1
|
Flores-Piña A, Valencia-Cantero E, Santoyo G. Underground fires shape the structure of microbial communities and select for thermophilic bacteria through a temperature gradient. Microbiol Res 2025; 292:127996. [PMID: 39671811 DOI: 10.1016/j.micres.2024.127996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
A detailed diversity analysis of the prokaryotic and fungal communities in soil impacted by an underground fire located in the Trans-Mexican volcanic belt, Mexico, is described. Microbial diversity data obtained from soils at different depths and temperatures (27 °C, 42 °C, 50 ºC and 54 ºC) were analyzed, and Firmicutes increased in abundance as the temperature augmented, and Proteobacteria mainly decreased in abundance at high temperatures compared to unaffected soils. The fungal phylum Ascomycota was the most abundant, with no significant changes. A clear reduction in the richness of both prokaryotic and eukaryotic operational taxonomic units (OTUs) was observed in the affected soils. At the genus level, Bacillus species were the most abundant among bacteria, while Aspergillus, Penicillium, and Mortierella were dominant fungal genera at higher temperatures. Interestingly, the physicochemical parameters of the affected soils modified organic matter, which was indirectly correlated with the presence of some microbial taxa. Likewise, we obtained 308 soil bacterial isolates from both control and affected soils. Among these, the taxa from the phyla Actinobacteria and Firmicutes demonstrated the highest thermotolerance in the affected soils. Our findings shed light on the impact of underground fires on the structure of microbial communities, favoring an abundance of thermotolerant microbes.
Collapse
Affiliation(s)
- Aurora Flores-Piña
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Eduardo Valencia-Cantero
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Gustavo Santoyo
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico.
| |
Collapse
|
2
|
Qi YL, Zhang HT, Li M, Li WJ, Hua ZS. Recovery of nearly 3,000 archaeal genomes from 152 terrestrial geothermal spring metagenomes. Sci Data 2025; 12:151. [PMID: 39865091 PMCID: PMC11770067 DOI: 10.1038/s41597-025-04493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Terrestrial geothermal springs, reminiscent of early Earth conditions, host diverse and abundant populations of Archaea. In this study, we reconstructed 2,949 metagenome-assembled genomes (MAGs) from 152 metagenomes collected over six years from 48 geothermal springs in Tengchong, China. Among these MAGs, 1,431 (49%) were classified as high-quality, while 1,518 (51%) were considered as medium-quality. Phylogenomic analysis revealed that these MAGs spanned 12 phyla, 27 classes, 67 orders, 147 families, 265 genera, and 475 species. Notably, 575 (19%) MAGs represented new taxa at various taxonomic levels, and 2,075 (70%) lacked nomenclature and effective descriptions. The most abundant phyla of archaeal genomes were Thermoproteota, Thermoplasmatota, and Micrarchaeota. The DRTY, ZMQ, and ZZQ geothermal springs were predominated by Archaea, particularly by Thermoproteia and Thermoplasmata. These draft genomes provide new data for studying species diversity and function within terrestrial geothermal spring archaeal communities, thus contributing to the conservation and utilization of thermophilic and hyperthermophilic microbial resources.
Collapse
Affiliation(s)
- Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hao-Tian Zhang
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Basili M, Rogers TJ, Nakagawa M, Yücel M, de Moor JM, Barry PH, Schrenk MO, Jessen GL, Sánchez-Murillo R, Zahirovic S, Bekaert DV, Ramirez CJ, Bastoni D, Cordone A, Lloyd KG, Giovannelli D. Subsurface microbial community structure shifts along the geological features of the Central American Volcanic Arc. PLoS One 2024; 19:e0308756. [PMID: 39536057 PMCID: PMC11560019 DOI: 10.1371/journal.pone.0308756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024] Open
Abstract
Subduction of the Cocos and Nazca oceanic plates beneath the Caribbean plate drives the upward movement of deep fluids enriched in carbon, nitrogen, sulfur, and iron along the Central American Volcanic Arc (CAVA). These compounds fuel diverse subsurface microbial communities that in turn alter the distribution, redox state, and isotopic composition of these compounds. Microbial community structure and functions vary according to deep fluid delivery across the arc, but less is known about how microbial communities differ along the axis of a convergent margin as geological features (e.g., extent of volcanism and subduction geometry) shift. Here, we investigate changes in bacterial 16S rRNA gene amplicons and geochemical analysis of deeply-sourced seeps along the southern CAVA, where subduction of the Cocos Ridge alters the geological setting. We find shifts in community composition along the convergent margin, with communities in similar geological settings clustering together independently of the proximity of sample sites. Microbial community composition correlates with geological variables such as host rock type, maturity of hydrothermal fluid and slab depth along different segments of the CAVA. This reveals tight coupling between deep Earth processes and subsurface microbial activity, controlling community distribution, structure and composition along a convergent margin.
Collapse
Affiliation(s)
- Marco Basili
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Timothy J. Rogers
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Mustafa Yücel
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - J. Maarten de Moor
- OVSICORI, Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Peter H. Barry
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, United States of America
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Ricardo Sánchez-Murillo
- Department of Earth and Environmental Sciences, Tracer Hydrology Group, University of Texas, Arlington, TX, United States of America
| | - Sabin Zahirovic
- School of Geosciences, The University of Sydney, Darlington, Australia
| | - David V. Bekaert
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- CRPG, Vandœuvre-lès-Nancy, France
| | | | - Deborah Bastoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- Earth Science Department, University of Southern California, Los Angeles, CA, United States of America
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States of America
| |
Collapse
|
4
|
Kumar S, Das S, Jiya N, Sharma A, Saha C, Sharma P, Tamang S, Thakur N. Bacterial diversity along the geothermal gradients: insights from the high-altitude Himalayan hot spring habitats of Sikkim. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100310. [PMID: 39629478 PMCID: PMC11613191 DOI: 10.1016/j.crmicr.2024.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Geothermal habitats present a unique opportunity to study microbial adaptation to varying temperature conditions. In such environments, distinct temperature gradients foster diverse microbial communities, each adapted to its optimal niche. However, the complex dynamics of bacterial populations in across these gradients high-altitude hot springs remain largely unexplored. We hypothesize that temperature is a primary driver of microbial diversity, and bacterial richness peaks at intermediate temperatures. To investigate this, we analysed bacterial diversity using 16S rRNA amplicon sequencing across three temperature regions: hot region of 56-65 °C (hot spring), warm region of 35-37 °C (path carrying hot spring water to the river), and cold region of 4-7 °C (river basin). Our findings showed that Bacillota was the most abundant phylum (45.51 %), followed by Pseudomonadota (32.81 %) and Actinomycetota (7.2 %). Bacillota and Chloroflexota flourished in the hot and warm regions, while Pseudomonadota thrived in cooler areas. Core microbiome analysis indicated that species richness was highest in the warm region, declining in both cold and hot regions. Interestingly, an anomaly was observed with Staphylococcus, which was more abundant in cases where ponds were used for bathing and recreation. In contrast, Clostridium was mostly found in cold regions, likely due to its viability in soil and ability to remain dormant as a spore-forming bacterium. The warm region showed the highest bacterial diversity, while richness decreased in both cold and hot regions. This highlights the temperature-dependent nature of microbial communities, with optimal diversity in moderate thermal conditions. The study offers new insights into microbial dynamics in high-altitude geothermal systems.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Sayak Das
- Department of Life Science & Bioinformatics, Har Gobind Khurana School of Life Sciences, Assam University, Silchar, Assam 788011, India
| | - Namrata Jiya
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Chirantan Saha
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, Sikkim 737102, India
| |
Collapse
|
5
|
Mondal N, Dutta S, Chatterjee S, Sarkar J, Mondal M, Roy C, Chakraborty R, Ghosh W. Aquificae overcomes competition by archaeal thermophiles, and crowding by bacterial mesophiles, to dominate the boiling vent-water of a Trans-Himalayan sulfur-borax spring. PLoS One 2024; 19:e0310595. [PMID: 39453910 PMCID: PMC11508158 DOI: 10.1371/journal.pone.0310595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 09/02/2024] [Indexed: 10/27/2024] Open
Abstract
Trans-Himalayan hot spring waters rich in boron, chlorine, sodium and sulfur (but poor in calcium and silicon) are known based on PCR-amplified 16S rRNA gene sequence data to harbor high diversities of infiltrating bacterial mesophiles. Yet, little is known about the community structure and functions, primary productivity, mutual interactions, and thermal adaptations of the microorganisms present in the steaming waters discharged by these geochemically peculiar spring systems. We revealed these aspects of a bacteria-dominated microbiome (microbial cell density ~8.5 × 104 mL-1; live:dead cell ratio 1.7) thriving in the boiling (85°C) fluid vented by a sulfur-borax spring called Lotus Pond, situated at 4436 m above the mean sea-level, in the Puga valley of eastern Ladakh, on the Changthang plateau. Assembly, annotation, and population-binning of >15-GB metagenomic sequence illuminated the numeral predominance of Aquificae. While members of this phylum accounted for 80% of all 16S rRNA-encoding reads within the metagenomic dataset, 14% of such reads were attributed to Proteobacteria. Post assembly, only 25% of all protein-coding genes identified were attributable to Aquificae, whereas 41% was ascribed to Proteobacteria. Annotation of metagenomic reads encoding 16S rRNAs, and/or PCR-amplified 16S rRNA genes, identified 163 bacterial genera, out of which 66 had been detected in past investigations of Lotus Pond's vent-water via 16S amplicon sequencing. Among these 66, Fervidobacterium, Halomonas, Hydrogenobacter, Paracoccus, Sulfurihydrogenibium, Tepidimonas, Thermus and Thiofaba (or their close phylogenomic relatives) were presently detected as metagenome-assembled genomes (MAGs). Remarkably, the Hydrogenobacter related MAG alone accounted for ~56% of the entire metagenome, even though only 15 out of the 66 genera consistently present in Lotus Pond's vent-water have strains growing in the laboratory at >45°C, reflecting the continued existence of the mesophiles in the ecosystem. Furthermore, the metagenome was replete with genes crucial for thermal adaptation in the context of Lotus Pond's geochemistry and topography. In terms of sequence similarity, a majority of those genes were attributable to phylogenetic relatives of mesophilic bacteria, while functionally they rendered functions such as encoding heat shock proteins, molecular chaperones, and chaperonin complexes; proteins controlling/modulating/inhibiting DNA gyrase; universal stress proteins; methionine sulfoxide reductases; fatty acid desaturases; different toxin-antitoxin systems; enzymes protecting against oxidative damage; proteins conferring flagellar structure/function, chemotaxis, cell adhesion/aggregation, biofilm formation, and quorum sensing. The Lotus Pond Aquificae not only dominated the microbiome numerically but also acted potentially as the main primary producers of the ecosystem, with chemolithotrophic sulfur oxidation (Sox) being the fundamental bioenergetic mechanism, and reductive tricarboxylic acid (rTCA) cycle the predominant carbon fixation pathway. The Lotus Pond metagenome contained several genes directly or indirectly related to virulence functions, biosynthesis of secondary metabolites including antibiotics, antibiotic resistance, and multi-drug efflux pumping. A large proportion of these genes being attributable to Aquificae, and Proteobacteria (very few were ascribed to Archaea), it could be worth exploring in the future whether antibiosis helped the Aquificae overcome niche overlap with other thermophiles (especially those belonging to Archaea), besides exacerbating the bioenergetic costs of thermal endurance for the mesophilic intruders of the ecosystem.
Collapse
Affiliation(s)
- Nibendu Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Subhajit Dutta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagannath Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Mahamadul Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Wriddhiman Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
6
|
Kumari S, Choudhary G, Anu K, Devi S. Metagenomics insight into Puga geothermal geyser located in Himalayan Geothermal Belt (Trans-Himalayan Plateau) Ladakh, India. Braz J Microbiol 2024; 55:2321-2334. [PMID: 38874746 PMCID: PMC11405596 DOI: 10.1007/s42770-024-01408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
Puga geothermal geyser and surrounding area, located in the Himalayan Geothermal Belt of the Trans-Himalayan Plateau in Ladakh, India, are very geographically isolated and considered pristine and free of anthropogenic activities. In this study, we have conducted the first metagenomic investigation of the microbes in and around the geyser. The whole genome sequencing analysis showed the presence of a total of 44.8%, 39.7% and 41.4% bacterial phyla in the PugW, PugS, and PugSo samples respectively, 8.6% of archaeal phyla (in all the samples), unclassified (derived from other sequences, PugW: 27.6%, PugS: 27.6%, and PugSo: 15.5%) and unclassified (derived from bacteria, PugW: 12%, PugS: 13.8%, and PugSo: 13.8%). The majority of archaeal sequences were linked to Euryarchaeota (2.84%) while the majority of the bacterial communities that predominated in most geothermal locations were linked to Pseudomonadota (67.14%) and Bacteroidota (12.52%). The abundant bacterial strains at the species level included Dechloromonas aromatica, Acinetobacter baumannii, and Arcobacter butzleri, in all the samples while the most abundant archaeal species were Methanosaeta thermophile, Methanoregula boonei, and Methanosarcina berkeri. Further, this geothermal geyser metagenome has a large number of unique sequences linked to unidentified and unclassified lineages, suggesting a potential source for novel species of microbes and their products. The present study which only examined one of the many geothermal geysers and springs in the Puga geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the geothermal springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Puga geothermal area, which serve as a repository for unidentified microbial lineages.
Collapse
Affiliation(s)
- Shalini Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geetanjli Choudhary
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India
| | - Kumari Anu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarita Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Qi YL, Chen YT, Xie YG, Li YX, Rao YZ, Li MM, Xie QJ, Cao XR, Chen L, Qu YN, Yuan ZX, Xiao ZC, Lu L, Jiao JY, Shu WS, Li WJ, Hedlund BP, Hua ZS. Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes. Nat Commun 2024; 15:4066. [PMID: 38744885 PMCID: PMC11094006 DOI: 10.1038/s41467-024-48498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.
Collapse
Affiliation(s)
- Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ting Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qi-Jun Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Ru Cao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Xuan Yuan
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Chao Xiao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
8
|
Cheng M, Luo S, Zhang P, Xiong G, Chen K, Jiang C, Yang F, Huang H, Yang P, Liu G, Zhang Y, Ba S, Yin P, Xiong J, Miao W, Ning K. A genome and gene catalog of the aquatic microbiomes of the Tibetan Plateau. Nat Commun 2024; 15:1438. [PMID: 38365793 PMCID: PMC10873407 DOI: 10.1038/s41467-024-45895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
The Tibetan Plateau supplies water to nearly 2 billion people in Asia, but climate change poses threats to its aquatic microbial resources. Here, we construct the Tibetan Plateau Microbial Catalog by sequencing 498 metagenomes from six water ecosystems (saline lakes, freshwater lakes, rivers, hot springs, wetlands and glaciers). Our catalog expands knowledge of regional genomic diversity by presenting 32,355 metagenome-assembled genomes that de-replicated into 10,723 representative genome-based species, of which 88% were unannotated. The catalog contains nearly 300 million non-redundant gene clusters, of which 15% novel, and 73,864 biosynthetic gene clusters, of which 50% novel, thus expanding known functional diversity. Using these data, we investigate the Tibetan Plateau aquatic microbiome's biogeography along a distance of 2,500 km and >5 km in altitude. Microbial compositional similarity and the shared gene count with the Tibetan Plateau microbiome decline along with distance and altitude difference, suggesting a dispersal pattern. The Tibetan Plateau Microbial Catalog stands as a substantial repository for high-altitude aquatic microbiome resources, providing potential for discovering novel lineages and functions, and bridging knowledge gaps in microbiome biogeography.
Collapse
Affiliation(s)
- Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Luo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Peng Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Guangzhou Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fangdian Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Hanhui Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sang Ba
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China.
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Laboratory of Tibetan Plateau Wetland and Watershed Ecosystem, College of Science, Tibet University, Lhasa, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P. Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia. MICROBIAL ECOLOGY 2023; 86:2305-2319. [PMID: 37209180 PMCID: PMC10640420 DOI: 10.1007/s00248-023-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.
Collapse
Affiliation(s)
- Ema Kostešić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Mitrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | | | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Barbosa C, Tamayo-Leiva J, Alcorta J, Salgado O, Daniele L, Morata D, Díez B. Effects of hydrogeochemistry on the microbial ecology of terrestrial hot springs. Microbiol Spectr 2023; 11:e0024923. [PMID: 37754764 PMCID: PMC10581198 DOI: 10.1128/spectrum.00249-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical role in shaping thermal microbial communities. However, the interactions of biotic and abiotic factors at this terrestrial-aquatic interface are still not well understood on a global scale, and the question of how underground events influence microbial communities remains open. To answer this, 11 new samples obtained from the El Tatio geothermal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 191 samples from previous publications obtained from the Taupo Volcanic Zone, the Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temperature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sulfate waters, and no significant correlations were found with temperature. However, moderate correlations were observed between chemical parameters such as pH (mostly constrained to temperatures below 70°C), SO4 2- and abundances of members of the phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermoplasmatota. pH and SO4 2- gradients were explained by phase separation of sulfur-rich hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were identified as key processes shaping these communities. Ordination and permutational analysis of variance showed that temperature, pH, and major element hydrochemistry explain only 24% of the microbial community structure. Therefore, most of the variance remained unexplained, suggesting that other environmental or biotic factors are also involved and highlighting the environmental complexity of the ecosystem and its great potential to test niche theory ecological associated questions. IMPORTANCE This is the first approach to investigate whether geothermal processes could have an influence on the ecology of thermal microbial communities on a global scale. In addition to temperature and pH, microbial communities are structured by sulfate concentrations, which depends on the tectono-magmatic settings (such as the depth of magmatic chambers) and the local settings (such as the availability of a confining layer separating NaCl waters from steam after phase separation) and the possibility of mixing with more diluted fluids. Comparison of microbial communities from different geothermal areas by homogeneous sequence processing showed that no significant geographic distance decay was detected on the microbial communities according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilarity indices. Instead, an ancient potential divergence in the same taxonomic groups is suggested between globally distant thermal zones.
Collapse
Affiliation(s)
- Carla Barbosa
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Javier Tamayo-Leiva
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Linda Daniele
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Diego Morata
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Beatríz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
11
|
Wang Y, Wang X, Wu H, Wang L, Wang H, Lu Z. Characterization of Hsp17, a Novel Small Heat Shock Protein, in Sphingomonas melonis TY under Heat Stress. Microbiol Spectr 2023; 11:e0136023. [PMID: 37436164 PMCID: PMC10434288 DOI: 10.1128/spectrum.01360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteria are constantly exposed to a variety of environmental stresses. Temperature is considered one of the most important environmental factors affecting microbial growth and survival. As ubiquitous environmental microorganisms, Sphingomonas species play essential roles in the biodegradation of organic contaminants, plant protection, and environmental remediation. Understanding the mechanism by which they respond to heat shock will help further improve cell resistance by applying synthetic biological strategies. Here, we assessed the transcriptomic and proteomic responses of Sphingomonas melonis TY to heat shock and found that stressful conditions caused significant changes in functional genes related to protein synthesis at the transcriptional level. The most notable changes observed were increases in the transcription (1,857-fold) and protein expression (11-fold) of Hsp17, which belongs to the small heat shock protein family, and the function of Hsp17 in heat stress was further investigated in this study. We found that the deletion of hsp17 reduced the capacity of the cells to tolerate high temperatures, whereas the overexpression of hsp17 significantly enhanced the ability of the cells to withstand high temperatures. Moreover, the heterologous expression of hsp17 in Escherichia coli DH5α conferred to the bacterium the ability to resist heat stress. Interestingly, its cells were elongated and formed connected cells following the increase in temperature, while hsp17 overexpression restored their normal morphology under high temperature. In general, these results indicate that the novel small heat shock protein Hsp17 greatly contributes to maintaining cell viability and morphology under stress conditions. IMPORTANCE Temperature is generally considered the most important factor affecting metabolic functions and the survival of microbes. As molecular chaperones, small heat shock proteins can prevent damaged protein aggregation during abiotic stress, especially heat stress. Sphingomonas species are widely distributed in nature, and they can frequently be found in various extreme environments. However, the role of small heat shock proteins in Sphingomonas under high-temperature stress has not been elucidated. This study greatly enhances our understanding of a novel identified protein, Hsp17, in S. melonis TY in terms of its ability to resist heat stress and maintain cell morphology under high temperature, leading to a broader understanding of how microbes adapt to environmental extremes. Furthermore, our study will provide potential heat resistance elements for further enhancing cellular resistance as well as the synthetic biological applications of Sphingomonas.
Collapse
Affiliation(s)
- Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Dick JM, Meng D. Community- and genome-based evidence for a shaping influence of redox potential on bacterial protein evolution. mSystems 2023; 8:e0001423. [PMID: 37289197 PMCID: PMC10308962 DOI: 10.1128/msystems.00014-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Despite deep interest in how environments shape microbial communities, whether redox conditions influence the sequence composition of genomes is not well known. We predicted that the carbon oxidation state (ZC) of protein sequences would be positively correlated with redox potential (Eh). To test this prediction, we used taxonomic classifications for 68 publicly available 16S rRNA gene sequence data sets to estimate the abundances of archaeal and bacterial genomes in river & seawater, lake & pond, geothermal, hyperalkaline, groundwater, sediment, and soil environments. Locally, ZC of community reference proteomes (i.e., all the protein sequences in each genome, weighted by taxonomic abundances but not by protein abundances) is positively correlated with Eh corrected to pH 7 (Eh7) for the majority of data sets for bacterial communities in each type of environment, and global-scale correlations are positive for bacterial communities in all environments. In contrast, archaeal communities show approximately equal frequencies of positive and negative correlations in individual data sets, and a positive pan-environmental correlation for archaea only emerges after limiting the analysis to samples with reported oxygen concentrations. These results provide empirical evidence that geochemistry modulates genome evolution and may have distinct effects on bacteria and archaea. IMPORTANCE The identification of environmental factors that influence the elemental composition of proteins has implications for understanding microbial evolution and biogeography. Millions of years of genome evolution may provide a route for protein sequences to attain incomplete equilibrium with their chemical environment. We developed new tests of this chemical adaptation hypothesis by analyzing trends of the carbon oxidation state of community reference proteomes for microbial communities in local- and global-scale redox gradients. The results provide evidence for widespread environmental shaping of the elemental composition of protein sequences at the community level and establish a rationale for using thermodynamic models as a window into geochemical effects on microbial community assembly and evolution.
Collapse
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Delong Meng
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
13
|
He Q, Wang S, Feng K, Michaletz ST, Hou W, Zhang W, Li F, Zhang Y, Wang D, Peng X, Yang X, Deng Y. High speciation rate of niche specialists in hot springs. THE ISME JOURNAL 2023:10.1038/s41396-023-01447-4. [PMID: 37286739 DOI: 10.1038/s41396-023-01447-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Ecological and evolutionary processes simultaneously regulate microbial diversity, but the evolutionary processes and their driving forces remain largely unexplored. Here we investigated the ecological and evolutionary characteristics of microbiota in hot springs spanning a broad temperature range (54.8-80 °C) by sequencing the 16S rRNA genes. Our results demonstrated that niche specialists and niche generalists are embedded in a complex interaction of ecological and evolutionary dynamics. On the thermal tolerance niche axis, thermal (T) sensitive (at a specific temperature) versus T-resistant (at least in five temperatures) species were characterized by different niche breadth, community abundance and dispersal potential, consequently differing in potential evolutionary trajectory. The niche-specialized T-sensitive species experienced strong temperature barriers, leading to completely species shift and high fitness but low abundant communities at each temperature ("home niche"), and such trade-offs thus reinforced peak performance, as evidenced by high speciation across temperatures and increasing diversification potential with temperature. In contrast, T-resistant species are advantageous of niche expansion but with poor local performance, as shown by wide niche breadth with high extinction, indicating these niche generalists are "jack-of-all-trades, master-of-none". Despite of such differences, the T-sensitive and T-resistant species are evolutionarily interacted. Specifically, the continuous transition from T-sensitive to T-resistant species insured the exclusion probability of T-resistant species at a relatively constant level across temperatures. The co-evolution and co-adaptation of T-sensitive and T-resistant species were in line with the red queen theory. Collectively, our findings demonstrate that high speciation of niche specialists could alleviate the environmental-filtering-induced negative effect on diversity.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Wenhui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
14
|
Upin HE, Newell DL, Colman DR, Boyd ES. Tectonic settings influence the geochemical and microbial diversity of Peru hot springs. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:112. [PMID: 38665187 PMCID: PMC11041657 DOI: 10.1038/s43247-023-00787-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2024]
Abstract
Tectonic processes control hot spring temperature and geochemistry, yet how this in turn shapes microbial community composition is poorly understood. Here, we present geochemical and 16 S rRNA gene sequencing data from 14 hot springs from contrasting styles of subduction along a convergent margin in the Peruvian Andes. We find that tectonic influence on hot spring temperature and geochemistry shapes microbial community composition. Hot springs in the flat-slab and back-arc regions of the subduction system had similar pH but differed in geochemistry and microbiology, with significant relationships between microbial community composition, geochemistry, and geologic setting. Flat-slab hot springs were chemically heterogeneous, had modest surface temperatures (up to 45 °C), and were dominated by members of the metabolically diverse phylum Proteobacteria. Whereas, back-arc hot springs were geochemically more homogenous, exhibited high concentrations of dissolved metals and gases, had higher surface temperatures (up to 81 °C), and host thermophilic archaeal and bacterial lineages.
Collapse
Affiliation(s)
- Heather E. Upin
- Department of Geosciences, Utah State University, Logan, UT USA
| | | | - Daniel R. Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT USA
| |
Collapse
|
15
|
Li F, Hou W, Wang S, Zhang Y, He Q, Zhang W, Dong H. Effects of Mineral on Taxonomic and Functional Structures of Microbial Community in Tengchong Hot Springs via in-situ cultivation. ENVIRONMENTAL MICROBIOME 2023; 18:22. [PMID: 36949539 PMCID: PMC10035157 DOI: 10.1186/s40793-023-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Diverse mineralogical compositions occur in hot spring sediments, but the impact of minerals on the diversity and structure of microbial communities remains poorly elucidated. In this study, different mineral particles with various chemistries (i.e., hematite, biotite, K-feldspar, quartz, muscovite, aragonite, serpentine, olivine, barite, apatite, and pyrite) were incubated for ten days in two Tengchong hot springs, one alkaline (pH ~ 8.34) with a high temperature (~ 82.8 °C) (Gumingquan, short as GMQ) and one acidic (pH ~ 3.63) with a relatively low temperature (~ 43.3 °C) (Wenguangting, short as WGT), to determine the impacts of minerals on the microbial communities taxonomic and functional diversities. Results showed that the mineral-associated bacterial taxa differed from those of the bulk sediment samples in the two hot springs. The relative abundance of Proteobacteria, Euryarchaeota, and Acidobacteria increased in all minerals, indicating that these microorganisms are apt to colonize on solid surfaces. The α-diversity indices of the microbial communities on the mineral surfaces in the WGT were higher than those from the bulk sediment samples (p < 0.05), which may be caused by the stochastically adhering process on the mineral surface during 10-day incubation, different from the microbial community in sediment which has experienced long-term environmental and ecological screening. Chemoheterotrophy increased with minerals incubation, which was high in most cultured minerals (the relative contents were 5.8 - 21.4%). Most notably, the sulfate respiration bacteria (mainly related to Desulfobulbaceae and Syntrophaceae) associated with aragonite in the acidic hot spring significantly differed from other minerals, possibly due to the pH buffering effect of aragonite providing more favorable conditions for their survival and proliferation. By comparison, aragonite cultured in the alkaline hot spring highly enriched denitrifying bacteria and may have promoted the nitrogen cycle within the system. Collectively, we speculated that diverse microbes stochastically adhered on the surface of minerals in the water flows, and the physicochemical properties of minerals drove the enrichment of certain microbial communities and functional groups during the short-term incubation. Taken together, these findings thereby provide novel insights into mechanisms of community assembly and element cycling in the terrestrial hydrothermal system associated with hot springs.
Collapse
Affiliation(s)
- Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Yidi Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Wenhui Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
16
|
Wang X, Yin Y, Yu Z, Shen G, Cheng H, Tao S. Distinct distribution patterns of the abundant and rare bacteria in high plateau hot spring sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160832. [PMID: 36521602 DOI: 10.1016/j.scitotenv.2022.160832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The diversity and distribution patterns of the abundant and rare microbial sub-communities in hot spring ecosystems and their assembly mechanisms are poorly understood. The present study investigated the diversity and distribution patterns of the total, abundant, conditionally rare, and always rare taxa in the low- and moderate-temperature hot spring sediments on the Tibetan Plateau based on high-throughput 16S rRNA gene sequencing, and explored their major environmental drivers. The diversity of these four bacterial taxa showed no significant change between the low-temperature and moderate-temperature hot spring sediments, whereas the bacterial compositions were obviously different. Stochasticity dominated the bacterial sub-community assemblages, while heterogeneous selection also played an important role in shaping the abundant and conditionally rare taxa between the low-temperature and moderate-temperature hot spring sediments. No significant difference in the topological properties of co-occurrence networks was found between the conditionally rare and abundant taxa, and the connections between the paired operational taxonomic units (OTUs) were almost positive. The diversity of the total, abundant, and conditionally rare taxa was governed by the salinity of hot spring sediments, while that of the always rare taxa was determined by the content of S element. In contrast, temperature had significant direct effect on the composition of the total, abundant, and conditionally rare taxa, but relatively weak influence on that of the always rare taxa. Besides, salinity was another major environmental factor driving the composition of the abundant and rare sub-communities in the hot spring sediments. These results reveal the assembly processes and major environmental drivers that shaped different bacterial sub-communities in the hot spring sediments on the Tibetan Plateau, and indicate the importance of conditionally rare taxa in constructing bacterial communities. These findings enhance the current understanding of the ecological mechanisms maintaining the ecosystem stability and services in extreme environment.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Zhang P, Xiong J, Qiao N, Luo S, Yang Q, Li X, An R, Jiang C, Miao W, Ba S. High Variation in Protist Diversity and Community Composition in Surface Sediment of Hot Springs in Himalayan Geothermal Belt, China. Microorganisms 2023; 11:microorganisms11030674. [PMID: 36985247 PMCID: PMC10053680 DOI: 10.3390/microorganisms11030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hot springs are some of the most special environments on Earth. Many prokaryotic and eukaryotic microbes have been found to live in this environment. The Himalayan geothermal belt (HGB) has numerous hot springs spread across the area. Comprehensive research using molecular techniques to investigate eukaryotic microorganisms is still lacking; investigating the composition and diversity of eukaryotic microorganisms such as protists in the hot spring ecosystems will not only provide critical information on the adaptations of protists to extreme conditions, but could also give valuable contributions to the global knowledge of biogeographic diversity. In this study, we used high-throughput sequencing to illuminate the diversity and composition pattern of protist communities in 41 geothermal springs across the HGB on the Tibetan Plateau. A total of 1238 amplicon sequence variants (ASVs) of protists were identified in the hot springs of the HGB. In general, Cercozoa was the phylum with the highest richness, and Bacillariophyta was the phylum with the highest relative abundance in protists. Based on the occurrence of protist ASVs, most of them are rare. A high variation in protist diversity was found in the hot springs of the HGB. The high variation in protist diversity may be due to the different in environmental conditions of these hot springs. Temperature, salinity, and pH are the most important environmental factors that affect the protist communities in the surface sediments of the hot springs in the HGB. In summary, this study provides the first comprehensive study of the composition and diversity of protists in the hot springs of the HGB and facilitates our understanding of the adaptation of protists in these extreme habitats.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqian Qiao
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Shuai Luo
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Yang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaodong Li
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Ruizhi An
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (W.M.); (S.B.)
| | - Sang Ba
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
- Correspondence: (W.M.); (S.B.)
| |
Collapse
|
18
|
Wang L, Xin L, Zhu Y, Fang Y, Zhu L. Associations between temperature variations and tourist arrivals: analysis based on Baidu Index of hot-spring tourism in 44 cities in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43641-43653. [PMID: 36670219 PMCID: PMC9857907 DOI: 10.1007/s11356-023-25404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Hot-spring tourism refers to entertainment, health preservation, commercial conferences, and other leisure activities at hot-spring locations. This tourism often shows periodic variability, which may be due to seasonal temperature variations. However, studies on the effects of temperature variations on tourist arrivals at hot springs are limited. Therefore, this study aimed to evaluate this relationship in 31 provincial capital cities and 13 s-tier cities in China. Using the Baidu Index, we obtained data for tourist arrivals to hot springs in each city and constructed a generalised additive model to explore the associations between temperature variations and tourist arrivals. We also analysed the statistical significance of the estimated effects during different seasons to explore potential effect modification. A 1 °C increase in temperature was associated with a 1.81% (95% confidence interval (CI): 1.69-1.93) decrease in daily tourist arrivals for hot-spring tourism. Significant positive associations between the abovementioned factors were observed in summer (2.18% change, 95% CI: 1.32-3.04). The effect of temperature on the volume of tourist arrivals may last for approximately 2 months. Robustness analysis confirmed the data reliability. The results indicate that significant relationships exist between temperature variations and hot-spring tourism arrivals, which vary seasonally. This study has significant implications for travel agencies to effectively manage tourist visits to hot spring locations.
Collapse
Affiliation(s)
- Li Wang
- Anhui Finance & Trade Vocational College, Hefei, Anhui, China
| | - Ling Xin
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yongjian Zhu
- University of Science and Technology of China, Hefei, Anhui, China
| | - Yanyan Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lin Zhu
- Anhui Broadcasting Movie and Television College, Hefei, Anhui, China
| |
Collapse
|
19
|
Zhang HS, Feng QD, Zhang DY, Zhu GL, Yang L. Bacterial community structure in geothermal springs on the northern edge of Qinghai-Tibet plateau. Front Microbiol 2023; 13:994179. [PMID: 37180363 PMCID: PMC10172933 DOI: 10.3389/fmicb.2022.994179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 03/19/2023] Open
Abstract
Introduction:In order to reveal the composition of the subsurface hydrothermal bacterial community in the zones of magmatic tectonics and their response to heat storage environments.Methods:In this study, we performed hydrochemical analysis and regional sequencing of the 16S rRNA microbial V4-V5 region in 7 Pleistocene and Lower Neogene hot water samples from the Gonghe basin.Results:Two geothermal hot spring reservoirs in the study area were found to be alkaline reducing environments with a mean temperature of 24.83°C and 69.28°C, respectively, and the major type of hydrochemistry was SO4-Cl·Na. The composition and structure of microorganisms in both types of geologic thermal storage were primarily controlled by temperature, reducing environment intensity, and hydrogeochemical processes. Only 195 ASVs were shared across different temperature environments, and the dominant bacterial genera in recent samples from temperate hot springs were Thermus and Hydrogenobacter, with both genera being typical of thermophiles. The correlation analysis showed that the overall level of relative abundance of the subsurface hot spring relied on a high temperature and a slightly alkaline reducing environment. Nearly all of the top 4 species in the abundance level (53.99% of total abundance) were positively correlated with temperature and pH, whereas they were negatively correlated with ORP (oxidation–reduction potential), nitrate, and bromine ions.Discussion:In general, the composition of bacteria in the groundwater in the study area was sensitive to the response of the thermal storage environment and also showed a relationship with geochemical processes, such as gypsum dissolution, mineral oxidation, etc.
Collapse
|
20
|
Fernandes-Martins MC, Colman DR, Boyd ES. Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environ Microbiol 2023; 25:1022-1040. [PMID: 36651919 DOI: 10.1111/1462-2920.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The factors that influence biodiversity and productivity of hydrothermal ecosystems are not well understood. Here we investigate the relationship between fluid mixing, biodiversity, and chemosynthetic primary productivity in three co-localized hot springs (RSW, RSN, and RSE) in Yellowstone National Park that have different geochemistry. All three springs are sourced by reduced hydrothermal fluid, but RSE and RSN receive input of vapour phase gas and oxidized groundwaters, with input of both being substantially higher in RSN. Metagenomic sequencing revealed that communities in RSN were more biodiverse than those of RSE and RSW in all dimensions evaluated. Microcosm activity assays indicate that rates of dissolved inorganic carbon (DIC) uptake were also higher in RSN than in RSE and RSW. Together, these results suggest that increased mixing of reduced volcanic fluid with oxidized fluids generates additional niche space capable of supporting increasingly biodiverse communities that are more productive. These results provide insight into the factors that generate and maintain chemosynthetic biodiversity in hydrothermal systems and that influence the distribution, abundance, and diversity of microbial life in communities supported by chemosynthesis. These factors may also extend to other ecosystems not supported by photosynthesis, including the vast subterranean biosphere and biospheres beneath ice sheets and glaciers.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
21
|
Rasmussen KL, Stamps BW, Vanzin GF, Ulrich SM, Spear JR. Spatial and temporal dynamics at an actively silicifying hydrothermal system. Front Microbiol 2023; 14:1172798. [PMID: 37206339 PMCID: PMC10188993 DOI: 10.3389/fmicb.2023.1172798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.
Collapse
Affiliation(s)
- Kalen L. Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Blake W. Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Gary F. Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | | | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- *Correspondence: John R. Spear,
| |
Collapse
|
22
|
Das S, Najar IN, Sherpa MT, Kumari A, Thakur N. Post-monsoon seasonal variation of prokaryotic diversity in solfataric soil from the North Sikkim hot spring. Int Microbiol 2022; 26:281-294. [PMID: 36478539 DOI: 10.1007/s10123-022-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The solfataric soil sediments of the hot springs of Sikkim located at Yume Samdung and Lachen valley were studied for deciphering the bacterial diversity. The main aim here is to present a comparative study and generate a baseline data on the post-monsoon seasonal variation for the months of October and December, analyzed through 16S rRNA V3-V4 amplicon sequencing. The results have shown that there is not much variation at phylum level in the month of October in all the three hot springs such as New Yume Samdung (NYS), Old Yume Samdung (OYS), and Tarum (TAR) hot spring. The abundant phyla mainly present were Firmicutes, followed by Proteobacteria, Actinobacteria, and Bacteroidetes. Similarly, in the month of December, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were prevalent; however, the percent relative abundance of these phyla in the month of December is relatively less. Besides this decrease in percent abundance, it was interestingly seen that relatively more phyla were found contributing towards the bacterial diversity in the month of December. Similar to phylum level, at genus level, there was not much variation seen among various prevalent genera of the three studied hot springs in both months. The major genera prevalent in both months among all the three hot springs were followed by Bacillus, Desulfotomaculum, Lactobacillus, and Paenibacillus. A similar trend was also seen at gene level that relative abundance of various genera was higher in the month of October but more genera were found to be contributing towards bacterial diversity in the month of December. Few distinct genera were found to be more abundant in the month of December such as Rhodopirellula and Blastopirellula. The results may conclude that there is not much variation in the abundance and type of bacterial communities during the post-monsoon season in the month of October and December. However, this may be assumed that there is the accumulation or increase in the bacterial communities during the winter (relatively higher temperature among hot springs) and may favor few mesophilic and more thermophilic communities as well.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
23
|
Mitrović M, Kostešić E, Marković T, Selak L, Hausmann B, Pjevac P, Orlić S. Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia. Syst Appl Microbiol 2022; 45:126359. [PMID: 36150364 DOI: 10.1016/j.syapm.2022.126359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
In Croatia, a variety of geothermal springs with a wide temperature range and varied hydrochemical conditions exist, and they may harbor different niches for the distribution of microbial communities. In this study, 19 different sites, mainly located in central and eastern Croatia, were selected for primary characterization of spring hydrochemistry and microbial community composition. Using 16S rRNA gene amplicon sequencing, it was found that the bacterial communities that dominated most geothermal waters were related to Proteobacteria and Campylobacteria, while most archaeal sequences were related to Crenarchaeota. At the genus level, the prokaryotic community was highly site-specific and was often dominated by a single genus, including sites dominated by Hydrogenophilus, Sulfuricurvum, Sulfurovum, Thiofaba and Nitrospira, while the most abundant archaeal genera were affiliated to the ammonia-oxidizing archaea, Candidatus Nitrosotenuis and Candidatus Nitrososphaera. Whereas the microbial communities were overall highly location-specific, temperature, pH, ammonia, nitrate, total nitrogen, sulfate and hydrogen sulfide, as well as dissolved organic and inorganic carbon, were the abiotic factors that significantly affected microbial community composition. Furthermore, an aquifer-type effect was observed in the community composition, but there was no pronounced seasonal variability for geothermal spring communities (i.e. the community structure was mainly stable during the three seasons sampled). These results surprisingly pointed to stable and geographically unique microbial communities that were adapted to different geothermal water environments throughout Croatia. Knowing which microbial communities are present in these extreme habitats is essential for future research. They will allow us to explore further the microbial metabolisms prevailing at these geothermal sites that have high potential for biotechnological uses, as well as the establishment of the links between microbial community structure and the physicochemical environment of geothermal waters.
Collapse
Affiliation(s)
- Maja Mitrović
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ema Kostešić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Tamara Marković
- Croatian Geological Survey, Milan Sachs 2 Street, 10 000 Zagreb, Croatia
| | - Lorena Selak
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Vienna, Department of Microbiology and Ecosystem Science, Divison of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Precipitation Processes, Bijenička cesta 54, 10 000 Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia.
| |
Collapse
|
24
|
Noell SE, Baptista MS, Smith E, McDonald IR, Lee CK, Stott MB, Amend JP, Cary SC. Unique Geothermal Chemistry Shapes Microbial Communities on Mt. Erebus, Antarctica. Front Microbiol 2022; 13:836943. [PMID: 35591982 PMCID: PMC9111169 DOI: 10.3389/fmicb.2022.836943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Mt. Erebus, Antarctica, is the world's southernmost active volcano and is unique in its isolation from other major active volcanic systems and its distinctive geothermal systems. Using 16S rRNA gene amplicon sequencing and physicochemical analyses, we compared samples collected at two contrasting high-temperature (50°C-65°C) sites on Mt. Erebus: Tramway Ridge, a weather-protected high biomass site, and Western Crater, an extremely exposed low biomass site. Samples were collected along three thermal gradients, one from Western Crater and two within Tramway Ridge, which allowed an examination of the heterogeneity present at Tramway Ridge. We found distinct soil compositions between the two sites, and to a lesser extent within Tramway Ridge, correlated with disparate microbial communities. Notably, pH, not temperature, showed the strongest correlation with these differences. The abundance profiles of several microbial groups were different between the two sites; class Nitrososphaeria amplicon sequence variants (ASVs) dominated the community profiles at Tramway Ridge, whereas Acidobacteriotal ASVs were only found at Western Crater. A co-occurrence network, paired with physicochemical analyses, allowed for finer scale analysis of parameters correlated with differential abundance profiles, with various parameters (total carbon, total nitrogen, soil moisture, soil conductivity, sulfur, phosphorous, and iron) showing significant correlations. ASVs assigned to Chloroflexi classes Ktedonobacteria and Chloroflexia were detected at both sites. Based on the known metabolic capabilities of previously studied members of these groups, we predict that chemolithotrophy is a common strategy in this system. These analyses highlight the importance of conducting broader-scale metagenomics and cultivation efforts at Mt. Erebus to better understand this unique environment.
Collapse
Affiliation(s)
- Stephen E Noell
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Mafalda S Baptista
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Emily Smith
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R McDonald
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - S Craig Cary
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
25
|
Que T, Pang X, Huang H, Chen P, Wei Y, Hua Y, Liao H, Wu J, Li S, Wu A, He M, Ruan X, Hu Y. Comparative Gut Microbiome in Trachypithecus leucocephalus and Other Primates in Guangxi, China, Based on Metagenome Sequencing. Front Cell Infect Microbiol 2022; 12:872841. [PMID: 35601103 PMCID: PMC9114771 DOI: 10.3389/fcimb.2022.872841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The Trachypithecus leucocephalus (white-headed langur) is a highly endangered, karst-endemic primate species, inhabiting the karst limestone forest in Guangxi, Southwest China. How white-headed langurs adapted to karst limestone and special dietary remains unclear. It is the first time to study the correlation between the gut microbiome of primates and special dietary, and environment in Guangxi. In the study, 150 fecal samples are collected from nine primates in Guangxi, China. Metagenomic sequencing is used to analyze and compare the gut microbiome composition and diversity between white-headed langurs and other primates. Our results indicate that white-headed langurs has a higher diversity of microbiome than other primates, and the key microbiome are phylum Firmicutes, class Clostridia, family Lachnospiraceae, and genera Clostridiates and Ruminococcus, which are related to the digestion and degradation of cellulose. Ten genera are significantly more abundant in white-headed langurs and François’ langur than in other primates, most of which are high-temperature microbiome. Functional analysis reveals that energy synthesis-related pathways and sugar metabolism-related pathways are less abundant in white-headed langurs and François’ langur than in other primates. This phenomenon could be an adaptation mechanism of leaf-eating primates to low-energy diet. The gut microbiome of white-headed langurs is related to diet and karst limestone environment. This study could serve as a reference to design conservation breeding, manage conservation units, and determine conservation priorities.
Collapse
Affiliation(s)
- Tengcheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Xianwu Pang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, China
- Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Hongli Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Panyu Chen
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Yinfeng Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yiming Hua
- School of Information and Management, Guangxi Medical University, Nanning, China
| | - Hongjun Liao
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Jianbao Wu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Shousheng Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Aiqiong Wu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Meihong He
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, China
| | - Xiangdong Ruan
- Acdemy of Inventory and Planning, National Forestry and Grassland Administration, Beijing, China
| | - Yanling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Yanling Hu,
| |
Collapse
|
26
|
Yang F, Liu S, Jia C, Wang Y. Identification of groundwater microbial communities and their connection to the hydrochemical environment in southern Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14263-14278. [PMID: 34608579 DOI: 10.1007/s11356-021-16812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial community plays an important role in the biogeochemical cycle in coastal groundwater ecosystems. However, the composition and controlling factors of the microbial community in coastal closed groundwater systems (CCGSs) with high salinity have rarely been studied. Here, we investigated and analyzed the hydrochemical characteristics and microbial community composition of seven brine samples with high total dissolved solid (TDS) values ranging from 74.5 to 132.3 g/L within and across three coastal saltworks (Yangkou, Hanting, and Changyi) in southern Laizhou Bay (SLB). The bacterial diversity was independent of salinity. Compared with those of low-salinity groundwater, the diversity of the microbial community in brine was lower, but the richness was slightly higher. There was a significant correlation between the microbial community diversity and groundwater sources, which indicated that the microbial communities were affected by groundwater sources. A comparison of the microbial community compositions of the three saltworks showed that the Hanting and Changyi saltworks had similar microbial communities due to their similar sampling depths. In addition, the main force shaping the differences in the microbial communities in both coastal open groundwater systems (COGSs) and CCGSs was identified as the hydraulic connection with the seawater controlled by hydrogeological conditions formed throughout geological history. This study can help to elucidate the biogeochemical processes in coastal aquifers.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China
| | - Sen Liu
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Chao Jia
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
27
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
28
|
Wang B, Liu N, Yang M, Wang L, Liang X, Liu CQ. Co-occurrence of planktonic bacteria and archaea affects their biogeographic patterns in China's coastal wetlands. ENVIRONMENTAL MICROBIOME 2021; 16:19. [PMID: 34666825 PMCID: PMC8527667 DOI: 10.1186/s40793-021-00388-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/01/2021] [Indexed: 05/26/2023]
Abstract
Planktonic bacteria and archaea play a key role in maintaining ecological functions in aquatic ecosystems; however, their biogeographic patterns and underlying mechanisms have not been well known in coastal wetlands including multiple types and at a large space scale. Therefore, planktonic bacteria and archaea and related environmental factors were investigated in twenty-one wetlands along China's coast to understand the above concerns. The results indicated that planktonic bacteria had different biogeographic pattern from planktonic archaea, and both patterns were not dependent on the wetland's types. Deterministic selection shapes the former's community structure, whereas stochastic processes regulate the latter's, being consistent with the fact that planktonic archaea have a larger niche breadth than planktonic bacteria. Planktonic bacteria and archaea co-occur, and their co-occurrence rather than salinity is more important in shaping their community structure although salinity is found to be a main environmental deterministic factor in the coastal wetland waters. This study highlights the role of planktonic bacteria-archaea co-occurrence on their biogeographic patterns, and thus provides a new insight into studying underlying mechanisms of microbial biogeography in coastal wetlands.
Collapse
Affiliation(s)
- Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
- Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin, 300072, China.
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Lijia Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200244, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
29
|
Ma L, Wu G, Yang J, Huang L, Phurbu D, Li WJ, Jiang H. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Front Microbiol 2021; 12:569020. [PMID: 34367076 PMCID: PMC8334365 DOI: 10.3389/fmicb.2021.569020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Investigating the distribution of hydrogen-producing bacteria (HPB) is of great significance to understanding the source of biological hydrogen production in geothermal environments. Here, we explored the compositions of HPB populations in the sediments of hot springs from the Daggyai, Quzhuomu, Quseyongba, and Moluojiang geothermal zones on the Tibetan Plateau, with the use of Illumina MiSeq high-throughput sequencing of 16S rRNA genes and hydA genes. In the present study, the hydA genes were successfully amplified from the hot springs with a temperature of 46–87°C. The hydA gene phylogenetic analysis showed that the top three phyla of the HPB populations were Bacteroidetes (14.48%), Spirochaetes (14.12%), and Thermotogae (10.45%), while Proteobacteria were absent in the top 10 of the HPB populations, although Proteobacteria were dominant in the 16S rRNA gene sequences. Canonical correspondence analysis results indicate that the HPB community structure in the studied Tibetan hot springs was correlated with various environmental factors, such as temperature, pH, and elevation. The HPB community structure also showed a spatial distribution pattern; samples from the same area showed similar community structures. Furthermore, one HPB isolate affiliated with Firmicutes was obtained and demonstrated the capacity of hydrogen production. These results are important for us to understand the distribution and function of HPB in hot springs.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
30
|
He Q, Wang S, Hou W, Feng K, Li F, Hai W, Zhang Y, Sun Y, Deng Y. Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145465. [PMID: 33571767 DOI: 10.1016/j.scitotenv.2021.145465] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Terrestrial geothermal ecosystems, as a representative of extreme environments, exhibit a variety of geochemical gradients, and their microbes are thought to be under high stress through environmental selection. However, it is still unclear how stochasticity and biotic interactions contribute to the microbial community assembly in hot springs. Here, we investigated the assembly processes and co-occurrence patterns of microbiota (i.e. bacteria and archaea) in both water and sediments sampled from fifteen hot springs in the Tengchong area, Southwestern of China, using 16S rRNA gene sequencing combined with multivariate ecological and statistical methods. These hot springs harbored more specialists than non-geothermal ecosystems, which are well-adapted to the extreme conditions, as shown by extremely high nearest-taxon index (NTI) and narrower niche width. Habitat differentiation led to the differences in microbial diversity, species-interactions, and community assembly between water and sediment communities. The sediment community showed stronger phylogenetic clustering and was primarily governed by heterogeneous selection, while undominated stochastic processes and dispersal limitation were the major assembly processes in the water community. Temperature and ferrous iron were the major factors mediating the balance of stochastic and deterministic assembly processes in sediment communities, as evidenced by how divergences in temperature and ferrous iron increased the proportion of determinism. Microbial interactions in sediments contributed to deterministic community assembly, as indicated by more complex associations and greater responsiveness to environmental change than water community. These findings uncover the ecological processes underlying microbial communities in hot springs, and provide potential insight into understanding the mechanism to maintain microbial diversity in extreme biospheres.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China.
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Wanming Hai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Yuxuan Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Sheng Y, Li G, Dong H, Liu Y, Ma L, Yang M, Liu Y, Liu J, Deng S, Zhang D. Distinct assembly processes shape bacterial communities along unsaturated, groundwater fluctuated, and saturated zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143303. [PMID: 33187706 DOI: 10.1016/j.scitotenv.2020.143303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The subsurface soil environment through the unsaturated (vadose) zone and saturated (below groundwater table) zone is one of the most active layers in the Earth's surface with biogeochemical interactions. Geochemical variables and geographic distance are key driving forces shaping the distribution of soil microbial communities, but our understandings are mainly limited to surface soil or shallow unsaturated zone (1-3 m beneath the ground). In this study, soil and sediment samples were collected from the unsaturated zone, through groundwater fluctuated zone, to saturated zone (up to 20 m) to unravel the assembly processes mediating vertical bacterial community succession across these three zones. Our results suggested both geochemical niches and bacterial diversity had different vertical patterns in each zone. With increased depth, pH increased and nutrient levels (C, N, P, K) and bacterial diversity declined in the unsaturated zone, and nutrients and bacterial diversity remained low levels after reaching the fluctuated and saturated zones. Nutrients were the key drivers shaping bacterial variation in the unsaturated zone, but limited nutrients and only 'depth' significantly explained the variations in the fluctuated zone and saturated zone, respectively. The co-occurrence network supported a more species co-existence pattern in the unsaturated zone than that in the other two zones. Due to the geochemical variations across three zones, the assembly of phylogenetically more clustered communities was observed through deterministic processes (e.g., 55% homogenizing selection) in the unsaturated zone, but the stochastic process (e.g., 50%-70% dispersal limitation) was more important in the fluctuated and saturated zones. These findings together suggested that the vertical distribution of soil bacterial community assembly was zone-specific and shaped by the degree of deterministic vs. stochastic processes. Our results provide a novel insight into the microbial community assembly across three different ecosystems in the Earth's critical zone and shed a light on subsurface biogeochemical processes.
Collapse
Affiliation(s)
- Yizhi Sheng
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| | - Guanghe Li
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Yifei Liu
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Lin Ma
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Mengqing Yang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Jun Liu
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Dayi Zhang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
32
|
Sheng Y, Liu Y, Yang J, Dong H, Liu B, Zhang H, Li A, Wei Y, Li G, Zhang D. History of petroleum disturbance triggering the depth-resolved assembly process of microbial communities in the vadose zone. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:124060. [PMID: 33254835 DOI: 10.1016/j.jhazmat.2020.124060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Biogeochemical gradient forms in vadose zone, yet little is known about the assembly processes of microbial communities in this zone under petroleum disturbance. This study collected vadose zone soils at three sites with 0, 5, and 30 years of petroleum contamination to unravel the vertical microbial community successions and their assembly mechanisms. The results showed that petroleum hydrocarbons exhibited higher concentrations at the long-term contaminated site, showing negative impacts on some soil properties, retarding in the surface soils and decreasing along soil depth. Cultivable fraction of heterotrophic bacteria and microbial α-diversity decreased along depth in vadose zones with short-term/no contamination history, but exhibited an opposite trend with long-term contamination history. Petroleum contamination intensified the vertical heterogeneity of microbial communities based on the contamination time. Microbial co-occurrence network revealed the lowest species co-occurrence pattern at the long-term contaminated site. The distance-decay patterns and null model analysis together suggested distinct assembly mechanisms at three sites, where dispersal limitation (42-45%) was higher and variable and homogenizing selections were lower (37-38%) in vadose zones under petroleum disturbance than those in the uncontaminated vadose zone. Our findings help to better understand the subsurface biogeochemical cycles and bioremediation of petroleum-contaminated vadose zones.
Collapse
Affiliation(s)
- Yizhi Sheng
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Department of Geology and Environmental Earth Science, Miami University, Oxford OH 45056, USA
| | - Ying Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Juejie Yang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford OH 45056, USA
| | - Bo Liu
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Aiyang Li
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghe Li
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Dayi Zhang
- School of Environment & State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|