus acutus acutus) consumption in Missouri. Heliyon 2021; 7:e07194. [PMID: 34169162 PMCID: PMC8207206 DOI: 10.1016/j.heliyon.2021.e07194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/02/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Farmed crustaceans are an important component in addressing the rising animal protein demand. The present study determined the concentrations of fourteen elements (Ag, As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sn, Pb, and Zn) in the edible abdominal muscle of cultured freshwater crayfish species (Faxonius virilis; Procambarus acutus acutus) from Missouri. Also, this paper describes the dietary intake and the human health risks from the consumption of crayfish muscle in the adult population. Overall, 172 animals were captured between February 2017 and January 2018 for assessment. Concentrations of metals (Ag, Be, Cd, Cu, Co, Cr, Fe, Mn, Ni, Pb, Sn, Mo, and Zn) and metalloid (As) in the muscle tissue were determined after microwave-assisted acid digestion by ICP - OES. Health indices (EDI/EWI: estimated daily/weekly intakes; THQ: target hazard quotient; TTHQ: total target hazard quotient; ILCR: incremental lifetime cancer risk; and ∑ILCR: cumulative lifetime cancer risk) were calculated and compared to thresholds. Of all samples, the highest concentrations (mg kg -1 wet weight) of metal(loid)s in muscle were Ag (0.11), As (3.15), Be (0.21), Cd (0.11), Co (0.32), Cr (1.22), Cu (107), Fe (23.0), Mn (8.54), Mo (0.62), Ni (2.65), Pb (1.76), Sn (5.91), and Zn (19.2). In both species, the average As, Cd, and Zn concentrations were below the legal limits. However, the levels of Cu, Pb, and As, in some samples, were in exceedance of the maximum levels. In both species, a significant correlation (p < 0.05) was observed between the carapace length (CL) and animal body weight (BW). In P. acutus, CL, BW, and animal total length were homogenous (p > 0.05) among the sexes. Non-parametric Kruskal-Wallis test results indicated significant differences (p < 0.05) in the levels of As, Be, and Zn in F. virilis, and Be and Cr in P. a. acutus among the genders. Significant inter-species differences (p < 0.05) were observed in the levels of Be, Ni, and Pb and the growth factors. The EDI/EWI values were below the permissible limits. THQ and TTHQ values, being below 1.0, indicated no probabilistic health risk. Regarding carcinogenic risk, only As and Ni indicated cancer risk (ILCR >10-5 and ∑ILCR >10-5) to the adult population. High metals/metalloid exposure from crayfish muscle consumption posed potential health hazards to the adult population.
Collapse
Affiliation(s)
- Abua Ikem
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, Missouri 65101, United States
- Cooperative Research Programs, Lincoln University, Jefferson City, Missouri 65101, United States
| | - Olukayode James Ayodeji
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79416, United States
| | - James Wetzel
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, Missouri 65101, United States
- Cooperative Research Programs, Lincoln University, Jefferson City, Missouri 65101, United States
| |
Collapse
|
14
|
Topal M. Investigation of the potential human health risk of toxic mercury determined in the grapevine exposed to mine gallery waters. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1604-1610. [PMID: 33746287 PMCID: PMC7925718 DOI: 10.1007/s13197-020-04673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 06/12/2023]
Abstract
In the present study, mercury was selected because of its toxicity. It was detected in the grapevines exposed to mine gallery waters. The potential health risk of mercury in leaves of grapevine those are consumed by human worldwide was investigated. The grapevines were harvested and separated into organs of roots, stems, and leaves. The concentrations of mercury were determined in roots, stems, and leaves. The translocation and bioconcentration factors were calculated. Maximum concentrations of mercury were stem < root < leaf. The health risk potential of mercury on human health was calculated. The estimated daily exposure doses of mercury followed an order for children and adults: dietary > ingestion > inhalation > dermal. The HQ values calculated for exposure ways of dietary, ingestion and inhalation were male < female < children. As a result, it was determined that grapevine exposed to mine gallery waters that cause environmental contamination may cause non-carcinogenic risks on human health.
Collapse
Affiliation(s)
- Murat Topal
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocation School, University of Munzur, Tunceli, Turkey
| |
Collapse
|
15
|
Du B, Zhou J, Lu B, Zhang C, Li D, Zhou J, Jiao S, Zhao K, Zhang H. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137585. [PMID: 32135280 DOI: 10.1016/j.scitotenv.2020.137585] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) contamination from mining and smelting operations has led to growing environmental health concerns. In this study, soil, surface water, drinking water, rice, vegetables, and biomarkers (hair and urine) were collected from local residents near an active lead-zinc mine and a copper smelter. The aim was to determine how nonferrous metal mining and smelting activities have affected the health of local residents. It was found that the Cd concentrations in most soil and rice samples exceeded the national tolerance limits of China. Dietary intakes of rice and vegetables were the two major pathways of Cd exposure to local residents, accounting for >97% of the total probable daily intake. The excessive daily intake of Cd resulted in potential non-carcinogenic risks to the local residents, especially to children living around the two areas. The mean hair and urine Cd concentrations were 0.098 ± 0.10 mg kg-1 and 5.7 ± 3.1 μg L-1 in the mining area, and 0.30 ± 0.21 mg kg-1 and 5.5 ± 3.5 μg L-1 in the smelting area, respectively. A significantly positive correlation between hair Cd concentrations and the hazard quotient (HQ) for rice ingestion indicated that rice contamination had the most critical adverse effect on local residents. Due to the high levels of environmental Cd contamination, residents of the smelting area had a much higher Cd exposure than residents of the mining area. The results suggested that nonferrous mining and smelting should not coexist with agricultural activities. Effective contamination mitigation strategies and environmental remediation should be formulated and implemented to improve the health of local residents.
Collapse
Affiliation(s)
- Buyun Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, China.
| | - Bingxin Lu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Demin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaojun Jiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Keqiang Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China.
| |
Collapse
|