1
|
Yang J, Ren L, Hua C, Tian Y, Yong X, Fang S. Identification of toxic metal contamination in surface sediments of the Xiaoqing River under a long-term perspective (1996-2020): Risks, sources and driving factors. ENVIRONMENTAL RESEARCH 2024; 251:118613. [PMID: 38432570 DOI: 10.1016/j.envres.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The contamination of sediments by toxic metals poses a significant threat to both river ecosystems and human health. In this study, the geo-accumulation index (Igeo), biotoxicity evaluation method, and potential ecological risk index (RI) were employed to analyze the contamination level, biotoxicity risk, and potential ecological risk of toxic metals in surface sediments of the Xiaoqing River. To identify toxic metal sources, Spearman correlation and principal component analysis with multiple linear regression analysis (PCA-MLR) were employed. Additionally, redundancy analysis (RDA) was utilized to investigate potential driving factors affecting toxic metal accumulation in sediments. The results revealed that the levels of the five investigated metals (Cr, Pb, As, Hg, and Cd) showed constant fluctuations during the period 1996-2020. The midstream was found to be more polluted than the upstream and downstream. In the research area, Hg was identified as the primary contaminant with high levels of contamination, posing a biotoxicity risk and potential ecological risk. Pollution sources were identified for two periods: A (1996-2010) and B (2011-2020), with industrial, agricultural, traffic, and natural sources being the main contributors. During period A, industrial sources accounted for the highest proportion (40.8%), followed by agricultural sources (36.6%), and geological natural sources (22.6%). During period B, agricultural sources accounted for the highest proportion (42%), followed by industrial and traffic sources (32.4%), and geological natural sources (25.6%). The distribution of toxic metals in the basin was significantly influenced by water pH, sediment organic matter, population density, and per capita GDP. The study results provide fundamental data for preventing pollution and managing water resources contaminated with toxic metals in the sediments of the Xiaoqing River in Jinan. Additionally, it serves as a reference for analyzing related ecological and environmental issues in the basin.
Collapse
Affiliation(s)
- Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Chunyu Hua
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yueru Tian
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xian Yong
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shumin Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
2
|
Zhu J, Wei R, Wang X, Jiang X, Wang M, Yang Y, Yang L. The ppk-expressing transgenic rice floating bed improves P removal in slightly polluted water. ENVIRONMENTAL RESEARCH 2023; 231:116261. [PMID: 37245571 DOI: 10.1016/j.envres.2023.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
With significant economic advantages, the plant floating bed has been widely utilized in the ecological remediation of eutrophic water because of the excessive phosphorus (P) and nitrogen discharge in China. Previous research has demonstrated that polyphosphate kinase (ppk)-expressing transgenic rice (Oryza sativa L. ssp. japonica) (ETR) can increase the P absorption capacity to support rice growth and boost rice yield. In this study, the floating beds of ETR with single copy line (ETRS) and double copy line (ETRD) are built to investigate their capacity to remove aqueous P in slightly polluted water. Compared with the wild type Nipponbare (WT) floating bed, the ETR floating beds greatly reduce the total P concentration in slightly polluted water though the ETR floating beds have the same removal rates of chlorophyll-a, NO3--N, and total nitrogen in slightly polluted water. The P uptake rate of ETRD on the floating bed is 72.37% in slightly polluted water, which is higher than that of ETRS and WT on the floating beds. Polyphosphate (polyP) synthesis is a critical factor for the excessive phosphate uptake of ETR on the floating beds. The synthesis of polyP decreases the level of free intracellular phosphate (Pi) in ETR on the floating beds, simulating the phosphate starvation signaling. The OsPHR2 expression in the shoot and root of ETR on the floating bed increased, and the corresponding P metabolism gene expression in ETR was changed, which promoted Pi uptake by ETR in slightly polluted water. The Pi accumulation further promoted the growth of ETR on the floating beds. These findings highlight that the ETR floating beds, especially ETRD floating bed, have significant potential for P removal and can be exploited as a novel method for phytoremediation in slightly polluted water.
Collapse
Affiliation(s)
- Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ruping Wei
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yicheng Yang
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, United States
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Shan A, Huang L, Chen D, Lin Q, Liu R, Wang M, Kang KJ, Pan M, Wang G, He Z, Yang X. Trade-offs between fertilizer-N availability and Cd pollution potential under crop straw incorporation by 15 N stable isotopes in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51075-51088. [PMID: 36807262 DOI: 10.1007/s11356-022-25085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 04/16/2023]
Abstract
Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S40), N fertilization with 60% straw (S60), and N fertilization with 100% straw (S100) to improve N use efficiency as well as reduced Cd distribution in rice. The crop yields were largely enhanced by fertilization ranging from 13 to 52% over the straw addition treatments. Compared with ck, N fertilizer input significantly decreased soil pH, while DOC contents were raised in response to straw amendment, reaching the highest in S60 and S100 treatments, respectively. Moreover, straw addition substantially impacted the Cd accumulation and altered the bacterial community structure. The soil NH4+-N concentration under S0 performed the maximum in yellow soil, while the minimum in black soil compared to straw-incorporated pots. In addition, the soil NO3--N concentration in straw-incorporated plots tended to be higher than that in straw-removed plots in both soils, indicating that crop straw triggering the N mineralization was associated with native soil N condition. Furthermore, the NUE increased with 15 N uptake in the plant, and the residual 15 N in soil was increased by 26.8% with straw addition across four straw application rates. Overall, our study highlights the trade-offs between straw incorporation with N fertilizer in eliminating potential Cd toxicity, increasing fertilizer-N use efficiencies and help to provide a feasible agricultural management.
Collapse
Affiliation(s)
- Anqi Shan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Lukuan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Qiang Lin
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Rongjie Liu
- Technical Extension Station of Soil Fertilizer and Rural Energy, Ninghai, Ningbo, People's Republic of China
| | - Mei Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Kyong Ju Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Gang Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Shaabani Z, Esmaili-Sari A, Moradi AM, Taghavi L, Farsad F. Possible health risk assessment for heavy metal concentrations in water, sediment, and fish species and Turkmen pregnant women's biomonitoring in Miankaleh Peninsula, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37187-37203. [PMID: 35032266 DOI: 10.1007/s11356-021-17894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the human biomonitoring of heavy metals in the water, sediments, and tissues of mostly consumed fish species using Turkmen pregnant women's biomarkers in winter 2019, at the Miankaleh Peninsula, north of Iran. Metal concentrations were measured in various fish organs as well as pregnant women's blood, hair, and nail as biological indicators. For this purpose, a total of 20 water and sediment, 14 fish, and 16 human samples were collected. Inductively coupled plasma mass spectrometry (ICP-MS) was used to evaluate the concentration of Cr, Co, Cu, As, Hg, and Pb. Results showed metals with the highest concentrations as Cu and Cr in water (93.35 and 80.91 µg/l, respectively), Hg and Pb in sediment (7.40 µg/g for both), Cu and Pb in the liver (27.00 and 18.9 µg/g for C. carpio; 1414 and 31.7 µg/g for L. auratus), muscle (10.00 and 18.80 for C. carpio; 37.20 and 8.27 µg/g for L. auratus), and skin (26.40 and 9.90 for C. carpio; 10.80 and 11.74 µg/g for L. auratus). In addition, Cu, in pregnant women samples, had the highest values at 2.53 mg/l, 8.87, 36.46, and 29.04 µg/g for blood, hair, fingernail, and toenail, respectively. However, Co showed the lowest concentration in all studied samples. Fish liver and fingernail of pregnant women did reveal the highest heavy metal accumulation, whereas fish muscle and blood of pregnant women had the lowest accumulated heavy metals. The concentration of Hg in water, sediment, fish muscle, and women's blood and hair exceeded the limits suggested by various organizations. Therefore, this study highlighted that heavy metal concentration, in particular Hg, in water, sediments, and fish is a serious risk to the health of local inhabitants who rely on fisheries products and recommended that necessary information should be provided to warn Turkmen pregnant women in consumption of Hg-contaminated fish in this area.
Collapse
Affiliation(s)
- Zahra Shaabani
- Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Esmaili-Sari
- Department of Environment, Faculty of Natural Resources and Marine Science Tarbiat Modares University, Tehran, Iran.
| | - Ali Mashinchian Moradi
- Department of Marine Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lobat Taghavi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Forough Farsad
- Department of Environmental Science, Faculty of Natural Resources, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
5
|
A Multi-Medium Analysis of Human Health Risk of Toxic Elements in Rice-Crayfish System: A Case Study from Middle Reach of Yangtze River, China. Foods 2022; 11:foods11081160. [PMID: 35454747 PMCID: PMC9024938 DOI: 10.3390/foods11081160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rice-crayfish system has been extensively promoted in China in recent years. However, the presence of toxic elements in soil may threaten the quality of agricultural products. In this study, eight toxic elements were determined in multi-medium including soil, rice, and crayfish from the rice-crayfish system (RCS) and conventional rice culture (CRC) area. Crayfish obtained a low level of toxic element content, and mercury (Hg) in rice from RCS showed the highest bioavailability and mobility. Health risk assessment, coupled with Monte Carlo simulation, revealed that the dietary exposure to arsenic (As) and Hg from rice and crayfish consumption was the primary factor for non-carcinogenic risk, while Cd and As were the dominant contributors to the high carcinogenic risk of rice intake for adults and children, respectively. Based on the estimated probability distribution, the probabilities of the total cancer risk (TCR) of rice intake for children from RCS were lower than that from CRC.
Collapse
|
6
|
Choquenaira-Quispe C, Angulo Vargas SJ, Rojas-Tamata K, Yucra Condori HR, Villanueva Salas JA. Quantification and health risk assessment of lead and cadmium in wheat, rice, and their processed products from Peru. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:297-304. [PMID: 35277121 DOI: 10.1080/03601234.2022.2049152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Peru, rice grains, wheat, and their processed products are accessible due to their low cost; however, their sale does not have quality certification, so their safety is not guaranteed. This study quantified lead (Pb) and cadmium (Cd) by voltammetry in 16 samples of grains and processed products from four markets in Arequipa (Altiplano, Andrés Avelino Cáceres, Los Incas, and San Camilo) and evaluated their potential health risk. The maximum concentrations of Pb in rice, wheat, and their processed products were 4.821 mg/kg, 7.962 mg/kg, 4.717 mg/kg, and 6.440 mg/kg, respectively; only seven samples showed Cd. All samples exceeded the maximum level (ML) for Pb, and four samples exceeded the ML for Cd established by the Codex Alimentarius (0.200 mg/kg); the rice product had the highest concentration of Pb and Cd. In relation to the estimation of potential health risk, the estimated daily intake (EDI), target hazard quotient (THQ), and target cancer risk (TR), showed that the consumption of all processed rice and wheat products (except Andrés Avelino Cáceres rice and San Camilo wheat) represent a health threat associated with an increased probability of cancer development.
Collapse
Affiliation(s)
| | - Sheyla J Angulo Vargas
- Departamento académico de Ingeniería Química, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | | | - Harry R Yucra Condori
- Departamento académico de Ingenieria de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | | |
Collapse
|
7
|
Aksorn S, Kanokkantapong V, Polprasert C, Noophan PL, Khanal SK, Wongkiew S. Effects of Cu and Zn contamination on chicken manure-based bioponics: Nitrogen recovery, bioaccumulation, microbial community, and health risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114837. [PMID: 35276563 DOI: 10.1016/j.jenvman.2022.114837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
In bioponics, although chicken manure is an efficient substrate for vegetable production and nitrogen recovery, it is often contaminated with high Cu and Zn levels, which could potentially cause bioaccumulation in plants and pose health risks. The objectives of this study were to assess nitrogen recovery in lettuce- and pak choi-based bioponics with Cu (50-150 mg/kg) and Zn (200-600 mg/kg) supplementation, as well as their bioaccumulation in plants, root microbial community, and health risk assessment. The supplementation of Cu and Zn did not affect nitrogen concentrations and plant growth (p > 0.05) but reduced nitrogen use efficiency. Pak choi showed higher Cu and Zn bioconcentration factors than lettuce. Bacterial genera Ruminiclostridium and WD2101_soil_group in lettuce roots and Mesorhizobium in pak choi roots from Cu and Zn supplemented conditions were significantly higher (p < 0.05) than controls, suggesting microbial biomarkers in plant roots from Cu and Zn exposure bioponics depended on plant type. Health risk assessment herein revealed that consumption of bioponic vegetables with Cu and Zn contamination does not pose long-term health risks (hazard index <1) to children or adults, according to the US EPA. This study suggested that vegetable produced from chicken manure-based bioponics has low health risk in terms of Cu and Zn bioaccumulation and could be applied in commercial-scale system for nutrient recovery from organic waste to vegetable production; however, health risk from other heavy metals and xenobiotic compounds must be addressed.
Collapse
Affiliation(s)
- Satja Aksorn
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Special Task Force for Activating Research (STAR) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Li Q, Zhu K, Liu L, Sun X. Pollution-Induced Food Safety Problem in China: Trends and Policies. Front Nutr 2021; 8:703832. [PMID: 34859024 PMCID: PMC8631815 DOI: 10.3389/fnut.2021.703832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Based on systematic literature study and policy document analysis, this paper investigates the environmental pollution-induced food safety problem in China, including the impact of environmental pollution on food safety and the policy response of Chinese government since 1970's. The results show that, to different degrees, food safety of China is affected by large but inefficient chemical fertilizer and pesticides residue (although the consumption began to decline after around 2015), cropland heavy metal pollution (especially cadmium), water pollution, and high ozone concentration. The evolution of pollution-induced food safety policies of China can be divided into four stages, i.e., preparation stage (1974–1994), construction stage (1995–2005), elaboration stage (2006–2013), and intensification stage (2014–). Through the four stages, the increasingly stringent policy system has been featured by “from supply-safety balance to safety first,” “from multi-agency management to integrated management,” and “from ex post supervision to ex ante risk control.” To further prevent pollution and control food quality, more collaborations between the agricultural and environmental agencies and more specific policies should be anticipated.
Collapse
Affiliation(s)
- Qianhui Li
- School of Public Administration, Sichuan University, Chengdu, China
| | - Kunyang Zhu
- School of Public Administration, Sichuan University, Chengdu, China
| | - Lei Liu
- School of Public Administration, Sichuan University, Chengdu, China
| | - Xinyi Sun
- School of Public Administration, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Román-Ochoa Y, Choque Delgado GT, Tejada TR, Yucra HR, Durand AE, Hamaker BR. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. CHEMOSPHERE 2021; 274:129792. [PMID: 33556663 DOI: 10.1016/j.chemosphere.2021.129792] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals (HMs) in crops and processed foods are a concern and pose a potential serious health hazard. This study investigated possible presence of HMs in grains and processed products in the Region of Arequipa in Peru. Concentrations of Cd, As, Sn, Pb, and Hg were determined for commonly consumed grains in 18 districts of the region and processed products from 3 popular markets of Arequipa city, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). HM concentrations above the Codex General Standard limits were found for As (0.17 mg kg-1) and Cd (0.11 mg kg-1) in cereal grains. Elevated Pb concentrations of 0.55, 0.75, and 5.08 mg kg-1 were found for quinoa, maize, and rice products, respectively; and attributed to processing conditions. The Total Hazard Index (HI) for polished rice and rice products had values between 1 and 10, showing non-carcinogenic adverse effects. Total Target Cancer Risk (TRT) and uncertainty analysis of percentile P90% for polished rice and quinoa products gave values above permissible limit of 10-4, indicating an unacceptable cancer risk. The Nemerow Composite Pollution Index method (NCPI) showed that processed products had a significant pollution level due to the presence of Pb. While most crops grains had acceptable low HM levels, this is the first report of concerning HM concentrations in some consumed grains and processed products in southern Peru and indicates the necessity to find ways to decrease certain toxic metals in foods.
Collapse
Affiliation(s)
- Yony Román-Ochoa
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| | | | - Teresa R Tejada
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Harry R Yucra
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Antonio E Durand
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Wu H, Xu C, Wang J, Xiang Y, Ren M, Qie H, Zhang Y, Yao R, Li L, Lin A. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112046. [PMID: 33607337 DOI: 10.1016/j.ecoenv.2021.112046] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
Long-term retention and accumulation of heavy metals in rivers pose a great threat to the stability of ecosystems and human health. In this study, Beiyun River was taken as the example to quantitatively identify pollution sources and assess the pollution source-oriented health risk. A total of 8 heavy metals (Mn, Ni, Pb, Zn, As, Cr, Cd, and Cu) in Beiyun River were measured. Ordinary kriging (OK) and inverse distance weight (IDW) methods were used to predict the distribution of heavy metals. The results showed that the OK method is more accurate, and heavy metal pollution in the midstream and downstream is much more serious than that in the upstream. Principal component analysis-multiple linear regressions (PCA-MLR) and positive matrix factorization (PMF) methods were used to quantitatively identify pollution sources. The coefficient of determination (R2) of PMF is closer to 1, and the analyzed pollution source is more refined. Furthermore, the result of source identification was imported into the health risk assessment to calculate the hazard index (HI) and carcinogenic risk (CR) of various pollution sources. The results showed that the HI and CR of As and Ni to local residents were serious in the Beiyun River. Industrial activities (23.0%) are considered to be the largest contribution of heavy metals in Beiyun River, followed by traffic source (17%), agricultural source (16%), and atmospheric deposition (16%). The source-oriented risk assessment indicated that the largest contribution of HI and CR is agricultural source in the Beiyun River, followed by industrial activities. This study provides a "target" for the precise control of pollution sources, which is of great significance for improving the fine management of the water environment in the basin.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ruihua Yao
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
11
|
Tong R, Fang Y, Zhang B, Wang Y, Yang X. Monitoring and evaluating the control effect of dust suppressant on heavy metals based on ecological and health risks: a case study of Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14750-14763. [PMID: 33219505 DOI: 10.1007/s11356-020-11648-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Dust suppressant is widely applied to control the road dust pollution, while the unified statement on its control effect has not been obtained. To fill this gap, an experiment was conducted at four typical sites in Beijing, where dust suppressant and water were sprayed at test and control sites, respectively. Samples were collected to analyze the concentrations of PM2.5, PM10, and heavy metals. With the application of potential ecological risk index and probabilistic health risk assessment, the ecological and health risks of heavy metals were obtained. Results showed that compared with control sites, the total concentrations of heavy metals in PM10 and PM2.5 at test sites decreased by 1555.40 and 784.95 ng/m3 in 14 days, with the suppression rate of 11.95% and 12.06%. Especially, the total ecological risks of heavy metals in PM10 reduced from 165.77 to 143.64, with their ecological hazard level changed from medium to slight. The carcinogenic risks of PM2.5 and PM10 reduced by 0.60E-05 and 1.52E-06, respectively. As for the non-carcinogenic risks, there were a reduction of 5.78% and 12.28% for PM2.5 and PM10, respectively. Notably, the ecological risk of Pb was the highest; Cr and Zn contributed the most to carcinogenic and non-carcinogenic risk. Finally, to mitigate road dust pollution from an integration perspective, some preventive measures were proposed.
Collapse
Affiliation(s)
- Ruipeng Tong
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Yingqian Fang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Boling Zhang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Yiran Wang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Xiaoyi Yang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China.
| |
Collapse
|