1
|
Yang Z, Zhang J, Wang C, Yu F, Yu W, Zhao Z. A glucose responsive multifunctional hydrogel with antibacterial properties and real-time monitoring for diabetic wound treatment. Biomater Sci 2024; 13:275-286. [PMID: 39541248 DOI: 10.1039/d4bm01097c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The healing of complex diabetic wounds with a hyperglycemic microenvironment and bacterial infection is considered an important clinical issue. In this study, glucose oxidase (GOx) and gold nanoclusters (AuNCs) were encapsulated in quaternary carboxymethyl chitosan (QCMCS)/sodium alginate oxide (OSA) hydrogels and were immersed in tannic acid (TA) solution to achieve antioxidant, antibacterial, pro-angiogenesis, pro-collagen deposition and real-time monitoring functions. In vitro studies showed that TA-QCMCS/OSA@GOx@AuNC hydrogels had inhibition rates of 98.99% and 99.99% against S. aureus and E. coli, respectively, and the survival rate of mouse fibroblasts (L929) was over 95%. In vivo studies showed that TA-QCMCS/OSA@GOx@AuNC hydrogels were 97.28% effective in healing diabetic wounds. In addition, image signals from TA-QCMCS/OSA@GOx@AuNC hydrogels can be collected in real time to accurately obtain glucose concentration values of diabetic wounds and reflect the healing status of diabetic wounds in a timely manner. The results showed that TA-QCMCS/OSA@GOx@AuNC hydrogels provide a novel idea for real-time monitoring of diabetic wound treatment.
Collapse
Affiliation(s)
- Zhifei Yang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaxu Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fangzheng Yu
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wen Yu
- Hospital of Wuhan University of Technology, Wuhan 430070, China.
| | - Zheng Zhao
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Wu T, Lan Y, Li G, Wang K, You Y, Zhu J, Ren L, Wu S. Association Between Long-Term Exposure to Ambient Air Pollution and Fasting Blood Glucose: A Systematic Review and Meta-Analysis. TOXICS 2024; 12:792. [PMID: 39590972 PMCID: PMC11598464 DOI: 10.3390/toxics12110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Increasing studies are indicating a potential association between ambient air pollution exposure and fasting blood glucose (FBG), an indicator of prediabetes and diabetes. However, there is inconsistency within the existing literature. The aim of this study was to summarize the associations of exposures to particulate matters (PMs) (with aerodynamic diameters of ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10), respectively) and gaseous pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3)) with FBG based on the existing epidemiological research for a better understanding of the relationship between air pollution and diabetes. Up to 2 July 2024, we performed a comprehensive literature retrieval from various electronic databases (PubMed, Web of Science, Scopus, and Embase). Random-effect and fixed-effect models were utilized to estimate the pooled percent changes (%) and 95% confidence intervals (CIs). Then, subgroup meta-analyses and meta-regression analyses were applied to recognize the sources of heterogeneity. There were 33 studies eligible for the meta-analysis. The results showed that for each 10 μg/m3 increase in long-term exposures to PM1, PM2.5, PM10, and SO2, the pooled percent changes in FBG were 2.24% (95% CI: 0.54%, 3.96%), 1.72% (95% CI: 0.93%, 2.25%), 1.19% (95% CI: 0.41%, 1.97%), and 0.52% (95% CI:0.40%, 0.63%), respectively. Long-term exposures to ambient NO2 and O3 were not related to alterations in FBG. In conclusion, our findings support that long-term exposures to PMs of various aerodynamic diameters and SO2 are associated with significantly elevated FBG levels.
Collapse
Affiliation(s)
- Tong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Shaanxi Provincial Center for Disease Control and Prevention (Shaanxi Provincial Institute for Endemic Disease Control), Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yu You
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100871, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
4
|
Zheng X, Wang Q, Xu X, Huang X, Chen J, Huo X. Associations of insulin sensitivity and immune inflammatory responses with child blood lead (Pb) and PM 2.5 exposure at an e-waste recycling area during the COVID-19 lockdown. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:296. [PMID: 38980420 DOI: 10.1007/s10653-024-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaofan Huang
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Jiaxue Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
5
|
Li T, Zhang Y, Jiang N, Du H, Chen C, Wang J, Li Q, Feng D, Shi X. Ambient fine particulate matter and cardiopulmonary health risks in China. Chin Med J (Engl) 2023; 136:287-294. [PMID: 36780425 PMCID: PMC10106175 DOI: 10.1097/cm9.0000000000002218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 02/15/2023] Open
Abstract
ABSTRACT In China, the level of ambient fine particulate matter (PM 2.5 ) pollution far exceeds the air quality standards recommended by the World Health Organization. Moreover, the health effects of PM 2.5 exposure have become a major public health issue. More than half of PM 2.5 -related excess deaths are caused by cardiopulmonary disease, which has become a major health risk associated with PM 2.5 pollution. In this review, we discussed the latest epidemiological advances relating to the health effects of PM 2.5 on cardiopulmonary diseases in China, including studies relating to the effects of PM 2.5 on mortality, morbidity, and risk factors for cardiovascular and respiratory diseases. These data provided important evidence to highlight the cardiopulmonary risk associated with PM 2.5 across the world. In the future, further studies need to be carried out to investigate the specific relationship between the constituents and sources of PM 2.5 and cardiopulmonary disease. These studies provided scientific evidence for precise reduction measurement of pollution sources and public health risks. It is also necessary to identify effective biomarkers and elucidate the biological mechanisms and pathways involved; this may help us to take steps to reduce PM 2.5 pollution and reduce the incidence of cardiopulmonary disease.
Collapse
Affiliation(s)
- Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen YC, Chin WS, Pan SC, Wu CD, Guo YLL. Long-Term Exposure to Air Pollution and the Occurrence of Metabolic Syndrome and Its Components in Taiwan. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17001. [PMID: 36598238 PMCID: PMC9811992 DOI: 10.1289/ehp10611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS), a major contributor to cardiovascular and metabolic diseases, has been linked with exposure to air pollution. However, the relationship between air pollutants and the five components of MetS [abdominal obesity, elevated triglyceride, decreased high-density lipoprotein cholesterol (HDL-C), elevated blood pressure, and elevated fasting blood glucose levels], has not been clearly described. OBJECTIVE We examined the association between long-term exposure to air pollutants and the occurrence of MetS and its components by using a longitudinal cohort in Taiwan. METHODS The MJ Health Research Foundation is a medical institute that conducts regular physical examinations. The development of MetS, based on a health examination and the medical history of an MJ cohort of 93,771 participants who were enrolled between 2006 and 2016 and had two or more examinations, was compared with estimated exposure to air pollutants in the year prior to health examination. The exposure levels to fine particulate matter [PM with an aerodynamic diameter of ≤2.5μm (PM2.5)] and nitrogen dioxide (NO2) in the participants' residential areas were estimated using a hybrid Kriging/land-use regression (LUR) model executed using the XGBoost algorithm and a hybrid Kriging/LUR model, respectively. Cox regression with time-dependent covariates was conducted to estimate the effects of annual air pollutant exposure on the risk of MetS and its components. RESULTS During the average follow-up period of 3.4 y, the incidence of MetS was 38.1/1,000 person-years. After mutual adjustment and adjustments for potential covariates, the results indicated that every 10-μg/m3 increase in annual PM2.5 concentration was associated with an increased risk of abdominal obesity [adjusted hazard ratio (aHR)=1.07; 95% confidence interval (CI): 1.01, 1.14], hypertriglyceridemia (aHR=1.17; 95% CI: 1.11, 1.23), low HDL-C (aHR=1.09; 95% CI: 1.02, 1.17), hypertension (aHR=1.15; 95% CI: 1.09, 1.21), and elevated fasting blood glucose (aHR=1.15; 95% CI: 1.10, 1.20). Furthermore, PM2.5 and NO2 may increase the risk of developing MetS among people who already "have" some components of MetS. DISCUSSION Our findings suggest that in apparently healthy adults undergoing physical examination, exposure to PM2.5 and NO2 might be associated with the occurrence of MetS and its components. https://doi.org/10.1289/EHP10611.
Collapse
Affiliation(s)
- Yi-Chuan Chen
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| | - Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University (NTU), Taipei, Taiwan
- Department of Nursing, NTU Hospital, Taipei, Taiwan
| | - Shih-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| | - Chih-Da Wu
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Liang Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
- Environmental and Occupational Medicine, College of Medicine, NTU and NTU Hospital, Taipei, Taiwan
- Graduate Institute of Environmental and Occupational Health Science, College of Public Health, NTU, Taipei, Taiwan
| |
Collapse
|
7
|
Zhou P, Mo S, Peng M, Yang Z, Wang F, Hu K, Zhang Y. Long-term exposure to PM 2.5 constituents in relation to glucose levels and diabetes in middle-aged and older Chinese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114096. [PMID: 36162351 DOI: 10.1016/j.ecoenv.2022.114096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have indicated the associations between fine particulate matter (PM2.5) exposure and diabetes or glucose levels. However, evidence linking PM2.5 constituents and diabetes or glucose levels was extensively scarce, particularly in developing countries. This study aimed to investigate the associations of exposure to PM2.5 and its five constituents (black carbon [BC], organic matter [OM], nitrate [NO3-], sulfate [SO42-], and ammonium [NH4+]) with diabetes and glucose levels among the middle-aged and elderly Chinese populations. METHODS A national cross-sectional sample of participants aged 45+ years was enrolled from 28 provinces across China's mainland. Health examination and questionnaire survey for each respondent were performed during 2011-2012. Diabetes was determined by alternative definitions, and the main definition (MD) was self-report diabetes or antidiabetic medicine use or HbA1c ≥6.5 or fasting glucose ≥7 mmol/L or random glucose ≥11.1 mmol/L. Monthly exposure to PM2.5 mass and its five constituents (BC, OM, NO3-, SO42-, and NH4+) for each participant at residence were estimated using satellite-based spatiotemporal prediction models. Generalized linear models and linear mixed-effects models were used to assess the effects of exposure to PM2.5 and its constituents on diabetes or glucose levels, respectively. Stratification analyses were done by sex and age. RESULTS We included a total of 17,326 adults over 45 years in this study. The 3-year mean (interquartile range [IQR]) concentrations of PM2.5, BC, OM, NO3-, SO42-, and NH4+ were 47.9 (27.4) µg/m3, 2.9 (2.2) µg/m3, 9.2 (6.6) µg/m3, 10.2 (9.4) µg/m3, 11.0 (5.2) µg/m3, and 7.1 (4.4) µg/m3, respectively. Per IQR rise in exposure to PM2.5 was significantly associated with an increase of 0.133 mmol/L (95% confidence interval, 0.048-0.219) in glucose concentrations. Similar positive associations were observed for BC (0.097 mmol/L [0.012-0.181]), OM (0.160 mmol/L [0.065-0.256]), NO3- (0.145 mmol/L [0.039-0.251]), SO42- (0.111 mmol/L [0.026-0.196]), and NH4+ (0.135 mmol/L [0.041-0.230]). Under different diabetes definitions, PM2.5 mass and selected constituents with the exception of SO42- were all associated with a higher risk of prevalent diabetes. In MD-based analysis, similar positive associations were observed for four constituents, with corresponding odds ratios of 1.180 (1.097-1.270) for PM2.5, 1.154 (1.079-1.235) for BC, 1.170 (1.079-1.270) for OM, 1.200 (1.098-1.312) for NO3-, and 1.123 (1.037-1.215) for NH4+. Stratified analyses showed a significantly higher risk of diabetes in males (1.225 [1.064-1.411]) than females (1.024 [0.923-1.136]) when exposed to PM2.5. Participants under 65 years were generally more vulnerable to diabetes hazards related to PM2.5 constituents exposure. CONCLUSIONS Exposures to PM2.5 and its constituents (i.e., BC, OM, NO3-, and NH4+) were positively associated with increased risks of prevalent diabetes and elevated glucose levels in middle-aged and older adults.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Infection Control, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
8
|
Liu L, Yan LL, Lv Y, Zhang Y, Li T, Huang C, Kan H, Zhang J, Zeng Y, Shi X, Ji JS. Air pollution, residential greenness, and metabolic dysfunction biomarkers: analyses in the Chinese Longitudinal Healthy Longevity Survey. BMC Public Health 2022; 22:885. [PMID: 35509051 PMCID: PMC9066955 DOI: 10.1186/s12889-022-13126-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We hypothesize higher air pollution and fewer greenness exposures jointly contribute to metabolic syndrome (MetS), as mechanisms on cardiometabolic mortality. METHODS We studied the samples in the Chinese Longitudinal Healthy Longevity Survey. We included 1755 participants in 2012, among which 1073 were followed up in 2014 and 561 in 2017. We used cross-sectional analysis for baseline data and the generalized estimating equations (GEE) model in a longitudinal analysis. We examined the independent and interactive effects of fine particulate matter (PM2.5) and Normalized Difference Vegetation Index (NDVI) on MetS. Adjustment covariates included biomarker measurement year, baseline age, sex, ethnicity, education, marriage, residence, exercise, smoking, alcohol drinking, and GDP per capita. RESULTS At baseline, the average age of participants was 85.6 (SD: 12.2; range: 65-112). Greenness was slightly higher in rural areas than urban areas (NDVI mean: 0.496 vs. 0.444; range: 0.151-0.698 vs. 0.133-0.644). Ambient air pollution was similar between rural and urban areas (PM2.5 mean: 49.0 vs. 49.1; range: 16.2-65.3 vs. 18.3-64.2). Both the cross-sectional and longitudinal analysis showed positive associations of PM2.5 with prevalent abdominal obesity (AO) and MetS, and a negative association of NDVI with prevalent AO. In the longitudinal data, the odds ratio (OR, 95% confidence interval-CI) of PM2.5 (per 10 μg/m3 increase) were 1.19 (1.12, 1.27), 1.16 (1.08, 1.24), and 1.14 (1.07, 1.21) for AO, MetS and reduced high-density lipoprotein cholesterol (HDL-C), respectively. NDVI (per 0.1 unit increase) was associated with lower AO prevalence [OR (95% CI): 0.79 (0.71, 0.88)], but not significantly associated with MetS [OR (95% CI): 0.93 (0.84, 1.04)]. PM2.5 and NDVI had a statistically significant interaction on AO prevalence (pinteraction: 0.025). The association between PM2.5 and MetS, AO, elevated fasting glucose and reduced HDL-C were only significant in rural areas, not in urban areas. The association between NDVI and AO was only significant in areas with low PM2.5, not under high PM2.5. CONCLUSIONS We found air pollution and greenness had independent and interactive effect on MetS components, which may ultimately manifest in pre-mature mortality. These study findings call for green space planning in urban areas and air pollution mitigation in rural areas.
Collapse
Affiliation(s)
- Linxin Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Lijing L Yan
- Global Heath Research Center, Duke Kunshan University, Kunshan, China.,School of Public Health, Wuhan University, Wuhan, China.,Institute for Global Health and Development, Peking University, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Junfeng Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China.,Center for the Study of Aging and Human Development, Duke Medical School, Durham, NC, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Wang Z, Ni X, Gao D, Sun L, Zhu X, Jiao J, Zhou Q, Chen C, Zhang N, Wu Z, Yang Z, Yuan H. Investigation of the Reference Interval Values of Fasting Plasma Glucose, Blood Pressure, and Blood Lipids in the Longevity People Aged 90 Years Old and Above. Diabetes Metab Syndr Obes 2021; 14:3711-3718. [PMID: 34456578 PMCID: PMC8387246 DOI: 10.2147/dmso.s327823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To our knowledge, the normal fasting plasma glucose (FPG), blood pressure (BP), and blood lipids (BL) interval values have not been well-established in the longevity population. This study aims to provide a reference for the establishment of normal BP, FPG, and BL interval values in the longevity people in China. PATIENTS AND METHODS A total of 7417 people were selected from the natural longevity cohort in Guangxi, with an age range of 20-110 years old, including 7093 classified as the non-longevity (20-89 years old) (94.02%) and 324 classified as the longevity (≥90 years old) (5.98%); there were 4309 men (58.1%) and 3108 women (41.9%). FPG, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), and low-density lipoprotein (LDL-C) levels were defined as desirable levels when they were below the 75th percentile (P75), borderline levels from the 75th to 90th percentile (P75-P90), and high levels above P90; triglyceride (TG) levels above P90 were defined as high; and high-density lipoprotein cholesterol (HDL-C) levels below the 5th percentile (P5) were defined as low levels. RESULTS The reference interval values of FPG in the longevity were as follows: desirable levels <6.15 mmol/L, borderline levels 6.15-7.45 mmol/L, high levels ≥7.45 mmol/L. Reference interval values of systolic blood pressure (SBP) were as follows: desirable levels <160.00 mmHg, borderline levels 160.00-174.50 mmHg, high levels ≥175.00 mmHg. DBP reference interval values were as follows: desirable levels <88.00 mmHg, borderline levels 88.00-90.00 mmHg, high levels ≥90.00 mmHg. TC reference interval values were as follows: desirable levels <5.59 mmol/L, borderline levels 5.59-6.45 mmol/L, high levels ≥6.45 mmol/L. LDL-C reference interval values were as follows: desirable levels <3.30 mmol/L, borderline levels 3.30-3.85 mmol/L, high levels ≥3.85 mmol/L. TG reference interval values were as follows: desirable levels <2.82 mmol/L, high levels ≥2.82 mmol/L. HDL-C reference interval values were as follows: low levels <0.80 mmol/L, desirable levels ≥0.80 mmol/L. CONCLUSION The reference interval values of BP, FPG, and BL are different between the longevity population and the non-longevity population, and the interval values change with increasing age.
Collapse
Affiliation(s)
- Zhaoping Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Xiaolin Ni
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Danni Gao
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Peking University Fifth School of Clinical Medicine (Beijing Hospital), Beijing, 100730, People’s Republic of China
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Xiaoquan Zhu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Juan Jiao
- Clinical Laboratory Department, The Seventh Medical Center, PLA General Hospital, Beijing, 100730, People’s Republic of China
| | - Qi Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Chen Chen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Nan Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Zhu Wu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
| | - Huiping Yuan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Center for Gerontology, Beijing, 100730, People’s Republic of China
- Correspondence: Huiping Yuan The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongdan DaHua Road 1#, Beijing, 100730, People’s Republic of ChinaTel +86-10-58115043Fax +86-10-65237929 Email
| |
Collapse
|
10
|
Xu J, Zhang Y, Yao M, Wu G, Duan Z, Zhao X, Zhang J. Long-term effects of ambient PM2.5 on hypertension in multi-ethnic population from Sichuan province, China: a study based on 2013 and 2018 health service surveys. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 28:5991-6004. [PMID: 32978739 DOI: 10.1007/s11356-020-10893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Hypertension, a major risk factor of many severe chronic diseases and leading cause of global disease burden, is reported to be associated with long-term exposure to PM2.5. China's high PM2.5 pollution level has become a major public health issue. However, existing studies from China have got inconsistent results with very limited investigation into the multi-ethnic peoples. This study adds multi-ethnic evidence from Sichuan Province, southwestern China, and assesses ethnic differences of PM2.5 exposure effect on hypertension. We pooled large cross-sectional data from two surveys conducted in 2013 and 2018 to examine the association of long-term exposure to PM2.5 on prevalence of hypertension in adults aged 30 years old and above. Community-specified annual PM2.5 concentration was estimated using satellite data. Thirty-one thousand four hundred sixty-two participants with average exposure concentration of 32.8 μg/m3 were included. The proportions of the Han, the Tibetan, the Yi, and other ethnic people were 89.2%, 7.3%, 3.2%, and 0.3%, respectively. The adjusted odds ratio (OR) was 1.08 (95% CI, 1.04-1.12) for a 10 μg/m3 PM2.5 concentration increment. The adjusted ORs for the Han, the Tibetan, and the Yi were 1.08 (95% CI, 1.04-1.12), 0.03 (95% CI, 0.00-0.27), and 1.75 (95% CI, 1.28-2.38) for a 10 μg/m3 PM2.5 concentration increment, respectively. Stratification analysis found stronger associations in participants with chronic diseases and Yi minority population. The results showed that long-term exposure to PM2.5 may increase the risk of hypertension prevalence in Chinese multi-ethnic adults. The associations were different among ethnicities.
Collapse
Affiliation(s)
- Jiayue Xu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuqin Zhang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Minghong Yao
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gonghua Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhanqi Duan
- Big Data Center of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Xing Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Juying Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Shi JQ, Wang BR, Jiang T, Gao L, Zhang YD, Xu J. NLRP3 Inflammasome: A Potential Therapeutic Target in Fine Particulate Matter-Induced Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2020; 77:923-934. [PMID: 32804134 DOI: 10.3233/jad-200359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As one of the most harmful air pollutants, fine particulate matter (PM2.5) has been implicated as a risk factor for multiple diseases, which has generated widespread public concern. Accordingly, a growing literature links PM2.5 exposure with Alzheimer's disease (AD). A critical gap in our understanding of the adverse effects of PM2.5 on AD is the mechanism triggered by PM2.5 that contributes to disease progression. Recent evidence has demonstrated that PM2.5 can activate NLRP3 inflammasome-mediated neuroinflammation. In this review, we highlight the novel evidence between PM2.5 exposure and AD incidence, which is collected and summarized from neuropathological, epidemiological, and neuroimaging studies to in-depth deciphering molecular mechanisms. First, neuropathological, epidemiological, and neuroimaging studies will be summarized. Then, the transport pathway for central nervous system delivery of PM2.5 will be presented. Finally, the role of NLRP3 inflammasome-mediated neuroinflammation in PM2.5 induced-effects on AD will be recapitulated.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bian-Rong Wang
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Gao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Xu
- Department of Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|