1
|
Zhang L, Shi A, Yuan C, Wang S, Zhou Y, Liu X, Chu J, Yao X. Microplastics impacts the toxicity of antibiotics on Pinellia ternata: An exploration of their effects on photosynthesis, oxidative stress homeostasis, secondary metabolism, the AsA-GSH cycle, and metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109883. [PMID: 40199164 DOI: 10.1016/j.plaphy.2025.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Antibiotics and microplastics (MPs) are two new types of contaminants that are widely existent in agricultural systems. MPs could act as carriers of antibiotics, and affect the bioavailability and degradation of antibiotics, causing a combined effect on plant growth. The aim of the present experiment was to explore the effects of the treatments of oxytetracycline (OTC, 100 mg kg-1) alone and in combination with polyethylene microplastics (PE-MPs, 0.1 %, 1 %, 3 %) on P. ternata phenotypic parameters, photosynthetic system, reactive oxygen species (ROS), secondary metabolism, ascorbate-glutathione (AsA-GSH) cycle, and metabolomics. Results demonstrated that exposure to OTC alone reduced P. ternata fresh weight by causing oxidative damage, reducing photosynthetic pigment and secondary metabolite contents. OTC + MP0.1 group alleviated OTC stress to P. ternata by increasing photosynthetic pigment contents and antioxidant enzyme activities. OTC + MP3 group significantly reduced plant height of P. ternata. In addition, metabolomics analysis showed that OTC treatment interfered with pantothenate and CoA biosynthesis. The OTC + MP0.1 group activated pantothenate and CoA biosynthesis and glutathione metabolism. The significance of this study lies in clarifying the effects of OTC on medicinal plants and whether its influence mechanism is regulated by the concentration of MPs.
Collapse
Affiliation(s)
- Lulu Zhang
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Aoyue Shi
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Chengwei Yuan
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Shuhan Wang
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yanru Zhou
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xuze Liu
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jianzhou Chu
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xiaoqin Yao
- The School of Life Sciences, Hebei University, Baoding, 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China.
| |
Collapse
|
2
|
Guo Z, Liu J, He L, Rodrigues JLM, Chen N, Zuo Y, Wang N, Zhu X, Sun Y, Zhang L, Song Y, Zhang D, Yuan F, Song C, Xu X. Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils. GLOBAL CHANGE BIOLOGY 2024; 30:e17619. [PMID: 39660584 DOI: 10.1111/gcb.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0-30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0-30 cm and 0-100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0-30 cm and 222.75 Pg C for 0-100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the predominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome-level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.
Collapse
Affiliation(s)
- Ziyu Guo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- Biology Department, San Diego State University, San Diego, California, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyuan He
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California Davis, Davis, California, USA
| | - Ning Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yunjiang Zuo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Nannan Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xinhao Zhu
- Biology Department, San Diego State University, San Diego, California, USA
| | - Ying Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Lihua Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yanyu Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Dengjun Zhang
- UiS School of Business and Law, University of Stavanger, Stavanger, Norway
| | - Fenghui Yuan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Changchun Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Li M, Wang S, Liu D, Losic D, Zhao N, Tian Q, Shen Y, Yu R, Liu H, Ma Q, Yuan P. Green synthesis of diatom-allophane bio-nanocomposites for highly efficient oxytetracycline adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175641. [PMID: 39168336 DOI: 10.1016/j.scitotenv.2024.175641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The extensive use of the antibiotic oxytetracycline (OTC) has led to considerable environmental contamination and other negative impacts, prompting an urgent need for a green, effective, and innovative OTC adsorption material. In this study, diatom-allophane bio-nanocomposites were synthesized using a simple and eco-friendly method, yielding a homogeneous coating of allophane nanoparticles on diatom surfaces. The resultant bio-nanocomposites were found to have hierarchically porous structures and abundant active sites derived from successful allophane loading and dispersion on diatom surfaces. The OTC adsorption capacity of this novel adsorbent is remarkable (219.112 mg·g-1), surpassing the capacities of raw allophane and diatoms by >5 and 10 times, respectively. Mechanistically, OTC adsorption by the bio-nanocomposites was found to be driven primarily by chemisorption through a process involving complexation between the amide and amino groups on OTC and the aluminum hydroxyl and carboxyl groups on the adsorbent surface. Electrostatic interactions and hydrogen bonding also contribute significantly to OTC capture. Furthermore, the diatom-allophane bio-nanocomposites exhibit excellent performance over a wide pH range (4-7), in the presence of various cations (Na+, K+, Ca2+, Mg2+) and anions (Cl-, NO3-, SO42-), and in real water bodies. These findings demonstrate the potential of the diatom-allophane bio-nanocomposite as a green, efficient, and promising biological-mineral adsorbent for environmental remediation, leveraging the combined utilization of biological and mineral resources.
Collapse
Affiliation(s)
- Mengyuan Li
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shun Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; State Key Laboratory of Marine Environmental Science (MEL), Xiamen University, Xiamen 361012, China.
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ning Zhao
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Tian
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China
| | - Yuguo Shen
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongda Yu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Liu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyi Ma
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Hashemi E, Norouzi MM, Sadeghi-Kiakhani M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119548. [PMID: 38977156 DOI: 10.1016/j.envres.2024.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The term "biomass" encompasses all substances found in the natural world that were once alive or derived from living organisms or their byproducts. These substances consist of organic molecules containing hydrogen, typically oxygen, frequently nitrogen, and small amounts of heavy, alkaline earth and alkali metals. Magnetic biochar refers to a type of material derived from biomass that has been magnetized typically by adding magnetic components such as magnetic iron oxides to display magnetic properties. These materials are extensively applicable in widespread areas like environmental remediation and catalysis. The magnetic properties of these compounds made them ideal for practical applications through their easy separation from a reaction mixture or environmental sample by applying a magnetic field. With the evolving global strategy focused on protecting the planet and moving towards a circular, cost-effective economy, natural compounds, and biomass have become particularly important in the field of biochemistry. The current research explores a comparative analysis of the versatility and potential of biomass for eliminating dyes as a sustainable, economical, easy, compatible, and biodegradable method. The elimination study focused on the removal of various dyes as pollutants. Various operational parameters which influenced the dye removal process were also discussed. Furthermore, the research explained, in detail, adsorption kinetic models, types of isotherms, and desorption properties of magnetic biochar adsorbents. This comprehensive review offers an advanced framework for the effective use of magnetic biochar, removing dyes from textile wastewater.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran.
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran
| | - Mousa Sadeghi-Kiakhani
- Institute for Color Science and Technology, Department of Organic Colorants, P.O. Box: 16765-654, Tehran, Iran
| |
Collapse
|
5
|
Wang C, Kuzyakov Y. Soil organic matter priming: The pH effects. GLOBAL CHANGE BIOLOGY 2024; 30:e17349. [PMID: 38822665 DOI: 10.1111/gcb.17349] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Priming of soil organic matter (SOM) decomposition by microorganisms is a key phenomenon of global carbon (C) cycling. Soil pH is a main factor defining priming effects (PEs) because it (i) controls microbial community composition and activities, including enzyme activities, (ii) defines SOM stabilization and destabilization mechanisms, and (iii) regulates intensities of many biogeochemical processes. In this critical review, we focus on prerequisites and mechanisms of PE depending on pH and assess the global change consequences for PE. The highest PEs were common in soils with pH between 5.5 and 7.5, whereas low molecular weight organic compounds triggered PE mainly in slightly acidic soils. Positive PEs up to 20 times of SOM decomposition before C input were common at pH around 6.5. Negative PEs were common at soil pH below 4.5 or above 7 reflecting a suboptimal environment for microorganisms and specific SOM stabilization mechanisms at low and high pH. Short-term soil acidification (in rhizosphere, after fertilizer application) affects PE by: mineral-SOM complexation, SOM oxidation by iron reduction, enzymatic depolymerization, and pH-dependent changes in nutrient availability. Biological processes of microbial metabolism shift over the short-term, whereas long-term microbial community adaptations to slow acidification are common. The nitrogen fertilization induced soil acidification and land use intensification strongly decrease pH and thus boost the PE. Concluding, soil pH is one of the strongest but up to now disregarded factors of PE, defining SOM decomposition through short-term metabolic adaptation of microbial groups and long-term shift of microbial communities.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
6
|
Mu Y, Tang B, Cheng X, Fu Y, Huang W, Wang J, Ming D, Xing L, Zhang J. Source apportionment and predictable driving factors contribute to antibiotics profiles in Changshou Lake of the Three Gorges Reservoir area, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133522. [PMID: 38244452 DOI: 10.1016/j.jhazmat.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Lakes, crucial antibiotic reservoirs, lack thorough exploration of quantitative relationships between antibiotics and influencing factors. Here, we conducted a comprehensive year-long investigation in Changshou Lake within the Three Gorges Reservoir area, China. The concentrations of 21 antibiotics spanned 35.6-200 ng/L, 50.3-348 ng/L and 0.57-57.9 ng/g in surface water, overlying water and sediment, respectively. Compared with abundant water period, surface water and overlying water displayed significantly high antibiotic concentrations in flat and low water periods, while sediment remained unchanged. Moreover, tetracyclines, fluoroquinolones and erythromycin posed notable risks to algae. Six primary sources were identified using positive matrix factorization model, with aquaculture contributing 21.2%, 22.7% and 25.4% in surface water, overlying water and sediment, respectively. The crucial predictors were screened through machine learning, redundancy analysis and Mantel test. Our findings emphasized the pivotal roles of water quality parameters, including water temperature (WT), pH, dissolved oxygen, electrical conductivity, inorganic anions (NO3⁻, Cl⁻ and F⁻) and metal cations (Ca, Mg, Fe, K and Cr), with WT influencing greatest. Total nitrogen (TN), cation exchange capacity, K, Al and Cd significantly impacted sediment antibiotics, with TN having the most pronounced effect. This study can promise valuable insights for environmental planning and policies addressing antibiotic pollution.
Collapse
Affiliation(s)
- Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Xian Cheng
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Wang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Dewang Ming
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Liangshu Xing
- Eco-Environmental Monitoring Station of Changshou District, Chongqing 401220, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Yang L, Zhao F, Yen H, Feng Q, Li M, Wang X, Tang J, Bu Q, Chen L. Urbanization and land use regulate soil vulnerability to antibiotic contamination in urban green spaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133363. [PMID: 38157809 DOI: 10.1016/j.jhazmat.2023.133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The presence of antibiotics in environment is an emerging concern because of their ubiquitous occurrence, adverse eco-toxicological effects, and promotion of widespread antibiotic resistance. Urban soil, which plays a noticeable role in human health, may be a reservoir of antibiotics because of intensive human disturbance. However, little is understood about the vulnerability of soil to antibiotic contamination in urban areas and the spatial-temporal characteristics of anthropogenic and environmental pressures. In this study, we developed a framework for the dynamic assessment of soil vulnerability to antibiotic contamination in urban green spaces, combining antibiotic release, exposure, and consequence layers. According to the results, soil vulnerability risks shown obvious spatial-temporal variation in urban areas. Areas at a high risk of antibiotic contamination were usually found in urban centers with high population densities and in seasons with low temperature and vegetation coverage. Quinolones (e.g., ofloxacin and norfloxacin) were priority antibiotics that posed the highest vulnerability risks, followed by tetracyclines. We also confirmed the effectiveness of the vulnerability assessment by correlating soil vulnerability indexes and antibiotic residues in urban soils. Furthermore, urbanization- and land use-related parameters were shown to be critical in regulating soil vulnerability to antibiotic contamination based on sensitivity analysis. These findings have important implications for the prediction and mitigation of urban soil contamination with antibiotics and strategies to improve human health.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Haw Yen
- School of Forestry and Wildlife Sciences, Auburn University, Auburn 36849, USA; Environmental Exposure Modeling, Bayer US Crop Science Division, Chesterfield 63017, USA
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Tang
- Key laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Bueno I, He H, Kinsley AC, Ziemann SJ, Degn LR, Nault AJ, Beaudoin AL, Singer RS, Wammer KH, Arnold WA. Biodegradation, photolysis, and sorption of antibiotics in aquatic environments: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165301. [PMID: 37414169 DOI: 10.1016/j.scitotenv.2023.165301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The presence of antibiotics in surface waters is a potential driver of antibiotic resistance and thus of concern to human and environmental health. Key factors driving the potential impact of antibiotics are their persistence and transport in rivers and lakes. The goal of this study was to describe the peer-reviewed published literature on the photolysis (direct and indirect), sorption, and biodegradation of a selected group of antibiotic compounds following a scoping review methodology. Primary research from 2000 to 2021 was surveyed to compile information on these processes for 25 antibiotics from 6 classes. After compilation and assessment of the available parameters, the results indicate that information is present to predict the rates of direct photolysis and reaction with hydroxyl radical (an indirect photolysis process) for most of the selected antibiotics. There is insufficient or inconsistent information for including other indirect photolysis processes, biodegradation, or removal via sorption to settling particles for most of the targeted antibiotic compounds. Future research should focus on collecting fundamental parameters such as quantum yields, second-order rate constants, normalized biodegradation rates, and organic carbon or surface area normalized sorption coefficients rather than pseudo-first order rate constants or sorption equilibrium constants that apply only to specific conditions/sites.
Collapse
Affiliation(s)
- Irene Bueno
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA.
| | - Huan He
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA
| | - Amy C Kinsley
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA
| | - Sarah J Ziemann
- Department of Chemistry, College of Arts & Sciences, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55015, USA
| | - Lauren R Degn
- Department of Chemistry, College of Arts & Sciences, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55015, USA
| | - André J Nault
- Health Sciences Libraries, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Amanda L Beaudoin
- Health Sciences Libraries, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA
| | - Kristine H Wammer
- Department of Chemistry, College of Arts & Sciences, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55015, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Mehralipour J, Darvishali S, Bagheri S, Kermani M. Photocatalytic-ozonation process in oxytetracycline degradation in aqueous solution: composite characterization, optimization, energy consumption, and by-products. Sci Rep 2023; 13:11113. [PMID: 37429926 DOI: 10.1038/s41598-023-38309-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
In this research, we synthesized BiOI/NH2-MIL125(Ti) via solvo-thermal method to investigation of oxytetracycline (OTC) degradation in photocatalytic-ozonation process. The results of the XRD, FESEM, EDAX, FTIR, UV-Vis, TEM, XPS, and BET analyzes indicated that the catalyst BiOI/MOF was synthesized with excellent quality. Design of experiment (DOE), ANOVA statistical analysis, interaction of parameters and predicated optimum condition was done based on CCD. The effect of catalyst dose (0.25-0.5 mg/l), pH (4-8), reaction time (30-60 min) and O3 concentration (20-40 mN) at 10 mg/l of OTC on PCO/O3 process was optimized. Based on P-value and F-value coefficients (0.0001, 450.3 respectively) the model of OTC (F-value = 2451.04) and (P-value = 0.0001) coefficients, the model of COD removal was quadratic model. Under optimum condition pH 8.0, CD = 0.34 mg/l, RT = 56 min and O3 concentration = 28.7 mN, 96.2 and 77.2% of OTC and COD removed, respectively. The reduction of TOC was 64.2% in optimal conditions, which is less than the reduction of COD and OTC. The kinetics of reaction followed pseudo-first-order kinetic (R2 = 0.99). Synergistic effect coefficient was 1.31 that indicated ozonation, presence of catalyst and photolysis had a synergistic effect on OTC removal. The stability and reusability of the catalyst in six consecutive operating steps was acceptable and 7% efficiency decreased only. Cations (Mg2+, and Ca2+), SO42- had no influence on performing the process, but other anions, organic scavengers, and nitrogen gas, had an inhibitory effect. Finally, the OTC degradation probably pathway includes direct and indirect oxidation that decarboxylation, hydroxylation, demethylation and were the main mechanism in OTC degradation.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Darvishali
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Susan Bagheri
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
He J, Chen J, Liu S, Lin L, Zhang Y, Xiao S, Cao S. Activated carbon modified titanium dioxide/bismuth trioxide adsorbent: One-pot synthesis, high removal efficiency of organic pollutants, and good recyclability. J Colloid Interface Sci 2023; 648:1034-1043. [PMID: 37364308 DOI: 10.1016/j.jcis.2023.05.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Considerable endeavors have focused on tightly combining adsorption with photocatalysis in designing composite materials for environmental pollution treatment. Recent advances in coupling titanium dioxide/bismuth trioxide (TiO2/Bi2O3) with activated carbon (AC) show significantly enhanced photocatalytic performance but face critical limitations including low adsorption capacity and multi-step synthesis. In this work, we introduce a one-pot synthesis of activated carbon modified TiO2/Bi2O3 composite materials (TiO2/Bi2O3/AC). Thanks to the integrated adsorbent/photocatalyst system, TiO2/Bi2O3/AC shows a drastically enhanced removal efficiency for sulfamethazine (>81%), far beyond the corresponding value of the reported AC/TiO2/Bi2O3 adsorbent (<40%). Notably, the removal rates of other typical pollutants including tetracyclines, methyl orange, and rhodamine B are as high as >98%. Furthermore, TiO2/Bi2O3/AC obtains >80% of its adsorption rate for the fifth cycle after simple photo-regeneration without any other post-treatments. Kinetic analysis and photoelectric characterization are carried out to provide insight into adsorption mechanism. Therefore, this work demonstrates a considerable potential to design and construct other multifunctional adsorbents with advanced performance.
Collapse
Affiliation(s)
- Jie He
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juanrong Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shunan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liyuan Lin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shunsheng Cao
- Research School of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China.
| |
Collapse
|
12
|
Feng H, Xu X, Peng P, Yang C, Zou H, Chen C, Zhang Y. Sorption and desorption of epiandrosterone and cortisol on sewage sludge: Comparison to aquatic sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121663. [PMID: 37085099 DOI: 10.1016/j.envpol.2023.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Steroids have aroused global concern due to their potent endocrine-disrupting effects. Androgens and glucocorticoids are the most abundant species in sewage; however, our understanding of their fate and risks from the source to environmental sinks remains elusive. This study compared the sorption-desorption characteristics of epiandrosterone (EADR) and cortisol (CRL) in sewage sludge and aquatic sediment, and the surface and molecular interactions were tentatively investigated through infrared spectroscopy and the fluorescence excitation-emission matrix. The results showed that the sorption capacities of EADR and CRL in the sludge were 4015 L/kg and 81.17 L/kg, respectively, which are much larger than those in the sediment (EADR: 78.77 L/kg, CRL: 6.39 L/kg); 0.02%-1.2% of EADR and 0.2%-14.5% of CRL could be desorbed from sludge, while the desorption ratios were even lower in the sediment. The high organic content in the sludge might contribute to the larger sorption capacities, while the weak interaction between steroids and organic matter could lead to larger desorption potential. The sediment contained more mineral content and featured a larger specific surface area, which could be responsible for the greater desorption hysteresis for EADR and CRL. These results will help to better understand the potential risk of sewage sludge-associated steroids and their distribution in sediment-water systems.
Collapse
Affiliation(s)
- Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Peng Peng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenghao Yang
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, 85281, Arizona, USA
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, 510535, China
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Liu Y, Tao Z, Lu H, Li S, Hu C, Li Z. Electrochemical properties of roots determine antibiotic adsorption on roots. FRONTIERS IN PLANT SCIENCE 2023; 14:930632. [PMID: 37152177 PMCID: PMC10158730 DOI: 10.3389/fpls.2023.930632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
The adsorption behaviors and transfer pathways of antibiotics in plant-soil system are greatly influenced by the electrochemical properties of both soil particles and plant roots. However, the effects of roots electrochemical properties on antibiotic adsorption are largely unknown. Here, the fresh soybean, maize, and wheat roots with different electrochemical properties were obtained from hydroponic cultivation, and the adsorption processes and mechanisms of doxycycline, tetracycline, sulfadiazine, and norfloxacin on roots under various environmental conditions were investigated. Results showed that the adsorption amount of antibiotics on roots increased with the initial concentration of antibiotics. The coexisting low-molecular weight organic acids and anions inhibited the antibiotic adsorption on roots. The soybean roots performed strong adsorption ability compared with the maize and wheat roots driven by the variations in root electrochemical properties. This study demonstrates the significance of electrochemical interactions between antibiotics and roots in plant-soil system and can contribute to the more accurate risk assessment and effective pollution control of antibiotics.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhen Tao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Hailong Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Siyi Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Chao Hu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhongyang Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, China
- National Research and Observation Station of Shangqiu Agro-ecology System, Shangqiu, China
| |
Collapse
|
14
|
Skic K, Boguta P, Klimkowicz-Pawlas A, Ukalska-Jaruga A, Baran A. Effect of sorption properties on the content, ecotoxicity, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in bottom sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130073. [PMID: 36209611 DOI: 10.1016/j.jhazmat.2022.130073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) tend to accumulate in the sediment due to their high hydrophobicity. Despite PAHs have been the subject of several reviews, PAH sorption processes in bottom sediments has not been comprehensively discucorrelation coefficients between sorption parameters and contessed. Understanding the dependencies governing PAH sorption processes will allow to predict, monitor, and mitigate the ecological effects of PAH contamination and the associated risks to humans or wildlife. The objectives of the study were to assess the relationship between the sorption properties and the content of PAHs in bottom sediments and mussels. The PAH profile was dominated by higher-molecular hydrocarbons, which accounted for 73% of the total concentration of PAHs. Potentiometric studies revealed the steric-based PAH sorption mechanism that strongly depended on the presence of negatively dissociating structures such as carboxylic or phenolic functional groups. Based on the changes in Q8 values, the size-exclusion effect was more likely for 5- and 6-ring compounds. Pores < 5 µm, which had the largest share in the specific surface area, were the preferred sites for PAH sequestration and stabilization in bottom sediments. The availability of PAHs was reduced in sediments with high organic matter content. The PAH bioaccumulation factor significantly decreased with increasing TOC content in sediments. Higher mortality and growth inhibition of H. incongruens were observed in samples with high and medium TOC contents than in those with low TOC content.
Collapse
Affiliation(s)
- Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| | - Agnieszka Klimkowicz-Pawlas
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, Puławy 24-100, Poland.
| | - Aleksandra Ukalska-Jaruga
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, Puławy 24-100, Poland.
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| |
Collapse
|
15
|
Wang Y, Yu W, Chang Z, Gao C, Yang Y, Zhang B, Wang Y, Xing B. Effects of dissolved organic matter on the adsorption of norfloxacin on a sandy soil (fraction) from the Yellow River of Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157495. [PMID: 35870586 DOI: 10.1016/j.scitotenv.2022.157495] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM), which exists widely in the environment, coming from different sources, may greatly affect the adsorption of antibiotics. However, the adsorption mechanisms of antibiotics in a sandy soil and the effects of DOM from different sources on the adsorption remain poorly understood. This study systematically investigated the adsorption characteristics of norfloxacin (NOR) onto a sandy soil obtained from the banks of Xi'an in Yellow River and in the presence of three DOM including HDOM (commercially available humic acids), LDOM (derived from fallen leaves) and MDOM (derived from cattle manure). Elemental analysis, UV-vis spectroscopy, 3D-EEM, XPS, TOC, SEM, and FTIR were used to analyze the adsorption mechanism. It was found that all the DOM sources we used could reduce the adsorption of NOR on sandy soil and prolong the reaction time to reach adsorption equilibrium. The decreasing adsorption capacities of NOR by the three types of DOM (10 mg/L) followed the order as: HDOM < LDOM < MDOM, which was related to their aromaticity, polarity and hydrophobicity. These adsorption processes of NOR on sandy soil in the presence of DOM were well fitted by Double-chamber first-order kinetics, Linear model and Freundlich models. Besides, the adsorption reaction was endothermic and spontaneous. Adsorption competition of DOM molecules with NOR, or formation of DOM-NOR complexes in solution resulted in a decrease of sandy soil adsorption capacity. Correspondingly, co-adsorption and cumulative adsorption were also considered to be the key processes that determined NOR adsorption towards sandy soil after adding DOM. Moreover, the adsorption of NOR onto sandy soil exhibited strong pH-dependent characteristic and NOR might be more easily leached from sandy soil in the aquifer at an alkaline pH. High-ion strength suppressed the adsorption. These results would help to understand the fate and risk of NOR under the action of different DOM.
Collapse
Affiliation(s)
- Yuting Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Wenfei Yu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaofeng Chang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Chanjuan Gao
- College of Resource and Environmental Engineering, Jilin Institute of chemical technology, Jilin 132022, China
| | - Yanni Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bei Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
16
|
Mutavdžić Pavlović D, Tolić Čop K, Prskalo H, Runje M. Influence of Organic Matter on the Sorption of Cefdinir, Memantine and Praziquantel on Different Soil and Sediment Samples. Molecules 2022; 27:molecules27228008. [PMID: 36432112 PMCID: PMC9696219 DOI: 10.3390/molecules27228008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Pharmaceuticals are known for their great effects and applications in the treatment and suppression of various diseases in human and veterinary medicine. The development and modernization of science and technologies have led to a constant increase in the production and consumption of various classes of pharmaceuticals, so they pose a threat to the environment, which can be subjected to the sorption process on the solid phase. The efficiency of sorption is determined by various parameters, of which the physicochemical properties of the compound and the sorbent are very important. One of these parameters that determine pharmaceutical mobility in soil or sediment is the soil−water partition coefficient normalized to organic carbon (Koc), whose determination was the purpose of this study. The influence of organic matter, suspended in an aqueous solution of pharmaceutical (more precisely: cefdinir, memantine, and praziquantel), was studied for five different types of soil and sediment samples from Croatia. The linear, Freundlich, and Dubinin−Raduskevich sorption isotherms were used to determine specific constants such as the partition coefficient Kd, which directly describes the strength of sorbate and sorbent binding. The linear model proved to be the best with the highest correlation coefficients, R2 > 0.99. For all three pharmaceuticals, a positive correlation between sorption affinity described by Kd and Koc and the amount of organic matter was demonstrated.
Collapse
Affiliation(s)
- Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4597-204
| | - Kristina Tolić Čop
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Prskalo
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | | |
Collapse
|
17
|
Li J, Li W, Liu K, Guo Y, Ding C, Han J, Li P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129628. [PMID: 35905608 DOI: 10.1016/j.jhazmat.2022.129628] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of macrolide antibiotics (MCLs) has led to their frequent detection in aquatic environments, affecting water quality and ecological health. In this study, the sources, global distribution, environmental fate, ecotoxicity and global risk assessment of MCLs were analyzed based on recently published literature. The results revealed that there are eight main sources of MCLs in the water environment. These pollution sources resulted in MCL detection at average or median concentrations of up to 3847 ng/L, and the most polluted water bodies were the receiving waters of wastewater treatment plants (WWTPs) and densely inhabited areas. Considering the environmental fate, adsorption, indirect photodegradation, and bioremoval may be the main attenuation mechanisms in natural water environments. N-demethylation, O-demethylation, sugar and side chain loss from MCL molecules were the main pathways of MCLs photodegradation. Demethylation, phosphorylation, N-oxidation, lactone ring hydrolysis, and sugar loss were the main biodegradation pathways. The median effective concentration values of MCLs for microalgae, crustaceans, fish, and invertebrates were 0.21, 39.30, 106.42, and 28.00 mg/L, respectively. MCLs induced the generation of reactive oxygen species, that caused oxidative stress to biomolecules, and affected gene expression related to photosynthesis, energy metabolism, DNA replication, and repair. Moreover, over 50% of the reported water bodies represented a medium to high risk to microalgae. Further studies on the development of tertiary treatment technologies for antibiotic removal in WWTPs, the combined ecotoxicity of antibiotic mixtures at environmental concentration levels, and the development of accurate ecological risk assessment models should be encouraged.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yanhui Guo
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Chun Ding
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
18
|
Chen S, Bao X, Wang Z, Rong X, Zhang X, Li C, Wang X, Wei L. Comparative study on the effects of water pressure on water absorption of ultra‐high molecular weight polyethylene and polyformaldehyde. J Appl Polym Sci 2022. [DOI: 10.1002/app.52783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Song Chen
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Xiangcai Bao
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Zhiheng Wang
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Xiangbin Rong
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Xiaohong Zhang
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Chao Li
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Xinyu Wang
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Lei Wei
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| |
Collapse
|
19
|
Gamal R, Rizk SE, El-Hefny NE. Sorption of Palladium(II) from Aqueous Solution Using Diphenylthiocarbazone Immobilized onto Kieselguhr. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractKieselguhr was immobilized with diphenylthiocarbazone (dithizone) and utilized as a new sorbent to extract palladium ions from an aqueous solution. The physicochemical features of the immobilized kieselguhr (K–Dz) were specified by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis–differential thermal analysis. The average crystal size of the prepared material was found to be 24.41 nm. The sorption potential of the immobilized kieselguhr for the extraction of Pd(II) and La(III) in a batch mode was studied. The effects of pH, shaking time as well as the initial concentration of metals have been examined. The results demonstrate that the optimum pH was found to be 4.5 and the equilibrium was attained within 15.0 min. The adsorption kinetics and equilibrium data were well described by the pseudo-second-order kinetic model and Sips isothermal model with a maximum sorption capacity of 20.3 (mg/g). Thermodynamic parameters of the studied metal ions show that the process is spontaneous and endothermic in nature. The desorption process of Pd(II) was highly managed using acidified thiourea giving a desorption percent of approximately 80.0%. The separation possibility of Pd(II) from some metal ions such as La(III) was achieved successfully. The developed (K–Dz) composite method was applied for the recovery and separation of Pd(II) and other metal ions from a simulated automotive catalyst leachate solution. The results indicated that the (K–Dz) composite has a good reusability potential.
Collapse
|
20
|
α and γ Alumina Spheres for Azo Dye (Allura Red) Removal from Aqueous Media. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3786561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allura red or Red 40 (R40) is a dye widely used in the food, textile, and pharmaceutical industries; it is considered dangerous because it is soluble in water, and it has high toxicity and resistance to natural degradation. Several advanced wastewater treatments have been shown to be effective for R40 removal but some of them present disadvantages such as by-products obtention, high energy consumption, and high cost of the reactants used in the removal process. In the present work, α-Alumina (Alu) and γ-Alu spheres were synthesized by the encapsulation method. The prepared spheres were characterized by FT-IR, XRD, SEM/EDS, and SBET, and it was determined the presence of only inorganic bonds from ceramic material, and the amorphous alumina was observed in spheres with a smooth and uniform surface and with pores. R40 adsorption kinetics and isotherms were performed, as well as material regeneration for consequent sorption cycles. Sorption tests for R40 removal were carried out under different conditions of initial concentration, pH value, and the presence of interfering ions. The maximal sorption capacity of the synthetized α- and γ-Alu spheres were situated between 0.1765 and 18.9865 mg/g. Different kinetic and isothermal equations were applied and finally, the experimental data was described by Elovich and Freundlich models. The γ-Alu spheres after five heat treatment regeneration cycles showed stable behavior and potential re-use in new sorption processes with R40 removal >97.7% at pH 3 and >85.6% at
=10 mg/L. The obtained results showed that the γ-Alu spheres are novel, alternative, and sustainable synthesized materials for the advanced treatment of wastewater by adsorption process for the removal of Allura red azo dye in aqueous media.
Collapse
|
21
|
Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA. Contaminants of emerging concern (CECs) in aquaculture effluent: Insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches. CHEMOSPHERE 2022; 290:133319. [PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
Collapse
Affiliation(s)
- Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100, Putrajaya, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
22
|
Wolters B, Hauschild K, Blau K, Mulder I, Heyde BJ, Sørensen SJ, Siemens J, Jechalke S, Smalla K, Nesme J. Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes? Environ Microbiol 2022; 24:1573-1589. [PMID: 35192222 PMCID: PMC9306954 DOI: 10.1111/1462-2920.15938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/04/2023]
Abstract
Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.
Collapse
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kristin Hauschild
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ines Mulder
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Benjamin Justus Heyde
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Siemens
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute of Phytopathology, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Harrower J, McNaughtan M, Hunter C, Hough R, Zhang Z, Helwig K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment-A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3275-3298. [PMID: 34379810 DOI: 10.1002/etc.5191] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics in the aquatic environment is a major problem because of the emergence of antibiotic resistance. The long-term ecological impact on the aquatic environment is unknown. Many sources allow entry of antibiotics into the environment, including wastewater-treatment plants (WWTPs), agricultural runoff, hospital effluent, and landfill leachate. Concentrations of antibiotics in the aquatic environment vary significantly; studies have shown fluoroquinolones, tetracycline, macrolides, sulfonamides, and penicillins to reach 2900, 1500, 9700, 21 400, and 1600 ng L-1 in wastewater effluent samples, respectively. However, concentrations are highly variable between different countries and depend on several factors including seasonal variation, prescription, and WWTP operating procedures. Likewise, the reported concentrations that cause environmental effects vary greatly between antibiotics, even within the same class; however, this predicted concentration for the antibiotics considered was frequently <1000 ngL-1 , indicating that when discharged into the environment along with treated effluent, these antibiotics have a potentially detrimental effect on the environment. Antibiotics are generally quite hydrophilic in nature; however, they can ionize in the aquatic environment to form charged structures, such as cations, zwitterions, and anions. Certain classes, particularly fluoroquinolones and tetracyclines, can adsorb onto solid matrices, including soils, sediment, and sludge, making it difficult to fully understand their chemical fate in the aquatic environment. The adsorption coefficient (Kd ) varies between different classes of antibiotics, with tetracyclines and fluoroquinolones showing the highest Kd values. The Kd values for fluoroquinolones, tetracyclines, macrolides, and sulfonamides have been reported as 54 600, 7600, 130, and 1.37 L kg-1 , respectively. Factors such as pH of the environment, solid matrix (sediment/soil sludge), and ionic strength can influence the Kd ; therefore, several values exist in literature for the same compound. Environ Toxicol Chem 2021;40:3275-3298. © 2021 SETAC.
Collapse
Affiliation(s)
- Jamie Harrower
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Moyra McNaughtan
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| | - Colin Hunter
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Zulin Zhang
- The James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Karin Helwig
- Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, United Kingdom
| |
Collapse
|
24
|
Zhang Y, Mo Y, Vincent T, Faur C, Guibal E. Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads. CHEMOSPHERE 2021; 281:130844. [PMID: 34022599 DOI: 10.1016/j.chemosphere.2021.130844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
APEI beads (algal/alginate-PEI) were quaternized for enhancing the sorption of Cr(VI) (Q-APEI). The readily reduction of Cr(VI) into Cr(III) in acidic solution and in the presence of organic material constitute an additional phenomenon to be taken into account for the removal of Cr(VI) by Q-APEI. The optimal pH value for both the sorption and reduction of Cr(VI) was close to 2. The sorption isotherm was well described by the Sips model in batch system; the experimental maximum Cr(VI) sorption capacity of Q-APEI was 334 mg Cr(VI) g-1, including a reduction yield close to 25%. The pseudo-second-order kinetic model (PSORE) and the Yan model fit the uptake kinetics and breakthrough curves, in a fixed-bed system with circulation or single-path modes, respectively. The mechanism of reduction-assisted sorption allows boosting the global removal of chromate. Furthermore, the testing of Cr(VI) for three successive sorption and desorption cycles shows the remarkable stability of the sorbent for Cr(VI) removal. The Cr(VI) sorption coupled reduction mechanism and interactions between the sorbent and Cr(VI) were further explained using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).
Collapse
Affiliation(s)
- Yue Zhang
- PCH, IMT Mines Ales, 6, Avenue de Clavières, 30319, Alès Cedex, France; IEM, Institut Européen des Membranes, Univ. Montpellier, CNRS, ENSCM, 300 Avenue Du Prof. Emile Jeanbrau, 34090, Montpellier, France.
| | - Yayuan Mo
- PCH, IMT Mines Ales, 6, Avenue de Clavières, 30319, Alès Cedex, France; IEM, Institut Européen des Membranes, Univ. Montpellier, CNRS, ENSCM, 300 Avenue Du Prof. Emile Jeanbrau, 34090, Montpellier, France.
| | - Thierry Vincent
- PCH, IMT Mines Ales, 6, Avenue de Clavières, 30319, Alès Cedex, France.
| | - Catherine Faur
- IEM, Institut Européen des Membranes, Univ. Montpellier, CNRS, ENSCM, 300 Avenue Du Prof. Emile Jeanbrau, 34090, Montpellier, France.
| | - Eric Guibal
- PCH, IMT Mines Ales, 6, Avenue de Clavières, 30319, Alès Cedex, France.
| |
Collapse
|
25
|
Wang Y, He L, Dang G, Li H, Li X. Preparation of Fe-MIL(100)-encapsulated magnetic g-C 3N 4 for adsorption of PPCPs from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39769-39786. [PMID: 33761079 DOI: 10.1007/s11356-021-13550-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
In the present work, the Fe-MIL(100) was encapsulated on the outer surface of magnetic g-C3N4 through a simple method to synthesize a novel adsorbent. The as-prepared g-C3N4/MnFe2O4/Fe-MIL(100) was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET specific surface area (BET), vibrating sample magnetometry (VSM), and plasma emission spectrometry (PES). The g-C3N4/MnFe2O4/Fe-MIL(100) possessed rough surface, large surface area (303.68 m2/g), mesoporous structure and magnetic properties, which exhibited excellent adsorption performance for ciprofloxacin (CIP), oxytetracycline (OTC) and indomethacin (IDM) with the maximum adsorption capacities reaching up to 45.51, 64.34 and 103.91 mg/g, respectively. The adsorption processes of all three PPCPs could be described by different kinds of isotherms and kinetic models. Additionally, the adsorption capacity of the resulting adsorbent could maintain 73.43% of the first adsorption capacity even after ten cycles. Finally, the possible adsorption mechanisms of g-C3N4/MnFe2O4/Fe-MIL(100) for CIP/OTC/IDM were proposed. Thus, g-C3N4/MnFe2O4/Fe-MIL(100) possessed excellent features of high adsorption capacity, fast removal rate, easy synthesis, salt resistance and magnetic separation, which showed great potential application to be used as an effective adsorbent for adsorptive removal of PPCPs in wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Liyan He
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Guoyan Dang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Xiaoli Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
26
|
Chen Q, Yi P, Dong W, Chen Y, He L, Pan B. Decisive role of adsorption affinity in antibiotic adsorption on a positively charged MnFe 2O 4@CAC hybrid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141019. [PMID: 32758730 DOI: 10.1016/j.scitotenv.2020.141019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 05/22/2023]
Abstract
The discharge and consequent occurrence of antibiotics in the environment has led to increasing concerns because their presence can promote the development of resistance genes, which in turn pose a significant health risk. A key process to control the transport and risk of antibiotics is adsorption. Thus, we investigated the adsorption mechanisms of six typical antibiotics onto a MnFe2O4@cellulose activated carbon (CAC) hybrid combining batch adsorption experiments and quantum chemical calculations. In the single-adsorbate adsorption systems, the solid-phase concentrations of the adsorbates varied from 152.8 to 395.7 mg/g, which were dependent on the adsorption affinity and molecular structures or sizes of the antibiotics. Chemisorption was the main adsorption mechanism, and it was driven by p-d electronic conjugation and cation-π interactions. In the competitive adsorption systems, the solid-phase concentrations of both primary (sulfamethazine, SMT) and secondary (the other five antibiotics) adsorbates decreased significantly. The decrease ratio of SMT varied from 15.42% to 67.28% while that of the secondary adsorbates varied from 14.13% to 52.74%. The "competition" strength was depended on the adsorption energy and the overlapping of adsorption sites. We believe that these findings will provide a better understanding of the adsorption characteristics of typical antibiotics and facilitate the strategy developing for the removal of antibiotics from the aqueous phase.
Collapse
Affiliation(s)
- Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Wei Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Yihui Chen
- Yunnan Research Academy of Eco-environmental Sciences, Kunming, Yunnan 650034, China
| | - Liping He
- Yunnan Research Academy of Eco-environmental Sciences, Kunming, Yunnan 650034, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
27
|
Effect of Oxytetracycline and Chlortetracycline on Bacterial Community Growth in Agricultural Soils. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Toxicity on soil bacterial community growth caused by the antibiotics oxytetracycline (OTC) and chlortetracycline (CTC) was studied in 22 agricultural soils after 1, 8 and 42 incubation days. The leucine incorporation method was used with this aim, estimating the concentration of each antibiotic which caused an inhibition of 50% in bacterial community growth (log IC50). For OTC, the mean log IC50 was 2.70, 2.81, 2.84 for each of the three incubation times, while the values were 2.05, 2.22 and 2.47 for CTC, meaning that the magnitude of OTC toxicity was similar over time, whereas it decreased significantly for CTC with incubation time. In addition, results showed that the toxicity on bacterial community growth due to CTC is significantly higher than when due to OTC. Moreover, the toxicity on bacterial community growth due to both antibiotics is dependent on soil properties. Specifically, an increase in soil pH and silt content resulted in higher toxicity of both antibiotics, while increases in total organic carbon and clay contents caused decreases in OTC and CTC toxicities. The results also show that OTC toxicity can be well predicted by means of specific equations, using the values of pH measured in KCl and those of effective cation exchange capacity as input variables. CTC toxicity may be predicted (but with low precision) using pH measured in KCl and total organic carbon. These equations may help to predict the negative effects caused by OTC and CTC on soil bacteria using easily measurable soil parameters.
Collapse
|
28
|
Chen Y, Hu C, Deng D, Li Y, Luo L. Factors affecting sorption behaviors of tetracycline to soils: Importance of soil organic carbon, pH and Cd contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110572. [PMID: 32283410 DOI: 10.1016/j.ecoenv.2020.110572] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 05/03/2023]
Abstract
The abuse of tetracycline arises the risk of antibiotic resistance genes and has been paid much attention. To understand the potential bioavailability of tetracycline (TC) in soil environments, this study explored the behaviors of TC adsorbing to six types of soils sampled from different regions of China. Moreover, the solution pH and existence of Cd2+ effect on TC sorption to soils were investigated to understand the influential factors affecting TC sorption. The results showed that the soil properties and sorption capacity of TC varied significantly with different soils. The sorption capacity of TC to soils might be largely affected by cation exchange capacity (CEC) and soil organic carbon (SOC), while the sorption rate, interaction strength and equilibrium sorption binding might be affected by soil pH, pHPZC, soil inorganic carbon (SIC) and H content. The result of solution pH effect suggested that the predominant sorption mechanism for acid soils might be hydrophobic interactions between soils and H2TC0, and the cation exchange was possibly proposed as the primary mechanism for TC sorption to alkaline soils. Furthermore, the presence of Cd2+ might increase TC sorption to acid soil, while reduce TC sorption to alkaline soil. It is expected that this study may provide important information for predicting the potential fate of TC (or similar antibiotics) in different soils, and thus helping to assess the bioavailability of TC in soils.
Collapse
Affiliation(s)
- Yuxuan Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chunyan Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dahang Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yigen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
29
|
Soil Sorption and Degradation Studies of Pharmaceutical Compounds Present in Recycled Wastewaters Based on Enantiomeric Fractionation. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|