1
|
Lo LSH, Tong RMK, Chan W, Ho W, Cheng J. Bacterial pathogen assemblages on microplastic biofilms in coastal waters. MARINE POLLUTION BULLETIN 2025; 216:117958. [PMID: 40273755 DOI: 10.1016/j.marpolbul.2025.117958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/02/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Microplastic pollution in coastal ecosystems poses significant environmental risks. Microplastic biofilms were investigated through field incubation in coastal waters over a 21-day period to identify harmful microorganisms. Screening results indicated generally low abundance but highly diverse and variable nature of harmful pathogens on microplastics, largely governed by polymer type in conjunction with water usage. Typhoon shelter exhibited the highest pathogen abundance in both seawater and microplastic biofilms, with the most dominant pathogen species on microplastic biofilms being the atypical Corynebacterium variabile primarily enriched on polystyrene biofilms. Other harmful species, such as Vibrio, Acinetobacter, and Pseudomonas, were found sporadically recruited. Functional annotation and network analysis indicated a co-occurrence of pathogen taxa with keystone taxa like Aeromonas, yet no significant correlation with ARGs. This study showed that the assemblage of pathogens in the plastisphere could be influenced by multiple factors, providing a valuable reference for assessing microplastic-related pathogen risks in coastal waters.
Collapse
Affiliation(s)
- Linus Shing Him Lo
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China
| | - Ruka Mei Kwan Tong
- Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wan Chan
- Department of Chemistry, School of Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wingkei Ho
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China
| | - Jinping Cheng
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China.
| |
Collapse
|
2
|
Eyheraguibel B, Diémé B, Lagrée M, Durand S, Barbe V, Meistertzheim AL, Ter Halle A, Burgaud G, Ghiglione JF. Untargeted metabolomic insights into plastisphere communities in European rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10181-10194. [PMID: 39090296 DOI: 10.1007/s11356-024-34214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024]
Abstract
Every year, rivers introduce a staggering amount of hundred kilotons of plastic into the Oceans. This plastic is inhabited by microorganisms known as the plastisphere, which can be transferred between different ecosystems through the transport of microplastics. Here, we simulated the microbial colonization of polyethylene-based plastic pellets that are classically used to manufacture large-scale plastic products. The pellets were immersed for 1 month in four to five sampling stations along the river-to-sea continuum of nine of the major European rivers. This study presents the first untargeted metabolomics analysis of the plastisphere, by using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The plastisphere metabolomes were similar in the Rhine and Rhone rivers, while being different from the Tiber and Loire rivers, which showed greater similarity to the Thames and Seine rivers. Interestingly, we found a clear distinction between plastisphere metabolomes from freshwater and marine water in most of the river-to-sea continuum, thus suggesting a complete segregation in plastisphere metabolites that is not consistent with a major transfer of microorganisms between the two contrasted ecosystems. Putative annotations of 189 discriminating metabolites suggested that lipid metabolism was significantly modulated. These results enlightened the relevance of using environmental metabolomic as complementary analysis to the current OMICs analysis.
Collapse
Affiliation(s)
- Boris Eyheraguibel
- Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Binta Diémé
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie Lagrée
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Stéphanie Durand
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Alexandra Ter Halle
- Laboratoire Softmat, Université de Toulouse, Université Toulouse III - Paul Sabatier, CNRS UMR 5623, Toulouse, France
| | - Gaétan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Univ Brest, INRAE, Plouzané, France
| | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, UMR 7621, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| |
Collapse
|
3
|
Ghosh S, Dey S, Mandal AH, Sadhu A, Saha NC, Barceló D, Pastorino P, Saha S. Exploring the ecotoxicological impacts of microplastics on freshwater fish: A critical review. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104514. [PMID: 39938417 DOI: 10.1016/j.jconhyd.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Microplastics (MPs) have become ubiquitous in the environment, prompting significant concern among ecotoxicologists due to their potential toxic effects. These particles originate from various sources, including the fragmentation of larger plastic debris (secondary microplastics) and consumer products such as liquid soaps, exfoliants, and cleaning agents. The widespread use of plastics, coupled with inadequate waste management, poses a growing threat to ecosystem health worldwide. MPs are plastic particles composed of high-molecular-weight polymers that exhibit biochemical stability. Plastics break down into MPs and even smaller nanoplastics through various degradation mechanisms, such as exposure to UV radiation from sunlight and other environmental factors. Due to their resemblance to certain types of zooplankton and food particles, MPs are often ingested by fish, entering their digestive systems. Once inside, they do not remain solely in the gut; rather, they infiltrate the fish's circulatory and lymphatic systems, eventually distributing throughout various tissues and organs. Microplastics have been found in fish gills, muscles, liver, heart, swim bladders, ovaries, spinal cords, and even brains. The presence of MPs in these organs has been linked to significant adverse effects, including reproductive, neurological, hormonal, and immune system disruptions. This toxicity extends beyond fish, as bioaccumulation and biomagnification of MPs affect other organisms as well, marking MPs as a major anthropogenic stressor that impacts ecosystems at multiple levels. Research indicates that nearly all aquatic environments globally are at risk of MP contamination. Laboratory and field studies highlight fish as particularly susceptible to MP ingestion, though freshwater species have been less extensively studied than marine counterparts. After exposure, fish may suffer various health issues, either directly from MPs or from their interaction with other contaminants. The broader environmental implications of these laboratory findings and the specific role of MPs in increasing fish exposure to harmful chemicals remain topics of ongoing debate. This review aims to contribute to ecotoxicological insights on fish contamination by MPs and outline areas for future investigation.
Collapse
Affiliation(s)
- Surajit Ghosh
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Sukhendu Dey
- The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Ahmadul Hoque Mandal
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Auroshree Sadhu
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almería, Spain
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - Shubhajit Saha
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
4
|
Dogra S, Kumar M, Zang J. The nexus of microplastics, food and antimicrobial resistance in the context of aquatic environment: Interdisciplinary linkages of pathways. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104512. [PMID: 39922004 DOI: 10.1016/j.jconhyd.2025.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/04/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The exponential rise in plastic production since the mid-20th century has led to the widespread existence of microplastics in various ecosystems, posing significant environmental and health concerns. Microplastics, defined as plastic particles smaller than 5 mm, have infiltrated diverse environments, including oceans, freshwater bodies, and even remote Arctic ice. Their ability to absorb toxic chemicals and serve as vectors for microbial colonization raises concerns about their impacts on aquatic organisms and human health. This review examines the pathways by which microplastics infiltrate the food chain, highlighting their presence in various food items consumed by humans. Furthermore, it explores the nexus between microplastics and antimicrobial resistance (AMR), elucidating how microorganisms inhabiting plastic surfaces facilitate the transmission of antibiotic resistance genes (ARGs). The review underscores the urgent need for interdisciplinary research integrating environmental science, microbiology, public health, and policy to address the multifaceted challenges posed by microplastics. Standardized protocols for sampling and analysis are essential to enable meaningful comparisons across research and regions. By collectively addressing these challenges, we can strive towards a more sustainable and resilient future for ecosystems and human societies.
Collapse
Affiliation(s)
- Shiwangi Dogra
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Jian Zang
- The National Centre for International Research of Low-carbon & Green Buildings, Ministry of Science & Technology, School of Civil Engineering, Chongqing University, Chongqing, China; Tianfu Yongxing Laboratory, Chengdu, China
| |
Collapse
|
5
|
Garcés-Ordóñez O, Córdoba-Meza T, Sáenz-Arias S, Blandón L, Espinosa-Díaz LF, Pérez-Duque A, Thiel M, Canals M. Potentially pathogenic bacteria in the plastisphere from water, sediments, and commercial fish in a tropical coastal lagoon: An assessment and management proposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135638. [PMID: 39217937 DOI: 10.1016/j.jhazmat.2024.135638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Microplastics in aquatic ecosystems harbor numerous microorganisms, including pathogenic species. The ingestion of these microplastics by commercial fish poses a threat to the ecosystem and human livelihood. Coastal lagoons are highly vulnerable to microplastic and microbiological pollution, yet limited understanding of the risks complicates management. Here, we present the main bacterial groups, including potentially pathogenic species, identified on microplastics in waters, sediments, and commercial fish from Ciénaga Grande de Santa Marta (CGSM), the largest coastal lagoon in Colombia. DNA metabarcoding allowed identifying 1760 bacterial genera on microplastics, with Aeromonas and Acinetobacter as the most frequent and present in all three matrices. The greatest bacterial richness and diversity were recorded on microplastics from sediments, followed by waters and fish. Biochemical analyses yielded 19 species of potentially pathogenic culturable bacteria on microplastics. Aeromonas caviae was the most frequent and, along with Pantoea sp., was found on microplastics in all three matrices. Enterobacter roggenkampii and Pseudomonas fluorescens were also found on microplastics from waters and fish. We propose management strategies for an Early Warning System against microbiological and microplastic pollution risks in coastal lagoons, illustrated by CGSM. This includes forming inter-institutional alliances for research and monitoring, accompanied by strengthening governance and health infrastructures.
Collapse
Affiliation(s)
- Ostin Garcés-Ordóñez
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia; Sustainable Blue Economy Chair, GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Grupo de Investigación Territorios Semiáridos del Caribe, Universidad de La Guajira, Colombia.
| | - Tania Córdoba-Meza
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Sol Sáenz-Arias
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Lina Blandón
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Luisa F Espinosa-Díaz
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Alejandra Pérez-Duque
- Centro de Bioinformática y Biología Computacional de Colombia - BIOS, Manizales, Colombia
| | - Martin Thiel
- MarineGEO Program, Smithsonian Environmental Research Center (SERC), Edgewater, USA; Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Miquel Canals
- Sustainable Blue Economy Chair, GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Reial Acadèmia de Ciències i Arts de Barcelona (RACAB), La Rambla 115, 08002 Barcelona, Spain; Institut d'Estudis Catalans (IEC), Secció de Ciències i Tecnologia, Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
6
|
Alves GDSO, Canellas ALB, Gallo MN, Vinzon SB, Laport MS. In treacherous waters: detection of colistin-resistant bacteria in water and plastic litter from a recreational estuary. Lett Appl Microbiol 2024; 77:ovae082. [PMID: 39227173 DOI: 10.1093/lambio/ovae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Colistin resistance poses a major therapeutic challenge and resistant strains have now been reported worldwide. However, the occurrence of such bacteria in aquatic environments is considerably less understood. This study aimed to isolate and characterize colistin-resistant strains from water and plastic litter collected in an urban recreational estuary. Altogether, 64 strains with acquired colistin resistance were identified, mainly Acinetobacter spp. and Enterobacter spp. From these, 40.6% were positive for at least one mcr variant (1-9), 26.5% harbored, extended-spectrum beta-lactamases, 23.4% harbored, sulfonamide resistance genes, and 9.3% harbored, quinolone resistance genes. merA, encoding mercury resistance, was detected in 10.5% of these strains, most of which were also strong biofilm producers. The minimum inhibitory concentration toward colistin was determined for the mcr-positive strains and ranged from 2 to ≥512 µg ml-1. Our findings suggest that Gram-negative bacteria highly resistant to a last-resort antimicrobial can be found in recreational waters and plastic litter, thereby evidencing the urgency of the One Health approach to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcos N Gallo
- Área de Engenharia Costeira e Oceanográfica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-598, Brazil
| | - Susana Beatriz Vinzon
- Área de Engenharia Costeira e Oceanográfica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-598, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
7
|
Ferheen I, Spurio R, Marcheggiani S. Vehicle transmission of antibiotic-resistant pathogens mediated by plastic debris in aquatic ecosystems. iScience 2024; 27:110026. [PMID: 38883843 PMCID: PMC11179577 DOI: 10.1016/j.isci.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/27/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Plastic materials are emerging environmental pollutants acting as potential vehicles for accumulation and spread of multidrug-resistant bacteria. The current study investigates the role of plastics in favoring the dispersal of specific pathogens and their associated antibiotic resistant genes (ARGs). Artificial plastic substrates (APSs) were submerged in seven sampling points of Lake Bracciano (Italy), and after one-month both APSs and raw water (RW) samples were collected. Through the combination of standard microbiological and biochemical techniques, 272 bacterial strains were identified and characterized for antibiotic resistant profiling. Our results revealed a notable difference in terms of diversity and abundance of pathogenic bacteria recovered from APSs, compared to RW. In addition, higher resistance patterns were detected in APSs isolates, with frequent appearance of relevant ARGs and class 1 integrons. These findings reinforce the idea that plastic materials in aquatic ecosystems serve as a reservoir for superbugs, significantly contributing to the dissemination of ARGs.
Collapse
Affiliation(s)
- Ifra Ferheen
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Roberto Spurio
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Stefania Marcheggiani
- Department of Environment and Primary Prevention, National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
8
|
Ballesté E, Liang H, Migliorato L, Sala‐Comorera L, Méndez J, Garcia‐Aljaro C. Exploring plastic biofilm formation and Escherichia coli colonisation in marine environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13308. [PMID: 38924372 PMCID: PMC11196126 DOI: 10.1111/1758-2229.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Microorganisms, including potential pathogens, can colonise plastic surfaces in aquatic environments. This study investigates the colonisation of plastic pellets by Escherichia coli (E. coli) as a proxy for faecal pathogens in aquatic environments. Plastic pellets from a polluted beach were placed in seawater aquaria spiked with E. coli. Diverse bacteria, primarily from the Proteobacteria phylum, rapidly colonised the pellets within 24 h, with notable species known for plastic or hydrocarbon degradation. Over 26 days, biofilms formed on the plastic surfaces, reaching bacterial populations of up to 6.8·105 gene copies (gc) of the 16S rRNA mm-2. E. coli, was detected in the pellets for up to 7 days using culture methods, exhibiting varying attachment densities regardless of source or environmental factors. The study highlights plastic biofilms as reservoirs for E. coli, contributing to the survival and persistence of faecal bacteria in aquatic systems. These findings deepen our understanding of the risks associated with plastic pollution in marine settings, offering insights into the behaviour of faecal indicators and their implications for water quality assessments, while providing valuable information on potential pathogen dissemination within plastic-associated microbial communities.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Hongxia Liang
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Municipal Ecological and Environmental Monitoring CenterBeijingChina
| | - Laura Migliorato
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Laura Sala‐Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Javier Méndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Cristina Garcia‐Aljaro
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
9
|
Xu JY, Ding J, Du S, Zhu D. Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133333. [PMID: 38147751 DOI: 10.1016/j.jhazmat.2023.133333] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.
Collapse
Affiliation(s)
- Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, People' s Republic of China
| | - Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| |
Collapse
|
10
|
Sabatino R, Zullo R, Di Cesare A, Piscia R, Musazzi S, Corno G, Volta P, Galafassi S. Traditional and biodegradable plastics host distinct and potentially more hazardous microbes when compared to both natural materials and planktonic community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133166. [PMID: 38101010 DOI: 10.1016/j.jhazmat.2023.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Microplastic particles are persistent micropollutants that provide a substrate for the growth of bacterial biofilms, posing a threat to the environment. This study explores the changes in commercially available food containers made of conventional (polypropylene PP, polyethylene terephthalate PET), innovative biodegradable (Mater-Bi) and natural (wood and cellulose) materials, when introduced in the surface waters of Lake Maggiore for 43 days. Spectral changes revealed by FT-IR spectroscopy in PET and Mater-Bi, and changes in thermal properties of all human-made material tested indicated a degradation process occurred during environmental exposure. Despite similar bacterial richness, biofilms on PET, PP, and Mater-Bi differed from natural material biofilms and the planktonic community. Human-made material communities showed a higher proportion of potential pathogens, with PET and PP also exhibiting increased abundances of antibiotic resistance genes. Overall, these findings stress the need for dedicated strategies to curb the spread of human-made polymers in freshwaters, including innovative materials that, due to their biodegradable properties, might be perceived less hazardous for the environment.
Collapse
Affiliation(s)
| | - Rosa Zullo
- Water Research Institute, National Research Council, Verbania, Italy.
| | - Andrea Di Cesare
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberta Piscia
- Water Research Institute, National Research Council, Verbania, Italy
| | - Simona Musazzi
- Water Research Institute, National Research Council, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Pietro Volta
- Water Research Institute, National Research Council, Verbania, Italy
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
11
|
Stevenson EM, Buckling A, Cole M, Lindeque PK, Murray AK. Selection for antimicrobial resistance in the plastisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168234. [PMID: 37924893 DOI: 10.1016/j.scitotenv.2023.168234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Microplastics and antimicrobials are widespread contaminants that threaten global systems and frequently co-exist in the presence of human or animal pathogens. Whilst the impact of each of these contaminants has been studied in isolation, the influence of this co-occurrence in driving antimicrobial resistance (AMR)1 in microplastic-adhered microbial communities, known as 'the Plastisphere', is not well understood. This review proposes the mechanisms by which interactions between antimicrobials and microplastics may drive selection for AMR in the Plastisphere. These include: 1) increased rates of horizontal gene transfer in the Plastisphere compared with free-living counterparts and natural substrate controls due to the proximity of cells, co-occurrence of environmental microplastics with AMR selective compounds and the sequestering of extracellular antibiotic resistance genes in the biofilm matrix. 2) An elevated AMR selection pressure in the Plastisphere due to the adsorbing of AMR selective or co-selective compounds to microplastics at concentrations greater than those found in surrounding mediums and potentially those adsorbed to comparator particles. 3) AMR selection pressure may be further elevated in the Plastisphere due to the incorporation of antimicrobial or AMR co-selective chemicals in the plastic matrix during manufacture. Implications for both ecological functioning and environmental risk assessments are discussed, alongside recommendations for further research.
Collapse
Affiliation(s)
- Emily M Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK; Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK; Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK; Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Aimee K Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK.
| |
Collapse
|
12
|
Witsø IL, Basson A, Vinje H, Llarena AK, Bringas CS, Aspholm M, Wasteson Y, Myrmel M. Freshwater plastispheres as a vector for foodborne bacteria and viruses. Environ Microbiol 2023; 25:2864-2881. [PMID: 37964725 DOI: 10.1111/1462-2920.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
There is growing evidence that plastic particles can accumulate microorganisms that are pathogenic to humans or animals. In the current study, the composition of the plastispheres that accumulated on polypropylene (PP), polyvinyl chloride (PVC), and high-density polyethylene (HDPE) pieces submerged in a river in the southeast Norway was characterized by 16S rRNA amplicon sequencing. Seasonal and geographical effects on the bacterial composition of the plastisphere were identified, in addition to the detection of potential foodborne pathogenic bacteria and viruses as part of the plastisphere. The diversity and taxonomic composition of the plastispheres were influenced by the number of weeks in the river, the season, and the location. The bacterial diversity differed significantly in the plastisphere from June and September, with a generally higher diversity in June. Also, the community composition of the plastisphere was significantly influenced by the geographical location, while the type of plastic had less impact. Plastics submerged in river water assembled a variety of microorganisms including potentially pathogenic bacteria and viruses (noro- and adenovirus) detected by qPCR. Cultivation methods detected viable bacteria such as Escherichia coli and Listeria monocytogenes. The results highlight the need for additional research on the risk of contaminating food with plastic particles colonized with human pathogens through irrigation water.
Collapse
Affiliation(s)
- Ingun Lund Witsø
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Adelle Basson
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hilde Vinje
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Carlos Salas Bringas
- Institute for Marine Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway
| | - Marina Aspholm
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, The Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
13
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
14
|
Abdulaziz A, Vikraman HK, Raj D, Menon N, George G, Soman R, Mony DP, Mary A, Krishna K, Raju GKT, Kuttan SP, Tharakan B, Chekidhenkuzhiyil J, Platt T, Sathyendranath S. Distribution and antibiotic resistance of vibrio population in an urbanized tropical lake-the Vembanad-in the southwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116066-116077. [PMID: 37906329 DOI: 10.1007/s11356-023-30565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
Collapse
Affiliation(s)
- Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India.
| | | | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Nandini Menon
- Nansen Environmental Research Centre India, KUFOS Amenity Centre, Kochi, 682506, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Grinson George
- ICAR-Central Marine Fisheries Research Institute, Kochi, 682018, India
| | - Reshma Soman
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Kiran Krishna
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, PL1 3DH, Devon, UK
| | | |
Collapse
|
15
|
Zadjelovic V, Wright RJ, Borsetto C, Quartey J, Cairns TN, Langille MGI, Wellington EMH, Christie-Oleza JA. Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. MICROBIOME 2023; 11:225. [PMID: 37908022 PMCID: PMC10619285 DOI: 10.1186/s40168-023-01662-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The widespread nature of plastic pollution has given rise to wide scientific and social concern regarding the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts. RESULTS We show that plastics support a taxonomically distinct microbiome containing potential pathogens and ARGs. While the plastisphere was similar to those biofilms that grew on wood, they were distinct from the surrounding water microbiome. Hence, whilst potential opportunistic pathogens (i.e. Pseudomonas aeruginosa, Acinetobacter and Aeromonas) and ARG subtypes (i.e. those that confer resistance to macrolides/lincosamides, rifamycin, sulfonamides, disinfecting agents and glycopeptides) were predominant in all surface-related microbiomes, especially on weathered plastics, a completely different set of potential pathogens (i.e. Escherichia, Salmonella, Klebsiella and Streptococcus) and ARGs (i.e. aminoglycosides, tetracycline, aminocoumarin, fluoroquinolones, nitroimidazole, oxazolidinone and fosfomycin) dominated in the planktonic compartment. Our genome-centric analysis allowed the assembly of 215 Metagenome Assembled Genomes (MAGs), linking ARGs and other virulence-related genes to their host. Interestingly, a MAG belonging to Escherichia -that clearly predominated in water- harboured more ARGs and virulence factors than any other MAG, emphasising the potential virulent nature of these pathogenic-related groups. Finally, ex-situ incubations using environmentally-relevant concentrations of antibiotics increased the prevalence of their corresponding ARGs, but different riverine compartments -including plastispheres- were affected differently by each antibiotic. CONCLUSIONS Our results provide insights into the capacity of the riverine plastisphere to harbour a distinct set of potentially pathogenic bacteria and function as a reservoir of ARGs. The environmental impact that plastics pose if they act as a reservoir for either pathogenic bacteria or ARGs is aggravated by the persistence of plastics in the environment due to their recalcitrance and buoyancy. Nevertheless, the high similarities with microbiomes growing on natural co-occurring materials and even more worrisome microbiome observed in the surrounding water highlights the urgent need to integrate the analysis of all environmental compartments when assessing risks and exposure to pathogens and ARGs in anthropogenically-impacted ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present address: Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, 1271155, Antofagasta, Chile.
| | - Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jeannelle Quartey
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tyler N Cairns
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| |
Collapse
|
16
|
Xu L, Li K, Zhang M, Guo J, Jia W, Bai X, Tian X, Huang Y. Plastic substrate and residual time of microplastics in the urban river shape the composition and structure of bacterial communities in plastisphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118710. [PMID: 37536136 DOI: 10.1016/j.jenvman.2023.118710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The widespread secondary microplastics (MPs) in urban freshwater, originating from plastic wastes, have created a new habitat called plastisphere for microorganisms. The factors influencing the structure and ecological risks of the microbial community within the plastisphere are not yet fully understood. We conducted an in-site incubation experiment in an urban river, using MPs from garbage bags (GB), shopping bags (SB), and plastic bottles (PB). Bacterial communities in water and plastisphere incubated for 2 and 4 weeks were analyzed by 16S high-throughput sequencing. The results showed the bacterial composition of the plastisphere, especially the PB, exhibited enrichment of plastic-degrading and photoautotrophic taxa. Diversity declined in GB and PB but increased in SB plastisphere. Abundance analysis revealed distinct bacterial species that were enriched or depleted in each type of plastisphere. As the succession progressed, the differences in community structure was more pronounced, and the decline in the complexity of bacterial community within each plastisphere suggested increasing specialization. All the plastisphere exhibited elevated pathogenicity at the second or forth week, compared to bacterial communities related to natural particles. These findings highlighted the continually evolving plastisphere in urban rivers was influenced by the plastic substrates, and attention should be paid to fragile plastic wastes due to the rapidly increasing pathogenicity of the bacterial community attached to them.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong, 518057, China
| | - Jiabao Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Stevenson EM, Buckling A, Cole M, Lindeque PK, Murray AK. Culturing the Plastisphere: comparing methods to isolate culturable bacteria colonising microplastics. Front Microbiol 2023; 14:1259287. [PMID: 37854340 PMCID: PMC10579789 DOI: 10.3389/fmicb.2023.1259287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Microplastics quickly become colonised by diverse microbial communities, known as the Plastisphere. There is growing concern that microplastics may support the enrichment and spread of pathogenic or antimicrobial resistant microorganisms, although research to support the unique role of microplastics in comparison to control particles remains inconclusive. Limitations to this research include the microbiological methods available for isolating adhered microbes. Culture-based methods provide some of the most established, accessible and cost-effective microbiological protocols, which could be extremely useful in helping to address some of the remaining key questions in Plastisphere research. Previous works have successfully cultured bacteria from plastics, but these have not yet been reviewed, nor compared in efficiency. In this study, we compared four common biofilm extraction methods (swabbing, sonication, vortexing, sonication followed by vortexing) to extract and culture a mixed community of bacteria from both microplastic (polyethylene, polypropylene and polystyrene) and control (wood and glass) particles. Biofilm extraction efficiency and viability of bacterial suspension was determined by comparing CFU/mL of four different groups of bacteria. This was verified against optical density and 16S rRNA qPCR. Overall, we found that all tested methods were able to remove biofilms, but to varying efficiencies. Sonicating particles with glass beads for 15 min, followed by vortexing for a further minute, generated the highest yield and therefore greatest removal efficiency of culturable, biofilm-forming bacteria.
Collapse
Affiliation(s)
- Emily M. Stevenson
- Faculty of Health and Life Sciences, European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Penryn Campus, Cornwall, United Kingdom
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Angus Buckling
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Matthew Cole
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Penelope K. Lindeque
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Aimee K. Murray
- Faculty of Health and Life Sciences, European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Penryn Campus, Cornwall, United Kingdom
| |
Collapse
|
18
|
Zhong H, Wu M, Sonne C, Lam SS, Kwong RW, Jiang Y, Zhao X, Sun X, Zhang X, Li C, Li Y, Qu G, Jiang F, Shi H, Ji R, Ren H. The hidden risk of microplastic-associated pathogens in aquatic environments. ECO-ENVIRONMENT & HEALTH 2023; 2:142-151. [PMID: 38074987 PMCID: PMC10702891 DOI: 10.1016/j.eehl.2023.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 06/16/2024]
Abstract
Increasing studies of plastisphere have raised public concern about microplastics (MPs) as vectors for pathogens, especially in aquatic environments. However, the extent to which pathogens affect human health through MPs remains unclear, as controversies persist regarding the distinct pathogen colonization on MPs as well as the transmission routes and infection probability of MP-associated pathogens from water to humans. In this review, we critically discuss whether and how pathogens approach humans via MPs, shedding light on the potential health risks involved. Drawing on cutting-edge multidisciplinary research, we show that some MPs may facilitate the growth and long-range transmission of specific pathogens in aquatic environments, ultimately increasing the risk of infection in humans. We identify MP- and pathogen-rich settings, such as wastewater treatment plants, aquaculture farms, and swimming pools, as possible sites for human exposure to MP-associated pathogens. This review emphasizes the need for further research and targeted interventions to better understand and mitigate the potential health risks associated with MP-mediated pathogen transmission.
Collapse
Affiliation(s)
- Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Raymond W.M. Kwong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Yuelu Jiang
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xuxiang Zhang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Rong Ji
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Hongqiang Ren
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| |
Collapse
|
19
|
Li K, Su H, Xiu X, Liu C, Hao W. Tire wear particles in different water environments: occurrence, behavior, and biological effects-a review and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90574-90594. [PMID: 37481496 DOI: 10.1007/s11356-023-28899-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
As an important source of microplastics, the water ecological risk of tire wear particles (TWPs) has attracted widespread attention worldwide. However, the occurrence and behavior of TWPs and their biological effects in water environments have not been clearly analyzed. For example, most contemporary studies have focused on the evaluation of the aquatic toxicity of TWPs leachate, and little attention has been paid to the behavior process and potential risks of its surface properties in water environments. In addition, most studies rely on preparing TWPs under laboratory conditions or purchasing commercial TWPs for studying their water environmental behavior or exposure. These obviously cannot meet the requirements of accurate assessment of water ecological risks of TWPs. As thus, in addition to describing the occurrence, distribution, and (aging) transformation of TWPs in different water environments, we further tried to explain the potential water environment behavior process and multiple pathways leading to potential adverse impacts of TWPs on aquatic organisms from the perspectives of particle self-toxicity and release toxicity, as well as synergistic effects of TWPs and other substances are also discussed. The existing data, such as studies on the self-characteristics of TWPs, environmental factors, and subjects, are insufficient to comprehensively evaluate the recent changes in essential water ecosystem services and multifunctions caused by TWPs, implying that the impact of TWPs on water environmental health needs to be further evaluated, and the corresponding countermeasures should be recommended. In this context, the current review provides an outlook on future research on TWPs in aquatic environments.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, China.
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chi Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, China
| |
Collapse
|
20
|
Silva I, Rodrigues ET, Tacão M, Henriques I. Microplastics accumulate priority antibiotic-resistant pathogens: Evidence from the riverine plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121995. [PMID: 37302790 DOI: 10.1016/j.envpol.2023.121995] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) might accumulate and transport antibiotic-resistant bacteria (ARB) in aquatic systems. We determined the abundance and diversity of culturable ciprofloxacin- and cefotaxime-resistant bacteria in biofilms covering MPs placed in river water, and characterized priority pathogens from these biofilms. Our results showed that the abundance of ARB colonizing MPs tends to be higher compared to sand particles. Also, higher numbers were cultivated from a mixture of polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET), compared to PP and PET alone. Aeromonas and Pseudomonas isolates were the most frequently retrieved from MPs placed before a WWTP discharge while Enterobacteriaceae dominated the culturable plastisphere 200 m after the WWTP discharge. Ciprofloxacin- and/or cefotaxime-resistant Enterobacteriaceae (n = 54 unique isolates) were identified as Escherichia coli (n = 37), Klebsiella pneumoniae (n = 3), Citrobacter spp. (n = 9), Enterobacter spp. (n = 4) and Shigella sp. (n = 1). All isolates presented at least one of the virulence features tested (i.e. biofilm formation, haemolytic activity and production of siderophores), 70% carried the intI1 gene and 85% exhibited a multi-drug resistance phenotype. Plasmid-mediated quinolone resistance genes were detected in ciprofloxacin-resistant Enterobacteriaceae [aacA4-cr (40% of the isolates), qnrS (30%), qnrB (25%), and qnrVC (8%)], along with mutations in gyrA (70%) and parC (72%). Cefotaxime-resistant strains (n = 23) harbored blaCTX-M (70%), blaTEM (61%) and blaSHV (39%). Among CTX-M producers, high-risk clones of E. coli (e.g. ST10 or ST131) and K. pneumoniae (ST17) were identified, most of which carrying blaCTX-M-15. Ten out of 16 CTX-M producers were able to transfer blaCTX-M to a recipient strain. Our results demonstrated the occurrence of multidrug resistant Enterobacteriaceae in the riverine plastisphere, harboring ARGs of clinical concern and exhibiting virulence traits, suggesting a contribution of MPs to the dissemination of antibiotic-resistant priority pathogens. The type of MPs and especially water contamination (e.g. by WWTPs discharges) seem to determine the resistome of the riverine plastisphere.
Collapse
Affiliation(s)
- Isabel Silva
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa T Rodrigues
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Marta Tacão
- CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
21
|
Chan SY, Liu SY, Wu R, Wei W, Fang JKH, Chua SL. Simultaneous Dissemination of Nanoplastics and Antibiotic Resistance by Nematode Couriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37267481 DOI: 10.1021/acs.est.2c07129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoplastics (NPs) are increasingly recognized as a newly emerging pollutant in the environment. NPs can enable the colonization of microbial pathogens on their surfaces and adsorb toxic pollutants, such as heavy metals and residual antibiotics. Although the dissemination of plastic particles in water bodies and the atmosphere is widely studied, the dissemination of NPs and adsorbed pollutants on land, via biological means, is poorly understood. Since soil animals, such as the bacterivorous nematode Caenorhabditis elegans (C. elegans), are highly mobile, this raises the possibility that they play an active role in disseminating NPs and adsorbed pollutants. Here, we established that antibiotic-resistant bacteria could aggregate with antibiotic-adsorbed NPs to form antibiotic-adsorbed NP-antibiotic resistant bacteria (ANP-ARB) aggregates, using polymyxins (colistin) as a proof-of-concept. Colistin-resistant mcr-1 bearing Escherichia coli from a mixed population of resistant and sensitive bacteria selectively aggregate with colistin-ANPs. In the soil microcosm, C. elegans fed on ANP-ARB clusters, resulting in the rapid spread of ANP-ARB by the nematodes across the soil at a rate of 40-60 cm per day. Our work revealed insights into how NPs could still disseminate across the soil faster than previously thought by "hitching a ride" in soil animals and acting as agents of antibiotic-resistant pathogens and antibiotic contaminants. This poses direct risks to ecology, agricultural sustainability, and human health.
Collapse
Affiliation(s)
- Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Rongben Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wei Wei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Land and Space, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Deep Space Explorations, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
22
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
23
|
Liang H, de Haan WP, Cerdà-Domènech M, Méndez J, Lucena F, García-Aljaro C, Sanchez-Vidal A, Ballesté E. Detection of faecal bacteria and antibiotic resistance genes in biofilms attached to plastics from human-impacted coastal areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120983. [PMID: 36596379 DOI: 10.1016/j.envpol.2022.120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Plastics have been proposed as vectors of bacteria as they act as a substrate for biofilms. In this study, we evaluated the abundance of faecal and marine bacteria and antibiotic resistance genes (ARGs) from biofilms adhered to marine plastics. Floating plastics and plastics from sediments were collected in coastal areas impacted by human faecal pollution in the northwestern Mediterranean Sea. Culture and/or molecular methods were used to quantify faecal indicators (E. coli, Enterococci and crAssphage), and the ARGs sulI, tetW and blaTEM and the 16S rRNA were detected by qPCR assays. Pseudomonas and Vibrio species and heterotrophic marine bacteria were also analysed via culture-based methods. Results showed that, plastic particles covered by bacterial biofilms, primarily consisted of marine bacteria including Vibrio spp. Some floating plastics had a low concentration of viable E. coli and Enterococci (42% and 67% of the plastics respectively). Considering the median area of the plastics, we detected an average of 68 cfu E. coli per item, while a higher concentration of E. coli was detected on individual plastic items, when compared with 100 ml of the surrounding water. Using qPCR, we quantified higher values of faecal indicators which included inactive and dead microorganisms, detecting up to 2.6 × 102 gc mm-2. The ARGs were detected in 67-88% of the floating plastics and in 29-57% of the sediment plastics with a concentration of up to 6.7 × 102 gc mm-2. Furthermore, enrichment of these genes was observed in biofilms compared with the surrounding water. These results show that floating plastics act as a conduit for both the attachment and transport of faecal microorganisms. In contrast, low presence of faecal indicators was detected in plastic from seafloor sediments. Therefore, although in low concentrations, faecal bacteria, and potential pathogens, were identified in marine plastics, further suggesting plastics act as a reservoir of pathogens and ARGs.
Collapse
Affiliation(s)
- Hongxia Liang
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - William P de Haan
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Marc Cerdà-Domènech
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Javier Méndez
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Francisco Lucena
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Anna Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
24
|
Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, Federici S. Biotechnological methods to remove microplastics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1787-1810. [PMID: 36785620 PMCID: PMC9907217 DOI: 10.1007/s10311-022-01552-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 05/14/2023]
Abstract
Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, University of Calcutta, Ajodhya, Shyampur, Howrah, 711312 India
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
25
|
Fan S, Jiang S, Luo L, Zhou Z, Wang L, Huang X, Liu H, Zhang S, Luo Y, Ren Z, Ma X, Cao S, Shen L, Wang Y, Gou L, Geng Y, Peng G, Zhu Y, Li W, Zhong Y, Shi X, Zhu Z, Shi K, Zhong Z. Antibiotic-Resistant Escherichia coli Strains Isolated from Captive Giant Pandas: A Reservoir of Antibiotic Resistance Genes and Virulence-Associated Genes. Vet Sci 2022; 9:vetsci9120705. [PMID: 36548866 PMCID: PMC9786197 DOI: 10.3390/vetsci9120705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies showed that Escherichia coli (E. coli) strains isolated from captive giant pandas have serious resistance to antibiotics and carry various antibiotic resistance genes (ARGs). ARGs or virulence-associated genes (VAGs) carried by antibiotic-resistant E. coli are considered as a potential health threat to giant pandas, humans, other animals and the environment. In this study, we screened ARGs and VAGs in 84 antibiotic-resistant E. coli strains isolated from clinically healthy captive giant pandas, identified the association between ARGs and VAGs and analyzed the phylogenetic clustering of E. coli isolates. Our results showed that the most prevalent ARG in E. coli strains isolated from giant pandas is blaTEM (100.00%, 84/84), while the most prevalent VAG is fimC (91.67%, 77/84). There was a significant positive association among 30 pairs of ARGs, of which the strongest was observed for sul1/tetC (OR, 133.33). A significant positive association was demonstrated among 14 pairs of VAGs, and the strongest was observed for fyuA/iroN (OR, 294.40). A positive association was also observed among 45 pairs of ARGs and VAGs, of which the strongest was sul1/eaeA (OR, 23.06). The association of ARGs and mobile gene elements (MGEs) was further analyzed, and the strongest was found for flor and intI1 (OR, 79.86). The result of phylogenetic clustering showed that the most prevalent group was group B2 (67.86%, 57/84), followed by group A (16.67%, 14/84), group D (9.52%, 8/84) and group B1 (5.95%, 5/84). This study implied that antibiotic-resistant E. coli isolated from captive giant pandas is a reservoir of ARGs and VAGs, and significant associations exist among ARGs, VAGs and MGEs. Monitoring ARGs, VAGs and MGEs carried by E. coli from giant pandas is beneficial for controlling the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Siping Fan
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaoqi Jiang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Leshan Vocational and Technical College, Leshan 614000, China
| | - Lijun Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu 610081, China
| | - Xiangming Huang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanqiu Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Li
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yalin Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianpeng Shi
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqi Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing 214200, China
- Correspondence: (K.S.); (Z.Z.)
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (K.S.); (Z.Z.)
| |
Collapse
|
26
|
Deidda F, Cordovana M, Bozzi Cionci N, Graziano T, Di Gioia D, Pane M. In-process real-time probiotic phenotypic strain identity tracking: The use of Fourier transform infrared spectroscopy. Front Microbiol 2022; 13:1052420. [PMID: 36569057 PMCID: PMC9772554 DOI: 10.3389/fmicb.2022.1052420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Probiotic bacteria, capable of conferring benefits to the host, can present challenges in design, development, scale-up, manufacturing, commercialization, and life cycle management. Strain identification is one of the main quality parameters; nevertheless, this task can be challenging since established methodologies can lack resolution at the strain level for some microorganisms and\or are labor-intensive and time-consuming. Fourier transform infrared spectroscopy (FTIRS) has been largely used for the investigation of pathogenic species in the clinical field, whereas only recently has been proposed for the identification of probiotic strains. Within the probiotic industrial production, bacterial strains can be subjected to stressful conditions that may affect genomic and phenotypic characteristics; therefore, real-time monitoring of all the sequential growth steps is requested. Considering the fast, low-cost, and high-throughput features, FTIRS is an innovative and functional technology for typing probiotic strains from bench-top experiments to large-scale industrial production, allowing the monitoring of stability and identity of probiotic strains. In this study, the discriminatory power of FTIRS was assessed for four Lactiplantibacillus plantarum probiotic strains grown under different conditions, including temperatures (30 and 37°C) and medium (broth and agar), after consecutive sub-culturing steps. A comparison between the generated spectra with pulsed-field gel electrophoresis (PFGE) profiles was also performed. FTIRS was not only able to distinguish the strains of L. plantarum under different growth conditions but also to prove the phenotypic stability of L. plantarum type strain LP-CT after six growing steps. Regardless of the growth conditions, FTIRS spectra related to LP-CT constituted a unique hierarchical cluster, separated from the other L. plantarum strains. These results were confirmed by a PFGE analysis. In addition, based on FTIRS data, broth cultures demonstrated a higher reproducibility and discriminatory power with respect to agar ones. These results support the introduction of FTIRS in the probiotic industry, allowing for the step-by-step monitoring of massive microbial production while also guaranteeing the stability and purity of the probiotic strain. The proposed novel approach can constitute an impressive improvement in the probiotic manufacturing process.
Collapse
Affiliation(s)
| | | | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Marco Pane
- Probiotical Research S.r.L, Novara, Italy,*Correspondence: Marco Pane,
| |
Collapse
|
27
|
Goryluk-Salmonowicz A, Popowska M. Factors promoting and limiting antimicrobial resistance in the environment - Existing knowledge gaps. Front Microbiol 2022; 13:992268. [PMID: 36204635 PMCID: PMC9530184 DOI: 10.3389/fmicb.2022.992268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The dissemination of multidrug-resistant bacteria strains and genes carrying antibiotic resistance is currently considered to be one of the most important global problem. The WHO calls for the need to contain the spread of Antimicrobial Resistance (AMR) from all possible sources. There have been many international actions grouping scientists studying this phenomenon, and quite a lot of scientific projects devoted to this problem have already been carried out. As well, so far several strategies have been developed that can inhibit the AMR spread. In this mini-review, we highlight overlooked aspects that seem to be crucial for creating a comprehensive picture of AMR, especially in the context of One Health approach.
Collapse
Affiliation(s)
- Agata Goryluk-Salmonowicz
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Metcalf R, White HL, Moresco V, Ormsby MJ, Oliver DM, Quilliam RS. Sewage-associated plastic waste washed up on beaches can act as a reservoir for faecal bacteria, potential human pathogens, and genes for antimicrobial resistance. MARINE POLLUTION BULLETIN 2022; 180:113766. [PMID: 35635882 DOI: 10.1016/j.marpolbul.2022.113766] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Sewage-associated plastic wastes, such as wet wipes and cotton bud sticks, commonly wash up on beaches; however, it is unclear whether this represents a public health risk. In this study, sewage-associated plastic waste, and naturally occurring substrates (seaweed and sand), were collected from ten beaches along the Firth of Forth estuary (Scotland, UK) and analysed using selective media for the faecal indicator organisms (FIOs) E. coli and intestinal enterococci (IE), and potential human pathogens (Vibrio spp.). Minimum inhibitory concentration (MIC) analysis was used to determine antibiotic resistance in selected strains. FIOs and Vibrio were more often associated with wet wipes and cotton bud sticks than with seaweed, and there was evidence of resistance to several antibiotics. This work demonstrates that plastics associated with sewage pollution can facilitate the survival and dissemination of FIOs and Vibrio and thus, could present an as yet unquantified potential risk to human health at the beach.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
29
|
Baysal A, Saygin H. Co-occurence of antibiotics and micro(nano)plastics: a systematic review between 2016-2021. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:519-539. [PMID: 35657775 DOI: 10.1080/10934529.2022.2082222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Pollution by plastics and antibiotics are emerging issues in the areas of the environment and human health. In recent years, several studies have documented the widespread occurrence of plastic particles in various environmental, as well as human, systems, and much research has focused on possible interactions of contaminants with microplastics. Thus, the co-occurrence of plastics and antibiotics has caused another global problem for the environment and human health. Therefore, we focused on the current knowledge in the field of the co-occurrence of plastics and antibiotics to summarize the available studies. In this review, categorization of the topics, contaminants details, such as polymer type, size and source, antibiotic type, and other experimental parameters were summarized and discussed. This study indicated that the sorption of antibiotics on plastics, antibiotic susceptibility in the presence of plastics, and antibiotic resistance gene onto plastics were the most frequently examined categories in this field. Moreover, the variability in the procedures and the processes, and the heterogeneity data of reporting between different studies on similar topic make it difficult to bring all results together and produce a comprehensive picture of the current knowledge. Therefore, it is suggested that further research should be done using this systematic study.
Collapse
Affiliation(s)
- Asli Baysal
- Health Services Vocational School of Higher Education, T. C. Istanbul Aydin University, Istanbul, Turkey
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, T. C. Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
30
|
Zhang S, Liu X, Qiu P, Chen B, Xu C, Dong W, Liu T. Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153488. [PMID: 35101514 DOI: 10.1016/j.scitotenv.2022.153488] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-blaTEM) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingxiang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenmin Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
31
|
Song J, Beule L, Jongmans-Hochschulz E, Wichels A, Gerdts G. The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient. ISME COMMUNICATIONS 2022; 2:35. [PMID: 37938248 PMCID: PMC9723596 DOI: 10.1038/s43705-022-00117-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
Microplastics (MP), as novel substrata for microbial colonization within aquatic ecosystems, are a matter of growing concern due to their potential to propagate foreign or invasive species across different environments. MP are known to harbour a diversity of microorganisms, yet little is understood of the dynamics of their biofilms and their capacity to successfully displace these microorganisms across different aquatic ecosystems typically marked by steep salinity gradients. To address this, we performed an in situ sequential incubation experiment to simulate MP transport from riverine to coastal seawaters using synthetic (high-density polyethylene, HDPE and tyre wear, TW) and natural (Wood) substrata. Bacterial communities on incubated particles were compared to each other as well as to those in surrounding waters, and their dynamics along the gradient investigated. All communities differed significantly from each other in their overall structure along the salinity gradient and were shaped by different ecological processes. While HDPE communities were governed by environmental selection, those on TW and Wood were dominated by stochastic events of dispersal and drift. Upon transfer into coastal seawaters, an almost complete turnover was observed among HDPE and TW communities. While synthetic particles displaced a minor proportion of communities across the salinity gradient, some of these comprised putatively pathogenic and resistant taxa. Our findings present an extensive assessment of MP biofilms and their dynamics upon displacement across different aquatic systems, presenting new insights into the role of MP as transport vectors.
Collapse
Affiliation(s)
- Jessica Song
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany.
| | - Lukas Beule
- Julius Kühn Institute-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195, Berlin, Germany
| | - Elanor Jongmans-Hochschulz
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| |
Collapse
|
32
|
Treskova M, Kuhlmann A, Freise F, Kreienbrock L, Brogden S. Occurrence of Antimicrobial Resistance in the Environment in Germany, Austria, and Switzerland: A Narrative Review of Existing Evidence. Microorganisms 2022; 10:microorganisms10040728. [PMID: 35456779 PMCID: PMC9027620 DOI: 10.3390/microorganisms10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: This study summarizes the current research on antibiotic resistance (AR) in the environment conducted in Austria, Germany, and Switzerland; (2) Methods: A narrative systematic literature review of epidemiological studies based on searches in EMBASE and CAB abstracts (up to 16 June2021) was conducted. Environmental reservoirs included water sources, wastewater, animal husbandry, wildlife, soil, and sediment; (3) Results: Four hundred and four records were screened, and 52 studies were included. Thirteen studies examined aquatic environments, and eleven investigated wastewater. Eight studies investigated both wildlife and animal husbandry. Less evidence was available for sediments, soil, and air. Considerable heterogeneity in research focus, study design, sampling, and measurement of resistance was observed. Resistance to all categories of antimicrobials in the WHO CIA list was identified. Resistance to critically important and highly important substances was reported most frequently; (4) Conclusions: The current research scope presents data-gathering efforts. Usage of a unified protocol for isolate collection, selecting sampling sites, and susceptibility testing is required to provide results that can be compared between the studies and reservoirs. Epidemiological, environmental, and ecological factors should be considered in surveys of the environmental dissemination of AR. Systematic epidemiological studies investigating AR at the interface of human, animal, and environmental health are needed.
Collapse
Affiliation(s)
- Marina Treskova
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Heidelberg Institute of Global Health, Faculty of Medicine, University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Kuhlmann
- Faculty of Medicine, Martin Luther University of Halle Wittenberg, 06108 Halle (Saale), Germany;
| | - Fritjof Freise
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Sandra Brogden
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Correspondence:
| |
Collapse
|
33
|
Beloe CJ, Browne MA, Johnston EL. Plastic Debris As a Vector for Bacterial Disease: An Interdisciplinary Systematic Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2950-2958. [PMID: 35129968 DOI: 10.1021/acs.est.1c05405] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pathogens and polymers can separately cause disease; however, environmental and medical researchers are increasingly investigating the capacity of polymers to transfer pathogenic bacteria, and cause disease, to hosts in new environments. We integrated causal frameworks from ecology and epidemiology into one interdisciplinary framework with four stages (colonization, survival, transfer, disease). We then systematically and critically reviewed 111 environmental and medical papers. We show 58% of studies investigated the colonization-stage alone but used this as evidence to classify a substratum as a vector. Only 11% of studies identified potential pathogens, with only 3% of studies confirming the presence of virulence-genes. Further, 8% of studies investigated μm-sized polymers with most (58%) examining less pervasive cm-sized polymers. No study showed bacteria can preferentially colonize, survive, transfer, and cause more disease on polymers compared to other environmental media. One laboratory experiment demonstrated plausibility for polymers to be colonized by a potential pathogen (Escherichia coli), survive, transfer, and cause disease in coral (Astrangia poculata). Our analysis shows a need for linked structured surveys with environmentally relevant experiments to understand patterns and processes across the vectoral stages, so that the risks and impacts of pathogens on polymers can be assessed with more certainty.
Collapse
Affiliation(s)
- Charlotte J Beloe
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Mark Anthony Browne
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Emma L Johnston
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
34
|
Kaur K, Reddy S, Barathe P, Oak U, Shriram V, Kharat SS, Govarthanan M, Kumar V. Microplastic-associated pathogens and antimicrobial resistance in environment. CHEMOSPHERE 2022; 291:133005. [PMID: 34813845 DOI: 10.1016/j.chemosphere.2021.133005] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, 411016, Maharashtra, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Uttara Oak
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, 411016, Maharashtra, India
| | - Sanjay S Kharat
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India.
| |
Collapse
|
35
|
Metcalf R, Oliver DM, Moresco V, Quilliam RS. Quantifying the importance of plastic pollution for the dissemination of human pathogens: The challenges of choosing an appropriate 'control' material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152292. [PMID: 34896491 DOI: 10.1016/j.scitotenv.2021.152292] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Discarded plastic wastes in the environment are serious challenges for sustainable waste management and for the delivery of environmental and public health. Plastics in the environment become rapidly colonised by microbial biofilm, and importantly this so-called 'plastisphere' can also support, or even enrich human pathogens. The plastisphere provides a protective environment and could facilitate the increased survival, transport and dissemination of human pathogens and thus increase the likelihood of pathogens coming into contact with humans, e.g., through direct exposure at beaches or bathing waters. However, much of our understanding about the relative risks associated with human pathogens colonising environmental plastic pollution has been inferred from taxonomic identification of pathogens in the plastisphere, or laboratory experiments on the relative behaviour of plastics colonised by human pathogens. There is, therefore, a pressing need to understand whether plastics play a greater role in promoting the survival and dispersal of human pathogens within the environment compared to other substrates (either natural materials or other pollutants). In this paper, we consider all published studies that have detected human pathogenic bacteria on the surfaces of environmental plastic pollution and critically discuss the challenges of selecting an appropriate control material for plastisphere experiments. Whilst it is clear there is no 'perfect' control material for all plastisphere studies, understanding the context-specific role plastics play compared to other substrates for transferring human pathogens through the environment is important for quantifying the potential risk that colonised plastic pollution may have for environmental and public health.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
36
|
Bai CL, Liu LY, Hu YB, Zeng EY, Guo Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150263. [PMID: 34571218 DOI: 10.1016/j.scitotenv.2021.150263] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 05/27/2023]
Abstract
Microplastics (MPs) are ubiquitous in various environment compartments, including food. Here, we collected research reports of MPs in food published during 2010-2020, and summarized the analytical methods developed and utilized by researchers (e.g., digestion, separation and identification, as well as related QA/QC measures implemented), the occurrence, and the characteristics of MPs in six kinds of food. The potential effects on biota from exposure to MPs were also reviewed. The results showed that most researchers digested food samples using chemical solutions such as HNO3, H2O2, KOH, or NaOH. FT-IR and Raman spectroscopy were the main technique for identifying MPs, and microscopes were used to count MP particles. The abundances MPs were in the ranges of 0-5860, 2.00-1100, 0-698, 4.00-18.7, 0-5.68 × 104 and 900-3000 particles/kg in beverages, condiments, honey, meat, seafood and vegetables, respectively. The "maximum" annual human intake of MPs from these foods is approximately 1.42 × 105-1.54 × 105 particles/capita, equivalent to the consumption of 50 plastic bags (size: 0.04 mm × 250 mm × 400 mm, density: 0.98 g/cm3) each year. Blue-colored and fiber-shaped MP particles were the most commonly observed in food, predominated by PA, PE, PES, PET and PP types. Toxicity studies indicated that MPs, additives of MPs and adsorbents or microorganisms on the surfaces of MPs were all somewhat toxic to cells or biota. Exposure to MPs may induce oxidative stress, inflammation, neurotoxicity, and reproductive toxicity, and change the structure of intestinal microflora in cells or biota. Therefore, we call for more investigation into the residual, excretion and bioavailability of MPs or related absorbents/additives in biota and humans.
Collapse
Affiliation(s)
- Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi-Bin Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, and Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150141. [PMID: 34509832 DOI: 10.1016/j.scitotenv.2021.150141] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been detected in atmosphere, soil, and water and have been characterized as contaminants of emerging concern. When exposed to these environments, MPs interact with the chemical compounds as well as the (micro)organisms inhabiting these ecosystems. This paper overviews the interactions and significant factors influencing the sorption process of antibiotics on MPs since distinct interactions are developed between MPs and antibiotics. The interplay between the MPs and the antibiotic resistant genes (ARGs) microbial hosts is presented and the important factors that may shape the plastisphere resistome are discussed. The interactions of MPs, antibiotics and antibiotic resistant bacteria (ARB) and ARGs in wastewater treatment plants (WWTPs) were discussed with the aim to provide a perspective for better understanding of the role of WWTPs in bringing together MPs, antibiotics and ARB/ARGs and further as release points of MPs carrying antibiotics, and ARB/ARGs.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
38
|
Fabra M, Williams L, Watts JEM, Hale MS, Couceiro F, Preston J. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149217. [PMID: 34303969 DOI: 10.1016/j.scitotenv.2021.149217] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 05/26/2023]
Abstract
Microplastic pollution has become a major source of concern, with a large body of literature surrounding the impacts of microplastic ingestion by biota. However, many of these studies utilise virgin microbeads, which are not reflective of environmental microplastics that are rapidly colonised with microbial communities (plastisphere) in marine ecosystems. It is a concern therefore that current evidence of the impacts of microplastics on biota are unrepresentative of the environmental microplastic pollution. In this study, uptake and bioaccumulation of both virgin and Escherichia coli coated microplastics, by European native oysters (Ostrea edulis) were compared, and the physiological responses of oysters to the exposure were investigated. The uptake of E. coli coated microplastics was found to be significantly higher than the uptake of virgin microplastics, with average concentrations of 42.3 ± 23.5 no. g-1 and 11.4 ± 0.6 no. g-1 microbeads found in oysters exposed to coated and virgin microplastics, respectively. This suggests that environmental microplastic uptake into the marine trophic web by benthic filter feeders may be greater than previously thought. The oxygen consumption and respiration rate of oysters exposed to E. coli coated microplastics increased significantly over time, whilst virgin microplastics did not produce any measurable significant physiological responses. However, less than 0.5% of the total amount of administered microbeads were retained by all oysters, suggesting a limited residence time within the organisms. Although microplastics did not bioaccumulate in oyster tissues in the short-term, microorganisms assimilated by the ingestion of coated microplastics may be transferred to higher trophic levels. This poses a risk, not only for wildlife, but also for food safety and human health. The capacity to carry pathogens and expose a wide range of organisms to them means microplastics may have an important role as vectors for disease.
Collapse
Affiliation(s)
- Monica Fabra
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO4 9LY, UK
| | - Luke Williams
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO4 9LY, UK
| | - Joy E M Watts
- School of Biological Sciences, King Henry Bld. University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Michelle S Hale
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, UK
| | - Fay Couceiro
- School of Civil Engineering and Surveying, University of Portsmouth, Portsmouth PO1 3AH, UK
| | - Joanne Preston
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO4 9LY, UK.
| |
Collapse
|
39
|
Ding J, Zhu D, Wang Y, Wang H, Liang A, Sun H, Chen Q, Lassen SB, Lv M, Chen L. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148417. [PMID: 34144237 DOI: 10.1016/j.scitotenv.2021.148417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The widespread occurrence of tire particles (TPs) in soils has attracted considerable attention due to their potential threats. The assemblage of bacteria and associated antibiotic resistant genes (ARGs) on TPs is yet largely unknown, especially under the stress of soil pollutants. In the present study, TPs were incubated in soils with or without the stress of heavy metal (Cu2+) or/and antibiotic (tetracycline), and bacterial community and ARG profile on TPs and in soils were explored using high-throughput sequencing and high-throughput quantitative PCR. Results indicated that bacterial community structure on TPs was significantly different from the surrounding soils, with a lower diversity, and significantly shifted by heavy metal and antibiotic exposure. Additionally, a diverse set of ARGs were detected on TPs, and their abundances were significantly increased under the stress of heavy metal and antibiotic, revealing a strong synergistic effect. Moreover, a good fit was observed for the correlation between bacterial community and ARG profile on TPs. Taken together, this study, for the first time, demonstrates that TPs can provide a novel niche for soil bacteria and soil resistome, and heavy metal and antibiotic exposure may potentially increase the abundance of ARGs on TPs, threatening soil ecosystems and human health.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Yang Wang
- Department of Galactophore Surgery, Weifang People's Hospital, 151 Guangwen Road, Weifang 261041, China
| | - Hongtao Wang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Henan University, Kaifeng 475004, China
| | - Aiping Liang
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China
| |
Collapse
|
40
|
Coons AK, Busch K, Lenz M, Hentschel U, Borchert E. Biogeography rather than substrate type determines bacterial colonization dynamics of marine plastics. PeerJ 2021; 9:e12135. [PMID: 34603853 PMCID: PMC8445087 DOI: 10.7717/peerj.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Since the middle of the 20th century, plastics have been incorporated into our everyday lives at an exponential rate. In recent years, the negative impacts of plastics, especially as environmental pollutants, have become evident. Marine plastic debris represents a relatively new and increasingly abundant substrate for colonization by microbial organisms, although the full functional potential of these organisms is yet to be uncovered. In the present study, we investigated plastic type and incubation location as drivers of marine bacterial community structure development on plastics, i.e., the Plastisphere, via 16S rRNA amplicon analysis. Four distinct plastic types: high-density polyethylene (HDPE), linear low-density polyethylene (LDPE), polyamide (PA), polymethyl methacrylate (PMMA), and glass-slide controls were incubated for five weeks in the coastal waters of four different biogeographic locations (Cape Verde, Chile, Japan, South Africa) during July and August of 2019. The primary driver of the coastal Plastisphere composition was identified as incubation location, i.e., biogeography, while substrate type did not have a significant effect on bacterial community composition. The bacterial communities were consistently dominated by the classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia, irrespective of sampling location or substrate type, however a core bacterial Plastisphere community was not observable at lower taxonomic levels. Overall, this study sheds light on the question of whether bacterial communities on plastic debris are shaped by the physicochemical properties of the substrate they grow on or by the marine environment in which the plastics are immersed. This study enhances the current understanding of biogeographic variability in the Plastisphere by including biofilms from plastics incubated in the previously uncharted Southern Hemisphere.
Collapse
Affiliation(s)
- Ashley K Coons
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany.,Christian-Albrechts-University Kiel, Kiel, Schleswig-Holstein, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
41
|
Assessing the Risks of Potential Bacterial Pathogens Attaching to Different Microplastics during the Summer-Autumn Period in a Mariculture Cage. Microorganisms 2021; 9:microorganisms9091909. [PMID: 34576804 PMCID: PMC8469625 DOI: 10.3390/microorganisms9091909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
As microplastic pollution continues to increase, an emerging threat is the potential for microplastics to act as novel substrates and/or carriers for pathogens. This is of particular concern for aquatic product safety given the growing evidence of microplastic ingestion by aquaculture species. However, the potential risks of pathogens associated with microplastics in mariculture remain poorly understood. Here, an in situ incubation experiment involving three typical microplastics including polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) was conducted during the summer–autumn period in a mariculture cage. The identification of potential pathogens based on the 16S rRNA gene amplicon sequencing and a custom-made database for pathogenic bacteria involved in aquatic environments, was performed to assess the risks of different microplastics attaching potential pathogens. The enrichment of pathogens was not observed in microplastic-associated communities when compared with free-living and particle-attached communities in surrounding seawater. Despite the lower relative abundance, pathogens showed different preferences for three microplastic substrates, of which PET was the most favored by pathogens, especially potentially pathogenic members of Vibrio, Tenacibaculum, and Escherichia. Moreover, the colonization of these pathogens on microplastics was strongly affected by environmental factors (e.g., temperature, nitrite). Our results provide insights into the ecological risks of microplastics in mariculture industry.
Collapse
|
42
|
Wang J, Peng C, Li H, Zhang P, Liu X. The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145697. [PMID: 33940764 DOI: 10.1016/j.scitotenv.2021.145697] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution has attracted global attention due to the extensive use of plastic products. The hydrophobic MP surface provides a habitat for multiple microorganisms. Although there have been several studies on the impact of plastic particles on microbial communities, there are few reviews that have systematically summarized the interaction between MPs and microbes and their effects on human health and biochemical circulation. The discussions in this review will take place under the following topics: (1) MPs prompt colonization, biofilm generation, and transfer of environmental microbes; (2) the microbial communities can cause the morphological alterations and biodegradation of MPs; (3) MP-microbe combinations can induce the alteration of intestinal flora and hazard animal health; (4) the biogeochemical cycles affected by MP-microbe interactions. This review will highlight the close interactions between MPs and microorganisms, and provide suggestions for future studies.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Chu Peng
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Hongyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
43
|
Sathicq MB, Sabatino R, Corno G, Di Cesare A. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116896. [PMID: 33744628 DOI: 10.1016/j.envpol.2021.116896] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 05/27/2023]
Abstract
In the last decade, the study of the origin and fate of plastic debris received great attention, leading to a new and broad awareness of the hazard represented by these particles for the environment and the biota. At the same time, the scientific consideration on the leading role of the environment regarding the spread of antibiotic resistant bacteria (ARB) increased. Both, microplastic particles (MPs) and ARB share pollution sources and, in aquatic systems, MPs could act as a novel ecological niche, favouring the survival of pathogens and ARB. MPs can host a specific microbial biofilm, referred to as plastisphere, phylogenetically different from the surrounding planktonic microbial community and from the biofilm growing on other suspended particles. The plastisphere can influence the overall microbiome of a specific habitat, by introducing and supporting different species and by increasing horizontal gene transfer. In this review we collect and analyse the available studies coupling MPs and antibiotic resistance in water, highlighting knowledge gaps to be filled in order to understand if MPs could effectively act as a carrier of ARB and antibiotic resistance genes, and pose a real threat to human health.
Collapse
Affiliation(s)
- María Belén Sathicq
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
44
|
Oberbeckmann S, Bartosik D, Huang S, Werner J, Hirschfeld C, Wibberg D, Heiden SE, Bunk B, Overmann J, Becher D, Kalinowski J, Schweder T, Labrenz M, Markert S. Genomic and proteomic profiles of biofilms on microplastics are decoupled from artificial surface properties. Environ Microbiol 2021; 23:3099-3115. [PMID: 33876529 DOI: 10.1111/1462-2920.15531] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
Microplastics in marine ecosystems are colonized by diverse prokaryotic and eukaryotic communities. How these communities and their functional profiles are shaped by the artificial surfaces remains broadly unknown. In order to close this knowledge gap, we set up an in situ experiment with pellets of the polyolefin polymer polyethylene (PE), the aromatic hydrocarbon polymer polystyrene (PS), and wooden beads along a coastal to estuarine gradient in the Baltic Sea, Germany. We used an integrated metagenomics/metaproteomics approach to evaluate the genomic potential as well as protein expression levels of aquatic plastic biofilms. Our results suggest that material properties had a minor influence on the plastic-associated assemblages, as genomic and proteomic profiles of communities associated with the structurally different polymers PE and PS were highly similar, hence polymer-unspecific. Instead, it seemed that these communities were shaped by biogeographic factors. Wood, on the other hand, induced the formation of substrate-specific biofilms and served as nutrient source itself. Our study indicates that, while PE and PS microplastics may be relevant in the photic zone as opportunistic colonization grounds for phototrophic microorganisms, they appear not to be subject to biodegradation or serve as vectors for pathogenic microorganisms in marine habitats.
Collapse
Affiliation(s)
- Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Daniel Bartosik
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Sixing Huang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan E Heiden
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Faculty of Life Science, Braunschweig University of Technology, Institute of Microbiology, Braunschweig, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
45
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
46
|
Cordovana M, Mauder N, Kostrzewa M, Wille A, Rojak S, Hagen RM, Ambretti S, Pongolini S, Soliani L, Justesen US, Holt HM, Join-Lambert O, Le Hello S, Auzou M, Veloo AC, May J, Frickmann H, Dekker D. Classification of Salmonella enterica of the (Para-)Typhoid Fever Group by Fourier-Transform Infrared (FTIR) Spectroscopy. Microorganisms 2021; 9:microorganisms9040853. [PMID: 33921159 PMCID: PMC8071548 DOI: 10.3390/microorganisms9040853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes.
Collapse
Affiliation(s)
- Miriam Cordovana
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.C.); (N.M.); (M.K.)
| | - Norman Mauder
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.C.); (N.M.); (M.K.)
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.C.); (N.M.); (M.K.)
| | - Andreas Wille
- Institute for Hygiene and Environment, 20539 Hamburg, Germany;
| | - Sandra Rojak
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (S.R.); (R.M.H.)
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany; (S.R.); (R.M.H.)
| | - Simone Ambretti
- Operative Unit of Microbiology, IRCCS-Azienda Ospedaliero Policlinico Sant’Orsola-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia-Romagna, 43126 Parma, Italy; (S.P.); (L.S.)
| | - Laura Soliani
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia-Romagna, 43126 Parma, Italy; (S.P.); (L.S.)
| | - Ulrik S. Justesen
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense C, Denmark; (U.S.J.); (H.M.H.)
| | - Hanne M. Holt
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense C, Denmark; (U.S.J.); (H.M.H.)
| | - Olivier Join-Lambert
- Department of Microbiology, Université de Caen, Normandie, CEDEX 5, 14032 Caen, France; (O.J.-L.); (S.L.H.); (M.A.)
| | - Simon Le Hello
- Department of Microbiology, Université de Caen, Normandie, CEDEX 5, 14032 Caen, France; (O.J.-L.); (S.L.H.); (M.A.)
| | - Michel Auzou
- Department of Microbiology, Université de Caen, Normandie, CEDEX 5, 14032 Caen, France; (O.J.-L.); (S.L.H.); (M.A.)
| | - Alida C. Veloo
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, 9700 AB Groningen, The Netherlands;
| | - Jürgen May
- Infectious Disease Department, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; or
- University Medical Center Hamburg-Eppendorf (UKE), Tropical Medicine II Hamburg, 20359 Hamburg, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Denise Dekker
- Infectious Disease Department, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; or
- German Centre for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
47
|
Boni W, Parrish K, Patil S, Fahrenfeld NL. Total coliform and Escherichia coli in microplastic biofilms grown in wastewater and inactivation by peracetic acid. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:334-342. [PMID: 32779310 DOI: 10.1002/wer.1434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MP) have been proposed as a vector for pathogenic microorganisms in the freshwater environment. The objectives of this study were (a) to compare the fecal indicator growth in biofilms on MP and material control microparticles incubated in different wastewater fractions and (b) to compare MP biofilm, natural microparticle biofilm, and planktonic cell susceptibility to disinfection by peracetic acid (PAA). Biofilms were grown on high-density polyethylene, low-density polyethylene, polypropylene MP, or wood chips (as a material control) and incubated in either wastewater influent or pre-disinfection secondary effluent. Reactors were disinfected with PAA, biofilms were dislodged, and total coliform and Escherichia coli were cultivated. Fecal indicators were quantifiable in both MP and wood biofilms incubated in the wastewater influent but only on the wood biofilms incubated in secondary wastewater effluent. More total coliform grew in the wood biofilms than MP biofilms, and the biofilms grown on MP and woodchips were more resistant to disinfection than planktonic bacteria. Thus, it may be possible to refer to the disinfection literature for fecal indicators in biofilm on other particles to predict behavior on MP. Treatments that remove particles in general would help reduce the potential for fecal indicator bypass of disinfection. PRACTITIONER POINTS: MP biofilm had lower concentrations of fecal indicators than wood biofilm Biofilm on MP was not more resistant to disinfection than wood biofilm Biofilms, regardless of substrate, were more resistant to disinfection than planktonic organisms.
Collapse
Affiliation(s)
- William Boni
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kathleen Parrish
- Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shreya Patil
- Bioenvironmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Nicole L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
48
|
Dong S, Cai W, Xia J, Sheng L, Wang W, Liu H. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115828. [PMID: 33120151 DOI: 10.1016/j.envpol.2020.115828] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The aggregation kinetics of fragmental polyethylene glycol terephthalate (PET) nanoplastics under various chemistry conditions in aqueous environment were firstly investigated in this work. The aggregation of PET nanoplastics increased with increasing electrolyte concentrations and decreasing solution pH, which became stronger with the presence of divalent cations (e.g. Ca2+ and Mg2+) than that of monovalent cations (e.g. Na+ and K+). The effect of cations with the same valence on the aggregation of PET nanoplastics was similar. The measured critical coagulation concentrations (CCC) for PET nanoplastics at pH 6 were 55.0 mM KCl, 54.2 mM NaCl, 2.1 mM CaCl2 and 2.0 mM MgCl2, which increased to 110.4 mM NaCl and 5.6 mM CaCl2 at pH 10. In addition, the aggregation of PET nanoplastics was significantly inhibited with the presence of humic acid (HA), and the CCC values increased to 558.8 mM NaCl and 12.3 mM CaCl2 (1 mg L-1 HA). Results from this study showed that the fragmental PET nanoplastics had the quite higher CCC values and stability in aqueous environment. In addition, the aggregation behaviors of PET nanoplastics can be successfully predicted by the Derjguin Landau Verwey Overbeek (DLVO) theory.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Wangwei Cai
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Weimu Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hui Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
49
|
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11657-11672. [PMID: 32886491 DOI: 10.1021/acs.est.0c02305] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere. The Plastisphere is at the interface between the plastic and its surrounding milieu, and thus drives every interaction that this synthetic material has with its environment, from ecotoxicity and new links in marine food webs to the fate of the plastics in the water column. We conclude that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages. Furthermore, despite progress that has been made in this field, we recognize that it is time to take research on plastic-Plastisphere-environment interactions a step further by identifying present gaps in our knowledge and offering our perspective on key aspects to be addressed by future studies: (I) better physical characterization of marine biofilms, (II) inclusion of relevant controls, (III) study of different successional stages, (IV) use of environmentally relevant concentrations of biofouled microplastics, and (V) prioritization of gaining a mechanistic and functional understanding of Plastisphere communities.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gabriel Erni-Cassola
- Man-Society-Environment (MSE) program, University of Basel, Basel 4003, Switzerland
| | - Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Mira Latva
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph A Christie-Oleza
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| |
Collapse
|