1
|
Yang Y, Liu M, Pignatello JJ. Interactions between selenium species and pyrogenic carbonaceous materials in water and soil relevant to selenium control and remediation: A molecular-level perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125831. [PMID: 39929429 DOI: 10.1016/j.envpol.2025.125831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
In the environment, selenium (Se) has dual impacts on living organisms, as it is an essential element but high concentrations can be toxic. Current technologies for treating Se in real applications are not cost effective. Pyrogenic carbonaceous materials (PCM) with high surface area and redox properties have been proposed to remove Se. The objective of this review is to evaluate recent developments in fabrication of PCM and functionalized PCM for Se sorption and reduction in environmental remediation, as well as their potential impacts on crop growth. The sorptive removal of Se by PCM depends on the combined effects of electrostatic interactions, steric constraints, and complexation with metal species. The reduction property of PCM facilitates the conversion the ionic Se into solid state. The sorption of Se on PCM can also find applications in crop growth and the inhibition of heavy metal ions. We provide an outlook of terminal treatment of Se on PCM including immobilizing Se as solid species or applying PCM with sorbed Se as micronutrient soil amendment.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Mengxue Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Joseph J Pignatello
- The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT, 06511, USA.
| |
Collapse
|
2
|
Sarkodie EK, Li K, Guo Z, Yang J, Deng Y, Shi J, Peng Y, Jiang Y, Jiang H, Liu H, Liang Y, Yin H, Liu X, Jiang L. The Effect of Cysteine on the Removal of Cadmium in Paddy Soil by Combination with Bioremediation and the Response of the Soil Microbial Community. TOXICS 2024; 13:22. [PMID: 39853022 PMCID: PMC11769394 DOI: 10.3390/toxics13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity. In this study, different combination modes of cysteine and microbial inoculant were designed to analyze their effects on Cd removal and the soil microbial community through the sequence extraction of Cd fraction and high-throughput sequencing. The results demonstrate that the mixture of cysteine and the microbial inoculant was the best mode for increasing the Cd removal efficiency. And a ratio of cysteine to microbial inoculant of 5 mg:2 mL in a 300 mL volume was the most economically efficient matching. The Cd removal rate increased by 7.7-15.1% in comparison with the microbial inoculant treatment. This could be ascribed to the enhanced removal rate of the exchangeable and carbonate-bound Cd, which achieved 94.6% and 96.1%, respectively. After the treatment, the contents of ammonium nitrogen (NH3-N), total phosphorus (TP), available potassium (AK), and available phosphorus (AP) in the paddy soils were increased. The treatment of combinations of cysteine and microbial inoculant had an impact on the soil microbial diversity. The relative abundances of Alicyclobacillus, Metallibacterium, and Bacillus were increased in the paddy soils. The microbial metabolic functions, such as replication and repair and amino acid metabolism, were also increased after treatment, which benefitted the microbial survival and adaptation to the environment. The removal of Cd was attributed to the solubilizing, complexing, and ion-exchanging effects of the cysteine, the intra- and extracellular adsorption, and the production of organic acids of functional microorganisms. Moreover, cysteine, as a carbon, nitrogen, and sulfur source, promoted the growth and metabolism of microorganisms to achieve the effect of the synergistic promotion of microbial Cd removal. Therefore, this study underscored the potential of cysteine to enhance the bioremediation performance in Cd-contaminated paddy soils, offering valuable theoretical and technical insights for this field.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.D.); (H.J.)
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yuli Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.D.); (H.J.)
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (E.K.S.); (K.L.); (Z.G.); (J.Y.); (J.S.); (Y.P.); (Y.J.); (H.L.); (Y.L.); (H.Y.); (X.L.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Ma P, Jin M, Zhang D, Lv L, Zhang G, Ren Z. Surface engineering-based S, N co-doped biochar for improved anaerobic digestion: Enhancing microbial-pollutant and inter-microbial electron transfer synergistic EPS protection. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136217. [PMID: 39437466 DOI: 10.1016/j.jhazmat.2024.136217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Enhancing extracellular electron transfer (EET) efficiency is crucial for improving the anaerobic digestion (AD) system's capability to treat recalcitrant wastewater. In this study, a novel S, N co-doped biochar (S-N-BC) was prepared through surface engineering to optimize EET within AD systems. The addition of S-N-BC significantly enhanced the performance of a mesophilic AD system treating Congo red wastewater, increasing the decolorization rate by 78 %, COD degradation rate by 82 %, and methane yield by 87 % compared to the control. Additionally, the shock resistance of anaerobic granular sludge was improved, as evidenced by the formation of the protective extracellular polymeric substances (EPS) barrier and the enhanced activities of the electron transport system. Mechanistic analysis revealed that adding S-N-BC did not alter the Congo red decolorization pathway but significantly enriched various electrochemically active bacteria and established EET pathways between microbial-pollutant and inter-microbial. This significantly accelerated EET efficiency within the AD system, ensuring stable and efficient operation under challenging conditions. This study proposed a novel approach using S-N-BC to simultaneously enhance "dual-pathway EET" between microbial-pollutant and inter-microbial while constructing an EPS protective barrier, addressing the issues of low efficiency and fragile stability of AD systems for treating recalcitrant wastewater.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Mengting Jin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
4
|
Lv N, Gong P, Sun H, Sun X, Liu Z, Xie X, Xue Y, Song Y, Wu K, Wang T, Wu Z, Zhang L. Agricultural ecosystems rather than fertilization strategies drives structure and composition of the ureolytic microbial functional guilds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123148. [PMID: 39566206 DOI: 10.1016/j.jenvman.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Ureolytic microorganisms are significant in the transformation of soil nitrogen as they secrete urease to hydrolyze urea. This study aimed to investigate the effects of different fertilization regimes on ureolytic microbial functional guilds (bacteria, fungi, and archaea) in various agricultural ecosystems. Soil samples were collected from a long-term agricultural field experiment involving paddy and dryland soils. The experiment consisted of four fertilization treatments: nitrogen fertilizer (N), nitrogen fertilizer combined with composite urease/nitrification inhibitor (NI), nitrogen fertilizer combined with straw (NS), and nitrogen fertilizer combined with manure (NO). A metagenomic sequencing technique was used to assess the composition of ureolytic microbial functional guilds using the target ureC gene, along with the evaluation of soil physicochemical properties, the abundance of ureC genes from different microbial guilds, and the urease activity. The results showed that the NI treatment significantly increased the abundance of ureC genes from different microbial guilds in the two agricultural ecosystems compared with other fertilization treatments. In dryland soil, the abundance of ureC genes was positively correlated with urease activity. The ureolytic bacterial functional guild exhibits greater dominance at all taxonomic levels compared to the ureolytic fungal and archaeal functional guilds. The alpha diversity of ureolytic microbial functional guilds was greater in dryland soil than in paddy soil. Principal coordinate analysis showed that the structure of the ureolytic microbial functional guilds could be separated into two groups based on agricultural ecosystems. Phosphorus is a key environmental factor affecting the ureolytic microbial functional guilds in two agricultural ecosystems, and the structure of the ureolytic bacteria functional guild is more susceptible to pH. The results suggest that the structure of ureolytic microbial functional guilds is primarily determined by agricultural ecosystems rather than by fertilization treatments. Additionally, fertilization treatments across different agricultural ecosystems significantly impacted the community composition of ureolytic bacteria, fungi, and archaea microorganism.
Collapse
Affiliation(s)
- Na Lv
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gong
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Hao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiangxin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiguang Liu
- College of Resources and Environmental Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xueshi Xie
- Stanley Agriculture Group Co. Ltd., Linshu, Shandong, 276700, China
| | - Yan Xue
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuchao Song
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Kaikuo Wu
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Tingting Wang
- Stanley Agriculture Group Co. Ltd., Linshu, Shandong, 276700, China
| | - Zhijie Wu
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lili Zhang
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
5
|
Si T, Chen X, Yuan R, Pan S, Wang Y, Bian R, Liu X, Zhang X, Joseph S, Li L, Pan G. Iron-modified biochars and their aging reduce soil cadmium mobility and inhibit rice cadmium uptake by promoting soil iron redox cycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122848. [PMID: 39405844 DOI: 10.1016/j.jenvman.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Iron (Fe) modified biochar has been widely used for cadmium (Cd) contaminated soil remediation. However, the accompanying anions introduced during the modification process potentially affect the behavior of Cd in soil. In this study, we investigated the distinct Cd immobilization mechanisms by Fe2(SO4)3 modified biochar (FSBC) and Fe(NO3)3 modified biochar (FNBC) in a two-year pot experiment. Results showed that both FSBC and FNBC significantly reduced Cd concentrations in rice grains by 23%-42% and 30%-37% compared to pristine biochar (BC). Specifically, NFBC promoted the formation of amorphous Fe oxides by enhancing the NO3--reducing Fe(II) oxidation process, which significantly increased Fe/Mn oxide-bound Cd and decreased soil CaCl2-extractable Cd. For FSBC, the introduction of SO42- significantly promoted the formation of Fe plaques by enhancing the Fe(III) reduction process, which blocked the Cd transfer from the soil to the rice roots. More importantly, after two years of biochar application, an organo-mineral complex layer is formed on the biochar surface, which immobilized a large amount of Cd. The Cd immobilization on the surface of aged biochar could be due to the fixation by the secondary Fe oxides within the organo-mineral layer and the complexation by the surface functional groups. The result of laser ablation inductively coupled plasma mass spectrometry showed that the Cd content on aged FNBC and FSBC was 5.9 and 2.6 times higher than on aged BC. This might be attributed to the Fe-modified biochar's higher electron exchange capability (EEC), which promoted the development of organo-mineral complexes. Notably, the EEC of biochar was maintained during its aging process, which may keep the biochar surface active and facilitate continual Cd immobilization. This study revealed the complex mechanisms of soil Cd immobilization with Fe-modified biochar, providing new insights into sustainable biochar environmental remediation.
Collapse
Affiliation(s)
- Tianren Si
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xin Chen
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rui Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Siyu Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xiaoyu Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Stephen Joseph
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|
6
|
Liu Z, Chen Y, Xu Z, Lei J, Lian H, Zhang J, Wang Z. Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification. Polymers (Basel) 2024; 16:1506. [PMID: 38891453 PMCID: PMC11175129 DOI: 10.3390/polym16111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Partial nitrification-Anammox (PN-A) is a cost-effective, environmentally friendly, and efficient method for removing ammonia (NH4+-N) pollutants from water. However, the limited accumulation of nitrite (NO2--N) represents a bottleneck in the development of PN-A processes. To address this issue, this study developed a composite carrier loaded with nano zero-valent iron (nZVI) and zeolite to enhance NO2--N accumulation during short-cut nitrification. The modified composite carrier revealed electropositive, hydrophilicity, and surface roughness. These surface characteristics correlate positively with the carrier's total biomass adsorption capacity; the initial adsorption of microorganisms by the composite carrier was increased by 8.7 times. Zeolite endows the carrier with an NH4+-N adsorption capacity of 4.50 mg/g carrier. The entropy-driven ammonia adsorption process creates an ammonia-rich microenvironment on the surface of the carrier, providing effective inhibition of nitrite-oxidizing bacteria (NOB). In tests conducted with a moving bed biofilm reactor and a sequencing batch reactor, the composite carrier achieved a 95% NH4+-N removal efficiency, a NO2--N accumulation efficiency of 78%, and a doubling in total nitrogen removal efficiency. This composite carrier enhances NO2--N accumulation by preventing biomass washout, inhibiting NOB, and enriching PN-A functional bacteria, suggesting its potential for large-scale, stable PN-A applications.
Collapse
Affiliation(s)
- Zexiang Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Yong Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Zhihong Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Jinxu Lei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Hua Lian
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Jian Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| |
Collapse
|
7
|
Xiao X, He X, Ji C, Li L, Zhou M, Yin X, Shan Y, Wang M, Zhao Y. Activation of persulfate by g-C 3N 4/nZVI@SBC for degradation of total petroleum hydrocarbon in groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120612. [PMID: 38537465 DOI: 10.1016/j.jenvman.2024.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
In this study, we synthesized a high removal efficiency catalyst using biochar-supported nanoscale zero-valent iron and g-C3N4, denoted as g-C3N4/nZVI@SBC, to activate persulfate (PS) for the degradation of total petroleum hydrocarbon (TPH) in groundwater. We characterized the morphology and physiochemical properties of g-C3N4/nZVI@SBC with scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), BET surface area analysis, and X-ray photoelectron spectroscopy (XPS). To assess the performance of the g-C3N4/nZVI@SBC catalyst, we investigated various reaction parameters, such as the mass ratio of g-C3N4 to nZVI@SBC, PS concentration, initial pH, initial TPH concentration, and the presence of coexisting ions in the system. The results from batch experiments and repeated use trials indicate that g-C3N4/nZVI@SBC exhibited both excellent catalytic activation capability and impressive durability, making it a promising choice for TPH degradation. Specifically, when the PS concentration reached 1 mM, the catalyst dosage was 0.3 g/L, and the g-C3N4 to nZVI@SBC mass ratio was 2, we achieved a remarkable TPH removal efficiency of 93.8%. Through electron paramagnetic resonance (EPR) testing and quenching experiments, we identified sulfate radicals, hydroxyl radicals, and superoxide radicals as the primary active substance involved in the TPH degradation process. Moreover, the g-C3N4/nZVI@SBC composite proved highly effective for in-situ TPH removal from groundwater and displayed an 86% removal rate, making it a valuable candidate for applications in permeable reactive barriers (PRB) aimed at enhancing environmental remediation. In summary, by skillfully utilizing g-C3N4/nZVI@SBC, this study has made notable advancements in synthesis and characterization, presenting a feasible and innovative approach to addressing TPH pollution in groundwater.
Collapse
Affiliation(s)
- Xian Xiao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xingguo He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Caiya Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of China, Guangzhou, 510655, China
| | - Meichun Zhou
- Jiangsu Zhongwu Environmental Protection Industry Development Co., Ltd., Changzhou, 213164, China
| | - Xinyu Yin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yong Shan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingyu Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
8
|
Lan Y, Gai S, Cheng K, Liu Z, Antonietti M, Yang F. Artificial Humic Acid Mediated Carbon-Iron Coupling to Promote Carbon Sequestration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0308. [PMID: 38375103 PMCID: PMC10875824 DOI: 10.34133/research.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
Fe (hydr)oxides have a substantial impact on the structure and stability of soil organic carbon (SOC) pools and also drive organic carbon turnover processes via reduction-oxidation reactions. Currently, many studies have paid much attention to organic matter-Fe mineral-microbial interactions on SOC turnover, while there is few research on how exogenous carbon addition abiotically regulates the intrinsic mechanisms of Fe-mediated organic carbon conversion. The study investigated the coupling process of artificial humic acid (A-HA) and Fe(hydr)oxide, the mechanism of inner-sphere ligands, and the capacity for carbon sequestration using transmission electron microscopy, thermogravimetric, x-ray photoelectron spectroscopy, and wet-chemical disposal. Furthermore, spherical aberration-corrected scanning transmission electron microscopy-electron energy loss spectroscopy and Mössbauer spectra have been carried out to demonstrate the spatial heterogeneity of A-HA/Fe (hydr)oxides and reveal the relationship between the increase in Fe-phase crystallinity and redox sensitivity and the accumulation of organic carbon. Additionally, the dynamics of soil structures on a microscale, distribution of carbon-iron microdomains, and the cementing-gluing effect can be observed in the constructing nonliving anthropogenic soils, confirming that the formation of stable aggregates is an effective approach to achieving organic carbon indirect protection. We propose that exogenous organic carbon inputs, specifically A-HA, could exert a substantial but hitherto unexplored effect on the geochemistry of iron-carbon turnover and sequestration in anoxic water/solid soils and sediments.
Collapse
Affiliation(s)
- Yibo Lan
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
- College of Engineering,
Northeast Agricultural University, Harbin 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,
Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Fan Yang
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| |
Collapse
|
9
|
Xie Y, Zhang M, Ma L, Du T, Zhou D, Fu ML, Yuan B, Li XY, Hu YB. Overlooked encounter process that affects physical behaviors of stabilized nanoscale zero-valent iron during in situ groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132547. [PMID: 37717448 DOI: 10.1016/j.jhazmat.2023.132547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Dynamic encountering between groundwater matrices and nanoscale zero-valent iron (NZVI) injected for in situ subsurface remediation affects NZVI's mobility and has not been well recognized. Polyacrylic acid (PAA)-stabilized NZVI (NZVI-PAA) and Mg(OH)2-coated NZVI (NZVI@Mg(OH)2) were investigated as representative NZVIs stabilized by enhanced electrostatic repulsion and reduced magnetic attraction, respectively. Encounters with divalent cations and humic acid (HA) induced the drastic aggregation and sedimentation (presedimentation) of NZVI-PAA owing to Lewis acid-base interactions and heteroaggregation. In addition, encountered groundwater electrolytes could not effectively provide electrostatic repulsion for NZVI-PAA, resulting in breakthrough ripening dynamics. The presedimentation and ripening behaviors of NZVI-PAA were eliminated and unheeded after mixing the NZVI slurry with groundwater by sonication. In comparison, the encountering process barely impacted NZVI@Mg(OH)2, for which settling was hindered. Although the particle-collector attraction promoted NZVI@Mg(OH)2 adsorption on pristine and hybrid-coated sands, the Langmuirian blocking dynamics of the NZVI@Mg(OH)2 breakthrough demonstrated its high mobility after adsorption sites of sand surface were exhausted. Extended Derjaguin-Landau-Verwey-Overbeek analysis and transport modeling provided insights into overlooked effects of encountering on physical behaviors of different stabilized NZVIs, which should be considered during practical applications under diverse subsurface conditions.
Collapse
Affiliation(s)
- Yujie Xie
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lihang Ma
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ting Du
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Dan Zhou
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Baoling Yuan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yi-Bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
10
|
Sarkodie EK, Jiang L, Li K, Guo Z, Yang J, Shi J, Peng Y, Wu X, Huang S, Deng Y, Jiang H, Liu H, Liu X. The influence of cysteine in transformation of Cd fractionation and microbial community structure and functional profile in contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167535. [PMID: 37802356 DOI: 10.1016/j.scitotenv.2023.167535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Remediating cadmium (Cd) contaminated paddy soil is vital for agroecology, food safety, and human health. Soil washing is more feasible to reduce remediation method due to its high efficiency. However, green, low-cost and more efficient washing agents are still required. In this study, we investigated the ability of cysteine as a washing agent for soil washing to remove Cd from contaminated paddy soil. Through a batch experiment, we evaluated the removal efficiency of cysteine as a washing agent by comparing their removal rate with that of a microbial inoculant and sulphuric acid as other washing agents. The transformation of Cd fractionation and microbial community structure and functional profile in paddy soils after cysteine leaching was studied by using sequential extraction and high-throughput sequencing. Results showed that cysteine had better efficiency in the removal of Cd from paddy soil in comparison to sulphuric acid and the microbial inoculant, and could achieve a maximum removal rate of 97 % Cd in paddy soil. Cysteine decreased the proportion of Cd in the exchangeable fraction, carbonate bound fraction, iron and manganese bound fraction, and organic matter bound fraction and was best for the removal of the residual fraction, which contributed to its higher Cd removal ability. Considering the economic benefits of the reagents used, cysteine was shown to be economically feasible for use as a leaching agent. In addition, cysteine could significantly increase the relative abundance of Thermochromatium, Sideroxydans, Streptacidiphilus, and Frankia which promoted the nitrogen and sulfur metabolism in the paddy soil. In summary, this study revealed that cysteine was readily available, cheap, non-toxic, highly efficient, and even has fertilizing properties, making it eco-friendly and ideal for remediation of Cd-contaminated paddy soils. Besides, the health of paddy soils would also benefit from cysteine's promotion of microbial nitrogen and sulfur metabolism.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shanshan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Chen JY, Liu S, Deng WK, Niu SH, Liao XD, Xiang L, Xing SC. The effect of manure-borne doxycycline combined with different types of oversized microplastic contamination layers on carbon and nitrogen metabolism in sandy loam. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131612. [PMID: 37245359 DOI: 10.1016/j.jhazmat.2023.131612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The different forms and properties of microplastics (MPs) have different effects on the elemental cycles in soil ecosystems, and this is further complicated when the soil contains antibiotics; meanwhile, oversized microplastic (OMP) in soil is always ignored in studies of environmental behavior. In the context of antibiotic action, the effects of OMP on soil carbon (C) and nitrogen (N) cycling have rarely been explored. In this study, we created four types of oversized microplastic (thick fibers, thin fibers, large debris, and small debris) composite doxycycline (DOX) contamination layers (5-10 cm) in sandy loam, hoping to reveal the effects on soil C and N cycling and potential microbial mechanisms when exposed to the combination of manure-borne DOX and different types of OMP from the perspective of metagenomics in the longitudinal soil layer (0-30 cm). The results showed that all different forms of OMP, when combined with DOX, reduced the soil C content in each layer, but only reduced the soil N content in the upper layer of the OMP contamination layer. The microbial structure of the surface soil (0-10 cm) was more noteworthy than that of the deeper soil (10-30 cm). The genera Chryseolinea and Ohtaekwangia were key microbes involved in C and N cycling in the surface layer and regulated carbon fixation in photosynthetic organisms (K00134), carbon fixation pathways in prokaryotes (K00031), methane metabolism (K11212 and K14941), assimilatory nitrate reduction (K00367), and denitrification (K00376 and K04561). The present study is the first to reveal the potential microbial mechanism of C and N cycling under OMP combined with DOX in different layers, mainly the OMP contamination layer and its upper layer, and the OMP shape plays an important role in this process.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Lei Xiang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
12
|
Bao Z, Shi C, Tu W, Li L, Li Q. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120184. [PMID: 36113644 DOI: 10.1016/j.envpol.2022.120184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution has become a real threat to mankind in the 21st century. On the one hand, soil pollution has reduced the world's arable land area, resulting in the contradiction between the world's population expansion and the shortage of arable land. On the other hand, soil pollution has seriously disrupted the soil ecological balance and significantly affected the biodiversity in the soil. Soil pollutants may further affect the survival, reproduction and health of humans and other organisms through the food chain. Several studies have suggested that biochar has the potential to act as a soil conditioner and to promote crop growth, and is widely used to remove environmental pollutants. Biochar modified by physical, chemical, and biological methods will affect the treatment efficiency of soil pollution, soil quality, soil ecology and interaction with organisms, especially with microorganisms. Therefore, in this review, we summarized several main biochar modification methods and the mechanisms of the modification and introduced the effects of the application of modified biochar to soil pollutant control, soil ecological regulation and soil nutrient regulation. We also introduced some case studies for the development of modified biochars suitable for different soil conditions, which plays a guiding role in the future development and application of modified biochar. In general, this review provides a reference for the green treatment of different soil pollutants by modified biochar and provides data support for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chunzhen Shi
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Wang T, Sun Y, Bai L, Han C, Sun X. Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zero-valent iron aerogel from aqueous solution: Application performance and reaction mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Huang P, Yang W, Johnson VE, Si M, Zhao F, Liao Q, Su C, Yang Z. Selenium-sulfur functionalized biochar as amendment for mercury-contaminated soil: High effective immobilization and inhibition of mercury re-activation. CHEMOSPHERE 2022; 306:135552. [PMID: 35779677 DOI: 10.1016/j.chemosphere.2022.135552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The contamination of soils by mercury (Hg) seriously threatens the local ecological environment and public health. S-functionalized amendments are common remediation technology, yet, Hg re-activation often occurs in the commonly used immobilization remediation by S-functionalized amendments, resulting in an unsatisfactory remediation effect. In this study, a novel FeS-Se functionalized biochar composite (FeS-Se-BC) amendment was prepared and applied for the efficient remediation of Hg-polluted soil. An immobilization efficiency of 99.62% and 99.22% for H2O-extractable Hg and TCLP solution-extractable Hg was achieved with the application of FeS-Se-BC(0.05) after 180 d. The analyses of XPS, Hg-TPD, SEM-EDS demonstrated that excellent remediation performance by FeS-Se-BC resulted from the synergistic effect of FeS and Se to form HgS and HgSe concurrently. In comparison to the treatments of biochar and FeS-functionalized biochar (FeS-BC), FeS-Se-BC promoted the transformation of exchangeable, carbonate-bound, and Fe-Mn oxides-bound Hg fractions into organic material-bound, and residual fractions, effectively reducing the risk of Hg-contaminated soil from a highly dangerous level to a low risk. Furthermore, the introduction of Se clearly inhibited the re-activation of Hg and reduced the release of Hg by 81.12% compared to FeS-BC when the ratio of S2- to Hg was 5: 1 due to the formation of extremely stable HgSe. These results suggest that FeS-Se-BC has good potential for remediation of Hg-polluted soils which provides a new inhibitory idea for Hg re-activation after immobilization.
Collapse
Affiliation(s)
- Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Varney Edwin Johnson
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Changqing Su
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
15
|
Hamid Y, Liu L, Usman M, Naidu R, Haris M, Lin Q, Ulhassan Z, Hussain MI, Yang X. Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129337. [PMID: 35714538 DOI: 10.1016/j.jhazmat.2022.129337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) has been recognized as an effective adsorbent to remove trace elements (TEs) from water. However, low surface functionality and small pore size can limit the adsorption ability of pristine biochar. These limitations can be addressed by using functionalized biochars which are developed by physical, chemical, or biological activation of biochar to improve their physico-chemical properties and adsorption efficiency. Despite the large amount of research concerning functionalized biochars in recent decades, to our knowledge, no comprehensive review of this topic has been published. This review focuses solely on the synthesis, characterization, and applications of functionalized/engineered biochars for removing TEs from water. Firstly, we evaluate the synthesis of functionalized biochars by physical, chemical, and biological strategies that yield the desired properties in the final product. The following section describes the characterization of functionalized biochars using various techniques (SEM, TEM, EDS, XRD, XANES/NEXAFS, XPS, FTIR, and Raman spectroscopy). Afterward, the role of functionalized biochars in the adsorption of different TEs from water/wastewater is critically evaluated with an emphasis on the factors affecting sorption efficiency, sorption mechanisms, fate of sorbed TEs from contaminated environments and associated challenges. Finally, we specifically scrutinized the future recommendations and research directions for the application of functionalized biochar. This review serves as a comprehensive resource for the use of functionalized biochar as an emerging environmental material capable of removing TEs from contaminated water/wastewater.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| | - Lei Liu
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - M Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, Campus Lagoas Marcosende, Vigo 36310, Spain
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Li H, Jiang Q, Li R, Zhang B, Zhang J, Zhang Y. Passivation of lead and cerium in soil facilitated by biochar-supported phosphate-doped ferrihydrite: Mechanisms and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129090. [PMID: 35596987 DOI: 10.1016/j.jhazmat.2022.129090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The massive exploitation and application of heavy metals and rare earth elements (REEs) lead to their exceeding the standard in soil. Herein, a new type of biochar supported phosphorus doped ferrihydrite (P-FH@BC) has been designed and enhance passivation of Pb and Ce in soil. SEM images of P-FH@BC showed P-FH nanoparticles adhered to the natural cavity and large pore diameter on the surface of biochar, which greatly avoided the agglomeration of nanoparticles. The residual state of lead or cerium increased 161.4% or 43.9% by adding 3% P-FH@BC after 90 days of incubation in 500 mg/kg lead or cerium simulated contaminated soil. The passivation of cerium by P-FH@BC is obviously inhibited with the coexistence of lead. The results of P-FH@BC magnetically separated from the soil characterization indicate that complexation, co-precipitation and the formation of secondary minerals mainly contribute to the high efficiency passivation ability of P-FH@BC for lead and cerium. By changing the addition of P-FH@BC, the soil pH can be adjusted and the soil organic matter and P contents can be improved. Moreover, P-FH@BC is an environmentally friendly material without ecotoxicity. And bacterial richness and diversity in soil were improved after passivation of Pb and Ce by adding P-FH@BC.
Collapse
Affiliation(s)
- Hui Li
- School of Resources & Environment, Northeast Agricultural University, Harbin150030, China
| | - Qun Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin150030, China
| | - Ruizhen Li
- School of Resources & Environment, Northeast Agricultural University, Harbin150030, China
| | - Bo Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin150030, China
| | - Jiaxing Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin150030, China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin150030, China.
| |
Collapse
|
17
|
Ren Z, Wang Z, Lv L, Ma P, Zhang G, Li Y, Qin Y, Wang P, Liu X, Gao W. Fe-N complex biochar as a superior partner of sodium sulfide for methyl orange decolorization by combination of adsorption and reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115213. [PMID: 35561493 DOI: 10.1016/j.jenvman.2022.115213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
To enhance the decolorization of methyl orange (MO), Fe-N complex biochar (Fe-N-BC) was developed as an accelerator in the sodium sulfide (Na2S) reduction system. The decolorization effect and mechanism of MO in the Fe-N-BC/Na2S composite system were studied. Surface pore analysis, Raman spectroscopy, FT-IR, XPS, and electrochemical analysis were used to characterize Fe-N-BC and unmodified biochar (BC). These results demonstrated that Fe-N-BC had better adsorption performance (specific surface area 463.46 m2 g-1) and electron transfer capacity than BC. By adding Fe-N-BC to the Na2S reduction system for MO, it was found that the decolorization of MO was greatly improved (increased by 93%). Besides, the effects of critical factors such as the initial concentration of Na2S, the dosage of Fe-N-BC, pH value, and temperature on the decolorization rate of MO were evaluated. Through the analysis of the action mechanism, the cooperation mode of Fe-N-BC and Na2S was to form an infinite cycle of adsorption-reduction-regeneration, so as to realize the rapid decolorization of MO. On the one hand, Fe-N-BC could adsorb MO and Na2S on its surface to increase the contact opportunity; on the other hand, it could act as a redox mediator to accelerate the electron transfer of the reduction reaction. In addition, the degradation of MO by Na2S was also an in-situ regeneration of Fe-N-BC. These findings may provide a feasible method to decolorize azo dyes quickly by cooperating with chemical reducing agents from a new perspective.
Collapse
Affiliation(s)
- Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Zhanxin Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
18
|
Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153956. [PMID: 35189211 DOI: 10.1016/j.scitotenv.2022.153956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the unique structure and superior properties, biochar-based materials, including pristine biochar and composites of biochar with other functional materials, are considered as new generation materials for diverse multi-functional applications, which may be intentionally or unintentionally released to soil. The influencing mechanism of biochar-based material on soil organisms is a key aspect for quantifying and predicting its benefits and trade-offs. This work focuses on the effects of biochar-based materials on soil organisms within the past ten years. 206 sources are reviewed and available knowledge on biochar-based materials' impacts on soil organisms is summarized from a diverse perspective, including the pollutant bioavailability changes in soil, and potential effects of biochar-based materials on soil organisms. Herein, effects of biochar-based materials on the bioavailability of soil organic pollutants are detailed, from the perspective of plant, microorganism, and soil fauna. Potential biological effects of pristine biochar (PBC), metal/metal compounds-biochar composites (MBC), clay minerals-biochar composites (CMBC), and carbonaceous materials-biochar composites (CBC) on soil organisms are highlighted for the first time. And possible mechanisms are presented based on the different characters of biochar-based materials as well as various environmental interactions. Finally, the bottleneck and challenges of risk assessment of biochar-based materials as well as future prospects are proposed. This work not only promotes the development of risk assessment system of biochar-based materials, but broadens the strategy for the design and optimization of environmental-friendly biochar materials.
Collapse
Affiliation(s)
- Qing Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
19
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Li H, Luo X, Tang P, Yan H, Zhao M, Yuan Y, Hou S. Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128584. [PMID: 35359100 DOI: 10.1016/j.jhazmat.2022.128584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
20
|
Li H, Jiang Q, Li R, Zhang R, Jiang S, Zhang J, Qu J, Zhang L, Zhang Y. Facile one-step synthesis of biochar supported iron nanoparticles for enhancing Pb(II) scavenging from water: Performance and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Wang Z, Wang Y, Gomes RL, Gomes HI. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128122. [PMID: 34979385 DOI: 10.1016/j.jhazmat.2021.128122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential element with application in manufacturing from food to medical industries. Water contamination by Se is of concern due to anthropogenic activities. Recently, Se remediation has received increasing attention. Hence, different types of remediation techniques are listed in this work, and their potential for Se recovery is evaluated. Sorption, co-precipitation, coagulation and precipitation are effective for low-cost Se removal. In photocatalytic, zero-valent iron and electrochemical systems, the above mechanisms occur with reduction as an immobilization and detoxification process. In combination with magnetic separation, the above techniques are promising for Se recovery. Biological Se oxyanions reduction has been widely recognized as a cost-effective method for Se remediation, simultaneously generating biosynthetic Se nanoparticles (BioSeNPs). Increasing the extracellular production of BioSeNPs and controlling their morphology will benefit its recovery. However, the mechanism of the microbial production of BioSeNPs is not well understood. Se containing products from both microbial reduction and abiotic methods need to be refined to obtain pure Se. Eco-friendly and cost-effective Se refinery methods need to be developed. Overall, this review offers insight into the necessity of shifting attention from Se remediation to Se recovery.
Collapse
Affiliation(s)
- Zhongli Wang
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Yanming Wang
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Helena I Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Ruj B, Bishayee B, Chatterjee RP, Mukherjee A, Saha A, Nayak J, Chakrabortty S. An economical strategy towards the managing of selenium pollution from contaminated water: A current state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114143. [PMID: 34864517 DOI: 10.1016/j.jenvman.2021.114143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
During the last few decades, contamination of selenium (Se) in groundwater has turned out to be a major environmental concern to provide safe drinking water. The content of selenium in such contaminated water might range from 400 to 700 μg/L, where bringing it down to a safe level of 40 μg/L for municipal water supply employing appropriate methodologies is a major challenge for the global researcher communities. The current review focuses mostly on the governing selenium remediation technologies such as coagulation-flocculation, electrocoagulation, bioremediation, membrane-based approaches, adsorption, electro-kinetics, chemical precipitation, and reduction methods. This study emphasizes on the development of a variety of low-cost adsorbents and metal oxides for the selenium decontamination from groundwater as a cutting-edge technology development along with their applicability, and environmental concerns. Moreover, after the removal, the recovery methodologies using appropriate materials are analyzed which is the need of the hour for the reutilization of selenium in different processing industries for the generation of high valued products. From the literature survey, it has been found that hematite modified magnetic nanoparticles (MNP) efficiently adsorb Se (IV) (25.0 mg/g) from contaminated groundwater. MNP@hematite reduced Se (IV) concentration from 100 g/L to 10 g/L in 10 min at pH 4-9 using a dosage of 1 g/L. In 15 min, the magnetic adsorbent can be recycled and regenerated using a 10 mM NaOH solution. The adsorption and desorption efficiencies were over 97% and 82% for five consecutive cycles, respectively. To encourage the notion towards scale-up, a techno-economic evaluation with possible environmentally sensitive policy analysis has been introduced in this article to introspect the aspects of sustainability. This type of assessment is anticipated to be extremely encouraging to convey crucial recommendations to the scientific communities in order to produce high efficiency selenium elimination and further recovery from contaminated groundwater.
Collapse
Affiliation(s)
- Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Ankita Mukherjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Arup Saha
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
23
|
Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FMG, Kwon EE, Rinklebe J, Yin R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126876. [PMID: 34416699 DOI: 10.1016/j.jhazmat.2021.126876] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guizhou Academy of Tobacco Science, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE 19716 USA
| | - Filip M G Tack
- Ghent University, Department of Green Chemistry and Technology, Ghent, Belgium
| | - Eilhann E Kwon
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Jörg Rinklebe
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
24
|
Cao L, Zhu J, Li N. Selenium-agarose hybrid hydrogel as a recyclable natural substrate for selenium-enriched cultivation of mung bean sprouts. Int J Biol Macromol 2022; 194:17-23. [PMID: 34822824 DOI: 10.1016/j.ijbiomac.2021.11.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 01/16/2023]
Abstract
Selenium (Se) is an essential trace element for human beings and animals. Traditional plant Se enrichment technology suffers from selenium pollution. Herein, environmentally friendly Se-agarose (Se-Agar) hybrid hydrogels are prepared by simply mixing agar with different Se species including selenocarrageenan (SeCA), selenite and Se yeast under heating and stirring for 0.5 h without any other reagent. Such Se-Agar hybrid hydrogels with excellent biocompatibility were used as natural substrates for the cultivation of Se-enriched mung bean sprouts. Compared with Se yeast, SeCA and selenite show a better Se enrichment effect on mung bean sprouts. Furthermore, the growth indices including plant weight and plant height of mung bean sprouts were investigated with different concentrations and sources of Se. Notably, the Se-Agar hybrid hydrogels could be easily regenerated and reused for multiple cycles. The results indicated that Se-Agar hybrid hydrogels as recyclable natural substrates offer a simple, sustainable and affordable strategy for plant Se enrichment.
Collapse
Affiliation(s)
- Lu Cao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Na Li
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
25
|
Guo Z, Yang J, Sarkodie EK, Li K, Deng Y, Meng D, Miao B, Liu H, Liang Y, Yin H, Liu X, Jiang L. Vertical distribution of the toxic metal(loid)s chemical fraction and microbial community in waste heap at a nonferrous metal mining site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113037. [PMID: 34856484 DOI: 10.1016/j.ecoenv.2021.113037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/01/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Over the past few decades, nonferrous mining has produced numerous waste rock and part of the waste that has not been properly treated was generally dumped at roadsides and hill slopes. However, the vertical distributions of toxic metal(loid)s and composition of microbial communities in waste heap and the under-laid pristine soil are rarely studied. In this work, the fraction-related distributions of toxic metal(loid)s were investigated at a waste heap profile and the indigenous microbial assemblages were also analyzed by Illumina sequencing of 16 s rRNA genes. Results showed that compared to the under-laid pristine soil, content of toxic metal(loid)s, especially Cd, As and Pb, in waste rock layer were higher. Most of As in subsoil existed as non-specifically sorbed and specifically-sorbed fractions, which could be ascribed to the migration from the upper layer. The mobility was significantly correlated with Eh, EC, clay content, CEC and the total content of metal(loid)s. Phyla Proteobacteria, Acidobacteria and Firmicutes dominated the microbial communities. The microbial community compositions at the genus level were similar, but their relative abundances were mainly influenced by pH, CEC, Eh, SOM, and bioavailability content of toxic metal(loid)s. Besides, microbial functions of elements (S, Fe, Mn and As) oxidation/reduction and metabolites (siderophore, biosurfactant, organic acid, phosphatase and urease) potentially were used for pollutants bioremediation.
Collapse
Affiliation(s)
- Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
26
|
Guo Y, Li X, Liang L, Lin Z, Su X, Zhang W. Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126605. [PMID: 34329110 DOI: 10.1016/j.jhazmat.2021.126605] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale zero-valent iron (S-nZVI) has shown excellent removal capacity for the removal of cadmium (Cd) in aqueous phase. Herein, the effectiveness and the mechanism of S-nZVI for the remediation of Cd contaminated soil were investigated for the first time. The results of sequential extraction procedures (SEP) showed that the exchangeable (EX) Cd was decreased by over 97.6% at the optimal dosage of 5 g kg-1 S-nZVI during 30 d incubation and converted to less available Cd such as iron-manganese oxides-bound (OX) and organic matter-bound (OM) fractions. pH has negligible effect on the immobilization of Cd in soil, since OX fraction was stabilized in the range of 72-92% at initial soil pH range from 5.3 to 7.5. SEM-EDS analysis of the separated magnetic particles implied that Cd was successfully enriched on S-nZVI and the distribution of Cd was closely related to Fe, S, and O. CdO and CdS was confirmed as the key products for Cd immobilization in soil. Meanwhile, the S-nZVI was oxided to α-FeOOH, γ-FeOOH, and γ-Fe2O3. The existence of CdO was visibly related to the iron oxides, suggesting the synergetic immobilization effect by iron oxides. Overall, S-nZVI was promising for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yiqing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Li Liang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xintai Su
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Wenchao Zhang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
27
|
Isotypic heterojunction based on Fe-doped and terephthalaldehyde-modified carbon nitride for improving photocatalytic degradation with simultaneous hydrogen production. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Zhang X, Li X, Jin Z, Tumrani SH, Ji X. Selenium in wastewater can be adsorbed by modified natural zeolite and reused in vegetable growth. Sci Prog 2021; 104:368504211019845. [PMID: 34030520 PMCID: PMC10364955 DOI: 10.1177/00368504211019845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modified natural zeolites (MNZ) are widely used in pollutant removal, but how to address these MNZ that have adsorbed pollutants must be considered. Selenium is an essential trace element for metabolism and is also a water pollutant. Selenium is adsorbed in the water by MNZ in this study first. Then the Brassica chinensis L. was planted in the soil which contains the MNZ loaded with selenium (MNZ-Se) to explore selenium uptake. MNZ-Se release tests in water and soil were also considered. The results showed the following: (1) The maximum adsorption capacity of MNZ for selenium is 46.90 mg/g. (2) Water release experiments of MNZ-Se showed that regardless of how the pH of the aqueous solution changes, the trend of the release of selenium from MNZ-Se in aqueous solution is not affected and first decreases before stabilizing. (3) Soil release experiments of MNZ-Se showed that the selenium content in the soil increased and reached the concentration in the standard of selenium-rich soil. Addition amount and soil pH value will affect the release ratio. The release ratio of MNZ-Se in the water was higher than that in the soil. (4) With an increase in the soil MNZ-Se content, the selenium content in the soil and B. c increases. Above all, MZN can be a good medium for water pollutant removal and soil improvement.
Collapse
Affiliation(s)
- Xiao Zhang
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| | - Xinyuan Li
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| | - Zihao Jin
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| | | | - Xiaodong Ji
- School of soil and water conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
Liu S, Wang J, Pu S, Blagodatskaya E, Kuzyakov Y, Razavi BS. Impact of manure on soil biochemical properties: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141003. [PMID: 32758749 DOI: 10.1016/j.scitotenv.2020.141003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 05/25/2023]
Abstract
Manure application mitigates land degradation and improves soil fertility. Despite many individual studies on manure effects, a comprehensive overview of its consequences for a broad range of soil properties is lacking. Through a meta-analysis of 521 observations spanning the experiments from days after pulse addition up to 113 years with continues manure input, we quantified and generalized the average responses of soil biochemical properties depending on climate factors, management, soil, and manure characteristics. Large increase of pools with fast turnover (microbial carbon (C) and nitrogen (N): +88% and +84%, respectively) compared to stable organic matter pools (+27% for organic C, and +33% for total N) reflects acceleration of C and N cycles and soil fertility improvement. Activities of enzymes acquiring C-, energy-, N-, phosphorus- and sulfur were 1.3-3.3 times larger than those in soil without manure for all study durations included. Soil C/N ratio remained unaffected, indicating the stability of coupled C and N cycles. Microbial C/N ratio decreased, indicating a shift towards bacterial domination, general increase of C and N availability and acceleration of element cycling. Composted manure or manure without mineral fertilizers induced the greatest increase compared to non-composted manure or manure with mineral fertilizers, respectively, in most biochemical properties. The optimal manure application rate for adjusting proper soil pH was 25 Mg ha-1 year-1. Among manure types, swine manure caused the greatest increase of N-cycle-related properties: microbial N (+230%), urease (+258%) and N-acetyl-β-D-glucosaminidase (+138%) activities. Manure application strategies should avoid P and N losses and pollution via runoff, leaching or gaseous emissions due to fast mineralization and priming of soil organic matter. In conclusion, manure application favors C accumulation and accelerates nutrient cycling by providing available organic substances and nutrients and thus increasing enzyme activities.
Collapse
Affiliation(s)
- Shibin Liu
- College of Ecology and Environment, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Shengyan Pu
- College of Ecology and Environment, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Saale, Germany; Agro-Technology Institute, RUDN University, Moscow, Russia
| | - Yakov Kuzyakov
- Agro-Technology Institute, RUDN University, Moscow, Russia; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian- Albrecht-University of Kiel, Germany
| |
Collapse
|
30
|
O'Connor D, Hou D. Sustainable remediation and revival of brownfields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140475. [PMID: 32887005 DOI: 10.1016/j.scitotenv.2020.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Wang L, Bolan NS, Tsang DCW, Hou D. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137584. [PMID: 32145631 DOI: 10.1016/j.scitotenv.2020.137584] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Biochar is a "green" material that has been widely used in environmental applications for its capability to remove or immobilize contaminants in different environmental media (i.e. soil, water and air) and mitigate climate change. In this study, the feasibility of using KOH enhanced biochar for soil Cd and Pb stabilization was investigated, and the effects of pyrolysis temperature and alkaline concentrations for modification were explored. Field-emission scanning electron microscopy (FESEM), N2 adsorption-desorption, and Fourier Transform Infrared Spectroscopy (FTIR) analyses were conducted to reveal the influence on biochar physiochemical properties. The immobilization performances were examined through Toxicity Characteristics Leaching Procedure (TCLP), and Response Surface Methodology (RSM) was adopted to visualize the results from leaching tests. The stabilization mechanisms of alkaline enhanced biochars were investigated using Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), Tessier sequential extraction method and X-ray diffraction (XRD) analyses. The results indicated that rice husk biochar pyrolyzed at a relatively low temperature (i.e., 300 °C) and activated by moderate alkaline concentrations (i.e., 1 M or 3 M KOH) rendered optimum stabilization performance. KOH activation was a double-edged sword, with high alkaline concentrations destroying biochar's cell structures. Moreover, the integration of TOF-SIMS, XRD and sequential leaching method shed lights on the underlying mechanisms involved in metal stabilization. Surface complexation between toxic metals and oxygen-containing functional groups rather than liming or precipitation was proven to be the fundamental stabilization mechanism.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|