1
|
Wu G, Wu Y, Shan Z, Shen F, Zhang XX, Zhu F. Unveiling transformation processes of cardiovascular pharmaceuticals in wastewater based on nontarget screening. WATER RESEARCH 2025; 278:123425. [PMID: 40058293 DOI: 10.1016/j.watres.2025.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
Cardiovascular pharmaceuticals were extensively detected and generally coexist with their transformation products (TPs) in wastewater. However, knowledges on TPs and transformation processes for cardiovascular pharmaceuticals remained largely unclear. To fill this knowledge gap, nontarget screening combined with batch experiments were employed to reveal the transformation of five cardiovascular pharmaceuticals (atenolol, metoprolol, propranolol, bezafibrate and candesartan) in aerobic activated sludge. The removal rate constants per unit of biomass ranged from 0.0105 to 0.0571 L g SS-1 h-1 for five cardiovascular pharmaceuticals. Atenolol and bezafibrate exhibited more excellent removal efficiency (over 99 %) than other three cardiovascular pharmaceuticals. Subsequently, 33 TPs were tentatively identified and 16 of them were not reported in previous studies. Based on identified TPs, transformation pathways of five cardiovascular pharmaceuticals were proposed, which suggested acetylation, ammoniation, carboxylation, dealkylation, decarboxylation, dihydroxylation, demethylation, epoxidation, formylation, hydrogenation, hydrolysis, hydroxylation, methylation and oxidation were involved in the transformation of cardiovascular pharmaceuticals in wastewater. Notably, N- dealkylation at the site of secondary and tertiary amine, acetylation at the site of primary amine and dehydrogenation at the site of linear alkyl were summarized as the specific transformation patterns across different cardiovascular pharmaceuticals. Furthermore, the predicted results suggested that about 30 % TPs have higher persistence and bioaccumulation than parent compounds while about 40 % TPs harbored higher toxicity than parent compounds of cardiovascular pharmaceuticals. Collectively, this study unveiled the fate and transformation pathways of five cardiovascular pharmaceuticals and summarized the specific transformation patterns for them in aerobic activated sludge, which is theoretically useful to effectively remove pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Yufei Wu
- Faculty of Science, The University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Zongya Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230031 Anhui, China
| | - Fei Shen
- Jiangsu Province Center for Disease Control and Prevention, Nanjing 210009 Jiangsu, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China.
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing 210009 Jiangsu, China.
| |
Collapse
|
2
|
Yao L, Hu Y, Yang JH, Wu R, Chen FL, Zhou X. Wastewater surveillance for chronic disease drugs in wastewater treatment plants: Mass load, removal, and sewage epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137661. [PMID: 39986104 DOI: 10.1016/j.jhazmat.2025.137661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
As the number of chronic disease patients continues to climb, vast quantities of chronic disease drugs are continuously discharged into the wastewater treatment plants (WWTPs) and then are released to the receiving environment. However, the situations of pollution, removal, and consumption of chronic disease drugs in China were not studied. Here we investigated the mass load and removal efficiency of 14 chronic disease drugs in seven wastewater treatment plants (WWTPs) of Guangdong Province, China, and estimated the proportional usage of chronic disease drugs and the prevalence of chronic diseases by wastewater-based epidemiology (WBE) method. The results showed that all target chronic disease drugs were detected in the WWTPs, among which gliclazide, valsartan, and bezafibrate were the mainly detected antidiabetic drug, antihypertensive drug, and antihyperlipidemic drug, respectively. The aqueous removal rates of chronic disease drugs ranged from -163 %-100 % in studied WWTPs, and most chronic disease drugs were mainly removed at anaerobic stage in WWTPs that using Anaerobic-Anoxic-Oxic treatment technologies. Mean mass loads of chronic disease drugs in the influent of seven WWTPs ranged at 72-318099 mg·d-1 (valsartan), and mean emission of chronic disease drugs in seven WWTPs ranged at 0-56.3 mg·d-1·1000 inhabitant-1 (valsartan). Based on the WBE method, the prevalence of diabetes, hypertension, and dyslipidemia estimated by gliclazide, glipizide, valsartan, and bezafibrate in this study was consistent with those obtained via cross-sectional survey. The results formulated the contamination characteristics of chronic disease drugs in China and assessed the accuracy of chronic disease drugs used for disease prevalence estimation.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yang Hu
- Soil and Landscape Science, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Rui Wu
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Fei-Long Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
3
|
Giunchi V, Fusaroli M, Cangini A, Fortinguerra F, Zito S, Pierantozzi A, Lunghi C, Poluzzi E, Trotta F. Assessing the environmental impact of medicines in Italy using data from the Italian Medicines Agency. Br J Clin Pharmacol 2025. [PMID: 40098545 DOI: 10.1002/bcp.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
AIM This study builds on the environmental risk analysis presented in the 2022 National Report on Medicines Use in Italy by the Italian Medicines Agency and aims to assess the environmental risk posed by medicines in Italy and its regions. METHODS The analysis selected 90 medicines based on three criteria: high utilization, low predicted no effect concentration (PNEC), and inclusion or candidacy for the European Watch List. For each medicine, the environmental risk was computed as the ratio between the predicted environmental concentration (PEC) and the PNEC. The PEC was derived following the approach of the Swedish Association of Pharmaceutical Industries and Italian drug utilization data. The risk was classified high if the ratio was greater than 10 and moderate if greater than 1. RESULTS Overall, 13 medicines were identified as posing a high risk, including cardiovascular agents, antibiotics, analgesics, antidepressants and antiparasitic agents. The high risk was driven by either a very low PNEC (eg, estradiol and lacidipine) or high utilization (eg, amoxicillin, ibuprofen and diclofenac). Regional analysis showed higher risk due to high consumption for azithromycin and ofloxacin in central and southern Italy, and for levonorgestrel in northern Italy. CONCLUSION This study points to the need for prioritizing targeted sampling in surface waters for medicines estimated at high risk. To prevent and mitigate the risk, a more conscious clinical practice coupled with appropriate waste management are required.
Collapse
Affiliation(s)
- Valentina Giunchi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Michele Fusaroli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Simona Zito
- Italian Medicines Agency (AIFA), Rome, Italy
| | | | - Carlotta Lunghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
4
|
Qian Y, Ke Y, Wang L, Yu N, He Y, Yu Q, Wei S, Ren H, Geng J. Entropy Similarity-Driven Transformation Reaction Molecular Networking Reveals Transformation Pathways and Potential Risks of Emerging Contaminants in Wastewater: The Example of Sartans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4153-4164. [PMID: 39969411 DOI: 10.1021/acs.est.4c13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The transformation pathways and risks of emerging contaminants (ECs) in wastewater remain unclear due to the limited throughput of nontarget screening. In this study, an improved method called entropy similarity-driven transformation reaction molecular networking (ESTRMN) was developed to identify transformation products (TPs) in wastewater. In detail, entropy similarity was the most effective algorithm for identifying parent-product spectrum pairs and a threshold of 0.5 for it was determined with the guarantee of high specificity. Additionally, a TP structure database predicted according to known structures and reactions was established to assist in identification. Sartan is one of the most commonly used angiotensin II receptor blocker antihypertensive drugs. Take sartans as an example, 69 TPs of sartans with confidence levels above 3 were identified by ESTRMN, 43 of which were newly discovered. The most common reactions included hydroxylation, hydrolysis, and oxidation, resulting in the majority of sartan TPs exhibiting higher persistence, mobility, and toxicity (PMT) than their parents. The concentration of 75% sartans and TPs increased after treatment in a WWTP, and the overall risk has not been effectively mitigated. This study emphasizes the role of ESTRMN in incorporating TPs of ECs into environmental monitoring protocols and risk assessment frameworks for wastewater management.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yunhao Ke
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
5
|
Beldean-Galea MS, Herghelegiu MC, Pănescu VA, Vial J, Bruzzoniti MC, Coman MV. The Effectiveness of Liquid-Phase Microextraction of Beta-Blockers from Aqueous Matrices for Their Analysis by Chromatographic Techniques. Molecules 2025; 30:1016. [PMID: 40076241 PMCID: PMC11901778 DOI: 10.3390/molecules30051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Beta-blockers are pharmaceuticals used to treat cardiovascular diseases such as hypertension, angina pectoris, and arrhythmia. Due to high consumption, they are continuously released into the environment, being detected in many aqueous matrices. The aim of this research is to test the effectiveness of two green liquid-phase microextraction procedures, such as dispersive liquid-liquid microextraction (DLLME) and solidification of floating organic droplet microextraction (SFOME) for the selective extraction of eight beta-blockers (atenolol, nadolol, pindolol, acebutolol, metoprolol, bisoprolol, propranolol, and betaxolol) from aqueous matrices for their analysis by gas chromatography (GC) or liquid chromatography (LC). The influence of extraction parameters, such as the type and volume of extraction and disperser solvents, and ionic strength were studied. The developed extraction procedures provide a good enrichment factor for six compounds (61.22-243.97), good extraction recovery (53.04-92.1%), and good sample cleaning for both extraction procedures. Good limits of detection (0.13 to 0.69 µg/mL for GC and 0.07 to 0.15 µg/mL for HPLC) and limits of quantification (0.39 to 2.10 µg/mL for GC and 0.20 to 0.45 µg/mL for LC) were obtained. The developed procedures were successfully applied to the analysis of selected beta-blockers in wastewater samples, proving their applicability to the real samples.
Collapse
Affiliation(s)
- Mihail Simion Beldean-Galea
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| | - Mihaela-Cătălina Herghelegiu
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| | - Vlad-Alexandru Pănescu
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| | - Jérôme Vial
- Chemistry, Biology and Innovation Department, École Supérieure de Physique et de Chimie Industrielles ESPCI Paris PSL, 10 Rue Vauquelin, 75005 Paris, France
| | | | - Maria-Virginia Coman
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Sarabyar S, Farahbakhsh A, Tahmasebi HA, Mahmoodzadeh Vaziri B, Khosroyar S. Enhancing photocatalytic degradation of beta-blocker drugs using TiO 2 NPs/zeolite and ZnO NPs/zeolite as photocatalysts: optimization and kinetic investigations. Sci Rep 2024; 14:27390. [PMID: 39521784 PMCID: PMC11550835 DOI: 10.1038/s41598-024-73888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study delves into the development and optimization of photocatalysts, namely ZnO NPs/Zeolite and TiO2 NPs/Zeolite, for the degradation of two beta-blocker drugs, including Atenolol (AT) and Metoprolol (ME). Structural and morphological analyses of the catalysts were conducted, and optimal conditions for drug degradation were determined using a Box-Behnken design. The results underscored the significant influence of pH, catalyst amount, drug concentration, and H2O2 concentration on the degradation process using ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalysts. The optimal values of drug concentration, pH, catalyst amount, and H2O2 concentration, were determined to be 32 and 33 mg L-1, 4.2 and 4.6, 428 and 386 mg, and 2.6 and 2.5 mM utilizing ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalyst, respectively. Following optimization, the kinetics of the photodegradation process were investigated, revealing promising rates and half-life times for both drugs. The pseudo-first-order rate constants for Atenolol and Metoprolol degradation were 0.064 ± 0.007 min-1 and 0.065 ± 0.004 min-1 with ZnO NPs/Zeolite and 0.071 ± 0.007 min-1 and 0.071 ± 0.006 min-1 with TiO2 NPs/Zeolite, respectively. Furthermore, ZnO NPs/Zeolite and TiO2 NPs/Zeolite demonstrated reusability up to 5 and 6 times, respectively, without significant activity loss. The comparative analysis highlighted the superior performance of TiO2 NPs/Zeolite over ZnO NPs/Zeolite, attributed to lower consumption, shorter degradation time, improved reusability, and compatibility with milder acidic conditions. Overall, the research showcases the potential of ZnO NPs/Zeolite and TiO2 NPs/Zeolite as an effective and sustainable solution for removing Metoprolol and Atenolol contaminants.
Collapse
Affiliation(s)
- Sara Sarabyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Afshin Farahbakhsh
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Hamzeh Ali Tahmasebi
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | | - Susan Khosroyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
7
|
Navon G, Nordland O, Kaplan A, Avisar D, Shenkar N. Detection of 10 commonly used pharmaceuticals in reef-building stony corals from shallow (5-12 m) and deep (30-40 m) sites in the Red Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124698. [PMID: 39122171 DOI: 10.1016/j.envpol.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although pharmaceutically-active compounds (PhACs) are increasingly being found to be present in marine environments, their presence in coral reefs, already under threat from various stressors, has remains unexplored. This study focused on PhAC presence in two stony-coral genera, collected from different depths and sites in the Red Sea. The findings reveal the presence of ten different PhACs, with elevated concentrations detected in corals from shallow sites and in areas with heavy human activity. Notably, all samples contained at least one PhAC, with the antibiotic sulfamethoxazole being the most prevalent compound, detected in 93% of the samples, at concentrations ranging from 1.5 to 2080 ng/g dry weight (dw) tissue, with an average concentration of 106 ng/g dw. These findings underscore the urgent need for conservation initiatives aimed at protecting coral-reef ecosystems from the escalating threat of anthropogenic contamination, including such potential risks as the development of antibiotic resistance in marine organisms and the disruption of critical spawning synchrony among coral populations.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Olivia Nordland
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
8
|
Muambo KE, Im H, Macha FJ, Oh JE. Reproductive toxicity and molecular responses induced by telmisartan in Daphnia magna at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124525. [PMID: 39004206 DOI: 10.1016/j.envpol.2024.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
With aging population increasing globally, the use of pharmaceutically active compounds is rising. The cardiovascular drug telmisartan has been widely detected in various environmental compartments, including biota, surface waters, and sewage treatment plant effluents at concentrations ranging from ng/L to μg/L levels. This study evaluated the effects of telmisartan on the microcrustacean Daphnia magna at a wide range of concentrations (0.35, 0.70, 1.40, 500, and 1000 μg/L) and revealed significant ecotoxicological implications of this drug, even at environmentally relevant concentration. Acute exposure to telmisartan (1.40, 500, and 1000 μg/L) resulted in a notable decrease in heart rate, while chronic exposure accelerated the time to the first brood by 3 days and reduced neonate body size. Molecular investigations revealed marked downregulation of vitellogenin genes (Vtg1 and Vtg2). Non-monotonic dose responses were observed for gene expression, early-stage body length, and the total number of offspring produced, while the heart rate and time to the first brood showed clear concentration-dependent responses. These findings highlight the potential risks, notably to reproductive capacity, associated with exposure to telmisartan in environmentally relevant concentration, suggesting the need for further studies on the potential long-term ecological consequences.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Fulgence Jacob Macha
- Biocolloids and Surfaces Laboratory, Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Filice M, Caferro A, Amelio D, Impellitteri F, Iovine MA, Porretti M, Faggio C, Gattuso A, Cerra MC, Imbrogno S. The effects of ACE inhibitor Enalapril on Mytilus galloprovincialis: Insights into morphological and functional responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107014. [PMID: 38954870 DOI: 10.1016/j.aquatox.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
In the last decades, pharmaceuticals have emerged as a new class of environmental contaminants. Antihypertensives, including angiotensin-converting enzyme (ACE) inhibitors, are of special concern due to their increased consumption over the past years. However, the available data on their putative effects on the health of aquatic animals, as well as the possible interaction with biological systems are still poorly understood. This study analysed whether and to which extent the exposure to Enalapril, an ACE inhibitor commonly used for treating hypertension and heart failure, may induce morpho-functional alterations in the mussel Mytilus galloprovincialis, a sentinel organism of water pollution. By mainly focusing on the digestive gland (DG), a target tissue used for analysing the effects of xenobiotics in mussels, the effects of 10-days exposure to 0.6 ng/L (E1) and 600 ng/L (E2) of Enalapril were investigated in terms of cell viability and volume regulation, morphology, oxidative stress, and stress protein expression and localization. Results indicated that exposure to Enalapril compromised the capacity of DG cells from the E2 group to regulate volume by limiting the ability to return to the original volume after hypoosmotic stress. This occurred without significant effects on DG cell viability. Enalapril unaffected also haemocytes viability, although an increased infiltration of haemocytes was histologically observed in DG from both groups, suggestive of an immune response. No changes were observed in the two experimental groups on expression and tissue localization of heat shock proteins 70 (HSPs70) and HSP90, and on the levels of oxidative biomarkers. Our results showed that, in M. galloprovincialis the exposure to Enalapril did not influence the oxidative status, as well as the expression and localization of stress-related proteins, while it activated an immune response and compromised the cell ability to face osmotic changes, with potential consequences on animal performance.
Collapse
Affiliation(s)
- Mariacristina Filice
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy.
| | - Alessia Caferro
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Daniela Amelio
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | | | - Maria Assunta Iovine
- Dept of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Miriam Porretti
- Dept of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Dept of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy; Dept of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alfonsina Gattuso
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy.
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Sandra Imbrogno
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| |
Collapse
|
10
|
Zhao Y, Wang Y, Ren J, Gong W, Nie X, Peng Y, Li J, Duan C. Atorvastatin causes developmental and behavioral toxicity in yellowstripe goby (Mugilogobius chulae) embryos/larvae via disrupting lipid metabolism and autophagy processes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106909. [PMID: 38593744 DOI: 10.1016/j.aquatox.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Atorvastatin (ATV) is one of the most commonly prescribed lipid-lowering drugs detected frequently in the environment due to its high use and low degradation rate. However, the toxic effects of residual ATV in the aquatic environment on non-target organisms and its toxic mechanisms are still largely unknown. In the present study, embryos of a native estuarine benthic fish, Mugilogobius chulae, were employed to investigate the developmental and behavioral toxic effects of ATV including environmentally relevant concentrations. The aim of this study was to provide a scientific basis for ecological risk assessment of ATV in the aquatic environment by investigating the changes of biological endpoints at multiple levels in M. chulae embryos/larvae. The results showed that ATV had significantly lethal and teratogenic effects on M. chulae embryos/larvae and caused abnormal changes in developmental parameters including hatch rate, body length, heart rate, and spontaneous movement. ATV exposure caused oxidative stress in M. chulae embryos/larvae subsequently inhibited autophagy and activated apoptosis, leading to abnormal developmental processes and behavioral changes in M. chulae embryos/larvae. The disruptions of lipid metabolism, autophagy, and apoptosis in M. chulae embryos/larvae caused by ATV exposure may pose a potential ecological risk at the population level.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
11
|
Fu T, Calabrese V, Bancel S, Quéau H, Garnero L, Delorme N, Abbaci K, Salvador A, Chaumot A, Geffard O, Degli-Esposti D, Ayciriex S. ToF-SIMS imaging shows specific lipophilic vitamin alterations in chronic reprotoxicity caused by the emerging contaminant Pravastatin in Gammarus fossarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106935. [PMID: 38723468 DOI: 10.1016/j.aquatox.2024.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Blood lipid-lowering agents, such as Pravastatin, are among the most frequently used pharmaceuticals released into the aquatic environment. Although their effects on humans are very well understood, their consequences on freshwater organisms are not well known, especially in chronic exposure conditions. Gammarus fossarum is commonly used as sentinel species in ecotoxicology because of its sensitivity to a wide range of environmental contaminants and the availability of standardized bioassays. Moreover, there is an increased interest in linking molecular changes in sentinel species, such as gammarids, to observed toxic effects. Here, we performed a reproductive toxicity assay on females exposed to different concentrations of pravastatin (30; 300; 3,000 and 30,000 ng L-1) during two successive reproductive cycles and we applied ToF-SIMS imaging to evaluate the effect of pravastatin on lipid homeostasis in gammarids. Reproductive bioassay showed that pravastatin could affect oocyte development in Gammarus fossarum inducing embryotoxicity in the second reproductive cycle. Mass spectrometry imaging highlighted the disruption in vitamin E production in the oocytes of exposed female gammarids at the second reproductive cycle, while limited alterations were observed in other lipid classes, regarding both production and tissue distribution. The results demonstrated the interest of applying spatially resolved lipidomics by mass spectrometry imaging to assess the molecular effects induced by long-term exposure to environmental pharmaceutical residues in sentinel species.
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Valentina Calabrese
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Sarah Bancel
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Hervé Quéau
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Laura Garnero
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Nicolas Delorme
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Khedidja Abbaci
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Arnaud Chaumot
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Olivier Geffard
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France.
| |
Collapse
|
12
|
Yang W, Bu Q, Shi Q, Zhao R, Huang H, Yang L, Tang J, Ma Y. Emerging Contaminants in the Effluent of Wastewater Should Be Regulated: Which and to What Extent? TOXICS 2024; 12:309. [PMID: 38787088 PMCID: PMC11125804 DOI: 10.3390/toxics12050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 μg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Qianhui Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China (Q.S.)
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuning Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Long XB, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Chen CE, Ying GG, Shi WJ. Screening androgen receptor agonists of fish species using machine learning and molecular model in NORMAN water-relevant list. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133844. [PMID: 38394900 DOI: 10.1016/j.jhazmat.2024.133844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Androgen receptor (AR) agonists have strong endocrine disrupting effects in fish. Most studies mainly investigate AR binding capacity using human AR in vitro. However, there is still few methods to rapidly predict AR agonists in aquatic organisms. This study aimed to screen AR agonists of fish species using machine learning and molecular models in water-relevant list from NORMAN, a network of reference laboratories for monitoring contaminants of emerging concern in the environment. In this study, machine learning approaches (e.g., Deep Forest (DF)), Random Forests and artificial neural networks) were applied to predict AR agonists. Zebrafish, fathead minnow, mosquitofish, medaka fish and grass carp are all important aquatic model organisms widely used to evaluate the toxicity of new pollutants, and the molecular models of ARs from these five fish species were constructed to further screen AR agonists using AlphaFold2. The DF method showed the best performances with 0.99 accuracy, 0.97 sensitivity and 1 precision. The Asn705, Gln711, Arg752, and Thr877 residues in human AR and the corresponding sites in ARs from the five fish species were responsible for agonist binding. Overall, 245 substances were predicted as suspect AR agonists in the five fish species, including, certain glucocorticoids, cholesterol metabolites, and cardiovascular drugs in the NORMAN list. Using machine learning and molecular modeling hybrid methods rapidly and accurately screened AR agonists in fish species, and helping evaluate their ecological risk in fish populations.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
14
|
Rebelo P, Seguro I, Surra E, Paíga P, Pacheco JG, Delerue-Matos C. Analysis of atorvastatin in environmental waters: Validation of an electrochemical molecularly imprinted polymer sensor with application of life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171169. [PMID: 38402962 DOI: 10.1016/j.scitotenv.2024.171169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The widespread presence of pharmaceuticals in wastewater effluents after treatment stands as a significant challenge faced in the field of wastewater management and public health. Governments and the scientific community have worked to meet this urgent need for effective solutions. Nevertheless, the development of detection strategies for pharmaceutical monitorization capable of delivering rapid, on-site, and sensitive responses remains an ongoing necessity. In this work, the performance of a previously developed molecularly imprinted polymer (MIP) based electrochemical sensor for detecting atorvastatin (ATV) in wastewater effluents and surface waters is presented. A simple preconcentration method followed by electrochemical measurements by differential pulse voltammetry (DPV) in 0.1 M phosphate buffer (pH = 7), was implemented. The analytical results were validated with those obtained on a set of 16 water samples by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, a life cycle assessment (LCA) was conducted to compare the environmental impact of both methodologies. The results obtained demonstrated that ATV detection using MIP-sensor was reliable when compared to the results found by UHPLC-MS/MS presenting a robust linear correlation coefficient of 0.843. The LCA results show that the novel MIP-sensor technique has lower associated environmental impacts than UHPLC-MS/MS, when the current analytical protocol for pharmaceuticals detection is applied. These findings highlight the potential of the developed MIP-sensor as an eco-friendly analytical tool for routine analysis and point-of-care monitoring of ATV in WWTP wastewater and surface water samples.
Collapse
Affiliation(s)
- Patrícia Rebelo
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Isabel Seguro
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal
| | - Elena Surra
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Paula Paíga
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - João G Pacheco
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
15
|
Olvera-Vargas H, Selvam S, Veer R, García-Rodríguez O, Mutnuri S, Lefebvre O. A sustainable activated carbon fiber/TiO 2 cathode for the photoelectro-Fenton treatment of pharmaceutical pollutant enalapril. CHEMOSPHERE 2024; 353:141492. [PMID: 38387665 DOI: 10.1016/j.chemosphere.2024.141492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
In this work, a TiO2-decorated electrode was fabricated by dip coating activated carbon fibers (ACF) with TiO2, which were then used as a cathode for the photoelectro-Fenton (PEF) treatment of the pharmaceutical enalapril, an angiotensin-converting enzyme inhibitor that has been detected in several waterways. The TiO2 coating was found to principally improve the electrocatalytic properties of ACF for H2O2 production via the 2-e- O2 reduction, in turn increasing enalapril degradation by PEF. The effect of the current density on the mineralization of enalapril was evaluated and the highest TOC removal yield (80.5% in 3 h) was obtained at 8.33 mA cm-2, in the presence of 0.5 mmol L-1 of Fe2+ catalyst. Under those conditions, enalapril was totally removed within the first 10 min of treatment with a rate constant k = 0.472 min-1. In contrast, uncoated ACF only achieved 60% of TOC removal in 3 h at 8.33 mA cm-2. A degradation pathway for enalapril mineralization is proposed, based on the degradation by-products identified during treatment. Overall, the results demonstrate the promises of TiO2 cathodes for PEF, a strategy that has often been overlooked in favor of photoelectrocatalysis (PEC) based on TiO2-modified photoanodes.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
| | - Suthan Selvam
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Rishikesh Veer
- Water Sanitation and Hygiene Laboratory, BITS Pilani, KK Birla Goa Campus, NH 17 B, Zuarinagar, Goa, 403726, India
| | - Orlando García-Rodríguez
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore
| | - Srikanth Mutnuri
- Water Sanitation and Hygiene Laboratory, BITS Pilani, KK Birla Goa Campus, NH 17 B, Zuarinagar, Goa, 403726, India
| | - Olivier Lefebvre
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
16
|
Zhao Y, Duan C, Zhang H, Gong W, Wang Y, Ren J, Nie X, Li J. Response of lipid metabolism, energy supply, and cell fate in yellowstripe goby (Mugilogobius chulae) exposed to environmentally relevant concentrations atorvastatin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122991. [PMID: 37995957 DOI: 10.1016/j.envpol.2023.122991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid β-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| |
Collapse
|
17
|
Zhao Y, Hu L, Hou Y, Wang Y, Peng Y, Nie X. Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development, and reproduction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106794. [PMID: 38064890 DOI: 10.1016/j.aquatox.2023.106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Naproxen (NPX) is one of common non-prescription non-steroidal anti-inflammatory drugs (NSAIDs) which is widely detected in aquatic environments worldwide due to its high usage and low degradation. NPX exerts anti-inflammatory and analgesic pharmacological effects through the inhibition of prostaglandin-endoperoxide synthase (PTGS), also known as cyclooxygenase (COX). Given its evolutionarily relatively conserved biological functions, the potential toxic effects of NPX on non-target aquatic organisms deserve more attention. However, the ecotoxicological studies of NPX mainly focused on its acute toxic effects under higher concentrations while the chronic toxic effects under realistic concentrations exposure, especially for the underlying molecular mechanisms still remain unclear. In the present study, Daphnia magna, being widely distributed in freshwater aquatic environments, was selected to investigate the toxic effects of environmentally relevant concentrations of NPX via determining the response of the Nrf2/Keap1 signaling pathway-mediated antioxidant system in acute exposure, as well as the changes in life-history traits, such as growth, reproduction, and behavior in chronic exposure. The results showed that the short-term exposure to NPX (24 h and 48 h) suppressed ptgs2 expression while activating Nrf2/Keap1 signaling pathway and its downstream antioxidant genes (ho-1, sod, cat and trxr). However, with prolonged exposure to 96 h, the opposite performance was observed, the accumulation of malondialdehyde (MDA) indicated that D. magna suffered from severe oxidative stress. To maintain homeostasis, the exposed organism may trigger ferroptosis and apoptosis processes with the help of Silent mating type information regulation 2 homologs (SIRTs). The long-term chronic exposure to NPX (21 days) caused toxic effects on D. magna at the individual and population levels, including growth, reproduction and behavior, which may be closely related to the oxidative stress induced by the drug. The present study suggested that more attention should be paid to the ecological risk assessment of NSAIDs including NPX on aquatic non-target organisms.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Limei Hu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Oyedele GT, Adedara IA, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Metoprolol elicits neurobehavioral insufficiency and oxidative damage in nontarget Nauphoeta cinerea nymphs. ENVIRONMENTAL TOXICOLOGY 2023; 38:3006-3017. [PMID: 37584562 DOI: 10.1002/tox.23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Metoprolol, a drug for hypertension and cardiovascular diseases, has become a contaminant of emerging concern because of its frequent detection in various environmental matrices globally. The dwindling in the biodiversity of useful insects owing to increasing presence of environmental chemicals is currently a great interest to the scientific community. In the current research, the toxicological impact of ecologically relevant concentrations of metoprolol at 0, 0.05, 0.1, 0.25, and 0.5 μg/L on Nauphoeta cinerea nymphs following exposure for 42 consecutive days was evaluated. The insects' behavior was analyzed with automated video-tracking software (ANY-maze, Stoelting Co, USA) while biochemical assays were done using the midgut, head and fat body. Metoprolol-exposed nymphs exhibited significant diminutions in the path efficiency, mobility time, distance traveled, body rotation, maximum speed and turn angle cum more episodes, and time of freezing. In addition, the heat maps and track plots confirmed the metoprolol-mediated wane in the exploratory and locomotor fitness of the insects. Compared with control, metoprolol exposure decreased acetylcholinesterase activity in insects head. Antioxidant enzymes activities and glutathione level were markedly decreased whereas indices of inflammation and oxidative injury to proteins and lipids were significantly increased in head, midgut and fat body of metoprolol-exposed insects. Taken together, metoprolol exposure induces neurobehavioral insufficiency and oxido-inflammatory injury in N. cinerea nymphs. These findings suggest the potential health effects of environmental contamination with metoprolol on ecologically and economically important nontarget insects.
Collapse
Affiliation(s)
- Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
19
|
Ivantsova E, Martyniuk CJ. A synthesis on the sub-lethal toxicity of atenolol, a beta-blocker, in teleost fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104236. [PMID: 37481051 DOI: 10.1016/j.etap.2023.104236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Blood pressure medications like atenolol are detected in aquatic ecosystems. The objectives here were to (1) map the global presence of atenolol in surface water and sewage; (2) present current knowledge regarding removal efficiency and degradation of atenolol; (3) identify biological endpoints sensitive to exposure; (4) reveal molecular biomarkers that may be useful for exposure studies in fish; (5) determine whether toxicology studies are within environmental relevance. In fish, atenolol exposure affects endocrine and immune systems, metabolism, and epigenetics. Fewer than half of all studies measuring biological responses use environmentally-relevant concentrations. Heart rate appeared most sensitive to atenolol exposure relative to other endpoints. Data are lacking for behavioral responses to atenolol. Molecular biomarkers for atenolol may include those associated with acute kidney injury, cholestasis, and hypertriglyceridemia. Head kidney and liver may therefore be useful for detecting atenolol-induced effects. This review synthesizes knowledge regarding atenolol-induced toxicity in fish.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
20
|
Parekh K, Marlatt VL. Using Hepatic Gene Expression Assays in English Sole ( Parophrys vetulus) to Investigate the Effects of Metro Vancouver Wastewater Effluents. TOXICS 2023; 11:657. [PMID: 37624162 PMCID: PMC10459354 DOI: 10.3390/toxics11080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The present study has investigated the effects of Metro Vancouver's wastewater treatment plant (WWTP) effluents on English sole (Parophrys vetulus) hepatic gene expression using novel targeted gene expression assays to complement the 2017 Burrard Inlet Ambient Monitoring Program conducted by Metro Vancouver. Seven locations of varying distance to the WWTPs were included. Twelve genes involved in xenobiotic defense (CYP1A, HSP70), thyroid function (DIO1), lipid and glucose metabolism (FABP1, FASN, GLUT2, PPARδ, PPARγ), protein synthesis (18S rRNA, RPS4X), and reproduction (ERα, VTG) revealed several differences between these impacted sites. A key finding of the present study was that males exhibited VTG transcript levels either equivalent or exceeding female levels of this gene at all sites investigated, indicating widespread exposure of estrogenic contaminants throughout Burrard Inlet. Furthermore, the induction of hepatic CYP1A was observed due to possible downstream sites being subjected to a larger influx of certain planar halogenated and non-halogenated hydrocarbons from multiple industrial contributors. This study also revealed significant differences between the sites examined and in genes involved in transcriptional regulation and synthesis of proteins, lipids and glucose metabolism, and thyroid hormone metabolism. Collectively, this study demonstrates the potential of molecular biomarkers of urban contaminant exposure in wild caught English sole for use in diagnosing a broader range of adverse health effects when combined with conventional whole organism health indicators.
Collapse
Affiliation(s)
| | - Vicki L. Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
21
|
Wu K, Atasoy M, Zweers H, Rijnaarts H, Langenhoff A, Fernandes TV. Impact of wastewater characteristics on the removal of organic micropollutants by Chlorella sorokiniana. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131451. [PMID: 37086668 DOI: 10.1016/j.jhazmat.2023.131451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgae-based technologies can be used for the removal of organic micropollutants (OMPs) from different types of wastewater. However, the effect of wastewater characteristics on the removal is still poorly understood. In this study, the removal of sixteen OMPs by Chlorella sorokiniana, cultivated in three types of wastewater (anaerobically digested black water (AnBW), municipal wastewater (MW), and secondary clarified effluent (SCE)), were assessed. During batch operational mode, eleven OMPs were removed from AnBW and MW. When switching from batch to continuous mode (0.8 d HRT), the removal of most OMPs from AnBW and MW decreased, suggesting that a longer retention time enhances the removal of some OMPs. Most OMPs were not removed from SCE since poor nutrient availability limited C. sorokiniana growth. Further correlation analyses between wastewater characteristics, biomass and OMPs removal indicated that the wastewater soluble COD and biomass concentration predominantly affected the removal of OMPs. Lastly, carbon uptake rate had a higher effect on the removal of OMPs than nitrogen and phosphate uptake rate. These data will give an insight on the implementation of microalgae-based technologies for the removal of OMPs in wastewater with varying strengths and nutrient availability.
Collapse
Affiliation(s)
- Kaiyi Wu
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Merve Atasoy
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands; UNLOCK, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Huub Rijnaarts
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, the Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
22
|
Huang Q, Feng Y, Han W, Wang J, Sheng H, Zhang Z, Yu Y. Performance, community structure, metabolic pathway, and mechanism in a three-dimensional electrocatalytic biofilter (3DEBF) for the degradation of multiple concentrations of clofibric acid (CA). BIORESOURCE TECHNOLOGY 2023; 381:129138. [PMID: 37169204 DOI: 10.1016/j.biortech.2023.129138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
A three-dimensional electrocatalytic biofilter (3DEBF) was constructed to remove clofibric acid (CA). This study compared the effectiveness of 3DEBF and biological aerated filter (BAF) in the removal of refractory CA, examined the effects of influent CA concentrations (0.1, 0.3, 0.5, 0.7, and 1.0 mg/L) on microbial community, and proposed a possible 3DEBF degradation mechanism. Results indicated that the average removal efficiency of 3DEBF reached a peak (76.09%) at 0.7 mg/L, which was 14.43% higher than that of BAF. Based on the microbial community analysis, the significant enrichment of Rhodobacter, Mycobacterium, and Sphingopyxis in 3DEBF was associated with the effect of the CA concentration and the electric field. The degradation pathway indicated that xenobiotics biodegradation and metabolism, membrane transport and replication and repair related genes were upregulated in 3DEBAF. Moreover, CA degradation is based on a combination of adsorption, electrochemical oxidation, and biodegradation.
Collapse
Affiliation(s)
- Qingling Huang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Wenwen Han
- China Urban Construction Design & Research Institute Co. Ltd (Shan Dong), Jinan 250022, China
| | - Juanting Wang
- Shandong Linuo Paradigma Co., Ltd, Jinan 250103, China
| | - Huihui Sheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Zhijie Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - YanZhen Yu
- School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, China
| |
Collapse
|
23
|
Zhao Y, Xie M, Wang C, Wang Y, Peng Y, Nie X. Effects of atorvastatin on the Sirtuin/PXR signaling pathway in Mugilogobius chulae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60009-60022. [PMID: 37016258 DOI: 10.1007/s11356-023-26736-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Atorvastatin (ATV) is a hypolipidemic drug widely detected in the aquatic environment. Nevertheless, limited information is provided about the toxic effects of ATV on estuary or coastal species and the underlying mechanisms. In the present study, the responses of genes expression in pregnane X receptor (PXR) signaling pathway and enzymatic activities in the liver of the estuarine benthic fish (Mugilogobius chulae) were investigated under acute and sub-chronic ATV exposure. Results showed that PXR was significantly inhibited in the highest exposure concentration of ATV for a shorter time (24 h, 500 μg L-1) but induced in a lower concentration (72 h, 5 μg L-1). The downstream genes in PXR signaling pathway such as CYP3A, SULT, UGT, and GST showed similar trends to PXR. P-gp and MRP1 were repressed in most treatments. GCLC associated with GSH synthesis was mostly induced under ATV exposure for a long time (168 h), suggesting that reactive oxygen species (ROS) were generated under ATV exposure. Similarly, GST and SOD enzymatic activities significantly increased in most exposure treatments. Under ATV exposure, SIRT1 and SIRT2 displayed induction to some extent in most treatments, suggesting that SIRTs may affect PXR expression by regulating the acetylation levels of PXR. The investigation demonstrated that ATV exposure affected the expression of the Sirtuin/PXR signaling pathway, thus further interfered adaption of M. chulae to the environment.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
25
|
Barratt AL, Li Y, Gooroovadoo I, Todd A, Dou Y, McAlister S, Semsarian C. Environmental impact of cardiovascular healthcare. Open Heart 2023; 10:openhrt-2023-002279. [PMID: 37130659 PMCID: PMC10163594 DOI: 10.1136/openhrt-2023-002279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
IMPORTANCE The healthcare sector is essential to human health and well-being, yet its significant carbon footprint contributes to climate change-related threats to health. OBJECTIVE To review systematically published studies on environmental impacts, including carbon dioxide equivalent (CO2e) emissions, of contemporary cardiovascular healthcare of all types, from prevention through to treatment. EVIDENCE REVIEW We followed the methods of systematic review and synthesis. We conducted searches in Medline, EMBASE and Scopus for primary studies and systematic reviews measuring environmental impacts of any type of cardiovascular healthcare published in 2011 and onwards. Studies were screened, selected and data were extracted by two independent reviewers. Studies were too heterogeneous for pooling in meta-analysis and were narratively synthesised with insights derived from content analysis. FINDINGS A total of 12 studies estimating environmental impacts, including carbon emissions (8 studies), of cardiac imaging, pacemaker monitoring, pharmaceutical prescribing and in-hospital care including cardiac surgery were found. Of these, three studies used the gold-standard method of Life Cycle Assessment. One of these found the environmental impact of echocardiography was 1%-20% that of cardiac MR (CMR) imaging and Single Photon Emission Tomography (SPECT) scanning. Many opportunities to reduce environmental impacts were identified: carbon emissions can be reduced by choosing echocardiography as the first cardiac test before considering CT or CMR, remote monitoring of pacemaker devices and teleconsultations when clinically appropriate to do so. Several interventions may be effective for reducing waste, including rinsing bypass circuitry after cardiac surgery. Cobenefits included reduced costs, health benefits such as cell salvage blood available for perfusion, and social benefits such as reduced time away from work for patients and carers. Content analysis revealed concern about the environmental impact of cardiovascular healthcare, particularly carbon emissions and a desire for change. CONCLUSIONS AND RELEVANCE Cardiac imaging, pharmaceutical prescribing and in-hospital care including cardiac surgery have significant environmental impacts, including CO2e emissions which contribute to climate-related threats to human health. Importantly, many opportunities to effectively reduce environmental impacts exist within cardiac care, and can provide economic, health and social cobenefits.
Collapse
Affiliation(s)
- Alexandra L Barratt
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Wiser Healthcare, The University of Sydney, Sydney, New South Wales, Australia
| | - Yan Li
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Isabelle Gooroovadoo
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Allyson Todd
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuanlong Dou
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott McAlister
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Wiser Healthcare, The University of Sydney, Sydney, New South Wales, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Semsarian
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Wiser Healthcare, The University of Sydney, Sydney, New South Wales, Australia
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Guo J, Ren J, Chang C, Duan Q, Li J, Kanerva M, Yang F, Mo J. Freshwater crustacean exposed to active pharmaceutical ingredients: ecotoxicological effects and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48868-48902. [PMID: 36884171 DOI: 10.1007/s11356-023-26169-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/23/2023] [Indexed: 04/16/2023]
Abstract
Concerns over the ecotoxicological effects of active pharmaceutical ingredients (APIs) on aquatic invertebrates have been raised in the last decade. While numerous studies have reported the toxicity of APIs in invertebrates, no attempt has been made to synthesize and interpret this dataset in terms of different exposure scenarios (acute, chronic, multigenerational), multiple crustacean species, and the toxic mechanisms. In this study, a thorough literature review was performed to summarize the ecotoxicological data of APIs tested on a range of invertebrates. Therapeutic classes including antidepressants, anti-infectives, antineoplastic agents, hormonal contraceptives, immunosuppressants, and neuro-active drugs exhibited higher toxicity to crustaceans than other API groups. The species sensitivity towards APIs exposure is compared in D. magna and other crustacean species. In the case of acute and chronic bioassays, ecotoxicological studies mainly focus on the apical endpoints including growth and reproduction, whereas sex ratio and molting frequency are commonly used for evaluating the substances with endocrine-disrupting properties. The multigenerational and "Omics" studies, primarily transcriptomics and metabolomics, were confined to a few API groups including beta-blocking agents, blood lipid-lowing agents, neuroactive agents, anticancer drugs, and synthetic hormones. We emphasize that in-depth studies on the multigenerational effects and the toxic mechanisms of APIs on the endocrine systems of freshwater crustacean are warranted.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chao Chang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jun Li
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 7908577, Japan
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
27
|
Shao H, Ren Y, Lei C, Xu G. Electron beam degradation of the cardiovascular drug salbutamol: Mechanisms and degradation pathways. CHEMOSPHERE 2023; 318:137939. [PMID: 36702419 DOI: 10.1016/j.chemosphere.2023.137939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
With the increasing incidence and mortality of cardiovascular diseases, high consumption of the cardiovascular drug salbutamol (SAL) has made this compound an emerging pollutant in natural water and a challenge for traditional wastewater treatment. In this paper, an efficient advanced oxidation process was used to degrade SAL by electron beam (EB) irradiation. The results revealed that 100 mg L-1 of SAL could be nearly completely removed (95.1%) at 10 kGy and the degradation kinetic well followed pseudo first-order kinetic model. Different factors, including pH, inorganic ions and water matrix, had varying effects on the degradation of SAL owing to their important influence on the formation of reactive species in the aqueous solution. And it was found that eaq- played a major role in the degradation of SAL parent. Moreover, the addition of K2S2O8 (20 mM) increased the SAL mineralization rate from 2.9% to 64.2%, suggesting that oxidation free radicals could greatly improve the mineralization rate of SAL. Combining with the theoretical calculations and determined degradation by-products, four possible degradation pathways of SAL by EB irradiation were proposed, including H•, •OH and eaq- all participated in the degradation of SAL. Finally, toxicity evaluation suggested that the toxicity of SAL aqueous solution reduced after EB irradiation, indicating that it is an effective method to degrade SAL.
Collapse
Affiliation(s)
- Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Chen Lei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
28
|
Oliveira Vargas G, Schnorr C, Bastista Nunes F, da Rosa Salles T, Zancan Tonel M, Binotto Fagan S, Zanella da Silva I, F. O. Silva L, Roberto Mortari S, Luiz Dotto G, Rodrigo Bohn Rhoden C. Highly Furosemide Uptake Employing Magnetic Graphene Oxide: DFT modeling Combined to Experimental Approach. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
29
|
Blonç M, Lima J, Balasch JC, Tort L, Gravato C, Teles M. Elucidating the Effects of the Lipids Regulators Fibrates and Statins on the Health Status of Finfish Species: A Review. Animals (Basel) 2023; 13:ani13050792. [PMID: 36899648 PMCID: PMC10000190 DOI: 10.3390/ani13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most documented fibrates are gemfibrozil, clofibrate and bezafibrate, while for statins, the majority of the published literature focuses on atorvastatin and simvastatin. The present work reviews previously published research concerning the effects of these hypocholesterolaemic pharmaceuticals on fish, with a particular focus on commercially important species, commonly produced by the European aquaculture industry, specifically in recirculated aquaculture systems (RAS). Overall, results suggest that both acute and chronic exposures to lipid-lowering compounds may have adverse effects on fish, disrupting their capacity to excrete exogenous substances, as well as both lipid metabolism and homeostasis, causing severe ontogenetic and endocrinological abnormalities, leading to hampered reproductive success (e.g., gametogenesis, fecundity), and skeletal or muscular malformations, having serious repercussions on fish health and welfare. Nonetheless, the available literature focusing on the effects of statins or fibrates on commonly farmed fish is still limited, and further research is required to understand the implications of this matter on aquaculture production, global food security and, ultimately, human health.
Collapse
Affiliation(s)
- Manuel Blonç
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jennifer Lima
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Physiology, Institute of Bioscience, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Gravato
- Faculty of Sciences of the University of Lisbon—FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
30
|
Mezzelani M, Peruzza L, d'Errico G, Milan M, Gorbi S, Regoli F. Mixtures of environmental pharmaceuticals in marine organisms: Mechanistic evidence of carbamazepine and valsartan effects on Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160465. [PMID: 36427727 DOI: 10.1016/j.scitotenv.2022.160465] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Unravelling the adverse outcomes of pharmaceuticals mixture represents a research priority to characterize the risk for marine ecosystems. The present study investigated, for the first time, the interactions between two of the most largely detected pharmaceuticals in marine species: carbamazepine (CBZ) and valsartan (VAL), elucidating mechanisms that can modulate bioaccumulation, excretion and the onset of toxicity. Mytilus galloprovincialis were exposed to environmental levels of CBZ and VAL dosed alone or in combination: measurement of drug bioaccumulation was integrated with changes in the whole transcriptome and responsiveness of various biochemical and cellular biomarkers. Interactive and competing mechanisms between tested drugs were revealed by the much higher CBZ accumulation in mussels exposed to this compound alone, while an opposite trend was observed for VAL. A complex network of responses was observed as variations of gene expression, functional effects on neurotransmission, cell cycle, immune responses and redox homeostasis. The elaboration of results through a quantitative Weight of Evidence model summarized a greater biological reactivity of CBZ compared to VAL and antagonistic interactions between these compounds, resulting in a reduced effect of the antiepileptic when combined with valsartan. Overall, new perspectives are highlighted for a more comprehensive risk assessment of environmental mixtures of pharmaceuticals.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16 - 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16 - 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy.
| |
Collapse
|
31
|
Zhou T, Zhang Z, Liu H, Dong S, Nghiem LD, Gao L, Chaves AV, Zamyadi A, Li X, Wang Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130213. [PMID: 36283219 DOI: 10.1016/j.jhazmat.2022.130213] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds in aquatic environments have been considered as emerging contaminants due to their potential risks to living organisms. Microalgae-based technology showed the feasibility of removing pharmaceutical contaminants. This review summarizes the occurrence, classification, possible emission sources, and environmental risk of frequently detected pharmaceutical compounds in aqueous environments. The efficiency, mechanisms, and influencing factors for the removal of pharmaceutical compounds through microalgae-based technology are further discussed. Pharmaceutical compounds frequently detected in aqueous environments include antibiotics, hormones, analgesic and non-steroidal anti-inflammatory drugs (NSAIDs), cardiovascular agents, central nervous system drugs (CNS), antipsychotics, and antidepressants, with a concentration ranging from ng/L to μg/L. Microalgae-based technology majorly remove the pharmaceutical compounds through bioadsorption, bioaccumulation, biodegradation, photodegradation, and co-metabolism. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the occurrence and fate of pharmaceutical contaminants in aqueous environments, highlighting the potential of microalgae-based technology for pharmaceutical contaminants removal.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, SA 5001, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
32
|
Matijević G, Babić S, Maršavelski A, Stipaničev D, Repec S, Čož-Rakovac R, Klobučar G. Estimating risk of cardiovascular pharmaceuticals in freshwaters using zebrafish embryotoxicity test - statins threat revealed. CHEMOSPHERE 2023; 313:137574. [PMID: 36528155 DOI: 10.1016/j.chemosphere.2022.137574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular pharmaceuticals (CVPs) are globally present in inland waters and have also been found in the sediment and plasma of fish from the Sava River, Croatia. Based on the previous research, CVPs amiodarone (AMI), ramipril (RAM), simvastatin (SIM), and verapamil (VER) have been selected for this study. Their effect has been investigated, individually and in a mixture, on the development of the zebrafish embryo Danio rerio (Hamilton, 1822) within the first 96 h of development. Upon exposure to environmentally relevant concentrations of tested CVPs (0.1, 1, and 10 μg/L) zebrafish survival and development as apparent from observed morphological abnormalities, heartbeat rates and changes in behavior, hatching success, larval length and oxidative stress level were monitored. The CVP causing the highest mortality and pathological changes was SIM (1 and 10 μg/L), which corresponds well with the observed effects during zebrafish exposure to CVPs' mixtures (4 and 40 μg/L). All pharmaceuticals affected cardiac function and decreased heart rate. SIM (1 μg/L), VER and RAM (10 μg/L) decreased larval length, while induced oxidative stress was recorded in the SIM- and VER-exposed specimens. Behavioral alterations of zebrafish were observed only in AMI-treated group (10 μg/L). Our amino acid sequence comparison and structural and docking analysis showed a highly conserved binding site between human and zebrafish HMG-CoA reductase for SIM and its main metabolite simvastatin acid. Using these ecotoxicological bioassays on a zebrafish model with particular emphasis on sublethal endpoints, the risk of CVPs, especially statins, for fish in inland waters has been identified.
Collapse
Affiliation(s)
- Gabrijela Matijević
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Göran Klobučar
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov Trg 6, Zagreb, Croatia.
| |
Collapse
|
33
|
Ping S, Lin W, Ming R, He Y, Yin Y, Ren Y. Toxic effects of four cardiovascular drugs on the development and epigenetics of zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157360. [PMID: 35850353 DOI: 10.1016/j.scitotenv.2022.157360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Due to the prevalence of cardiovascular diseases, therapeutic drugs such as atenolol (ATE), metoprolol (MET), atorvastatin (ATO), and bezafibrate (BZB) have been widely used and thus frequently detected in surface water at ng·L-1-μg·L-1 level. In this study, the developmental toxicity of these drugs (0.5 μg·L-1-500 μg·L-1) to zebrafish, an aquatic model organism, was investigated; and the epigenetic toxicity of BZB was also explored. For all four drugs, the results showed that the drugs exposure could cause sublethal toxic effects on zebrafish larvae, such as decreases in hatching rate, body length, and heart rate. ATO also induced the swelling of the eyes of larvae by 5 %-15 %. Yolk sac edema, pericardial edema, bent spine, and tail malformation were observed in larvae exposed to the drugs, and yolk sac edema was the most common malformation. In addition, the spontaneous movement and free-swimming activity could be inhibited by the drugs. Combined with RNA-seq results, the adverse development of larvae in exposure groups may be caused by the disruption of lipid and carbohydrate metabolism, and the development and function of eye and nervous system. After a 30-day uptake period, the accumulation of BZB and the decrease of global DNA methylation level were observed in the liver, kidneys, gut, gills, and brain of adult zebrafish (4-month-old) exposed to 0.5 μg·L-1 to 500 μg·L-1 BZB. The liver was the main organ for BZB accumulation and the occurrence of DNA hypomethylation. In the liver, overexpression (1.5-7.6 times) of genes related to lipid metabolism (PPARα), DNA methylation (Dnmt1), and apoptosis (p53) was also observed. The results of the current study suggest that long-term exposure to low-concentrations of cardiovascular drugs may pose significant threats to aquatic ecosystems.
Collapse
Affiliation(s)
- Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Ruiliang Ming
- Guangzhou CAS Test Technical Services Co., Ltd, Guangzhou 510650, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yurong Yin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
34
|
Paixão GR, Camparotto NG, Brião GDV, Oliveira RDL, Colmenares JC, Prediger P, Vieira MGA. Synthesis of mesoporous P‑doped carbon and its application in propranolol drug removal: Characterization, kinetics and isothermal studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Zakari-Jiya A, Frazzoli C, Obasi CN, Babatunde BB, Patrick-Iwuanyanwu KC, Orisakwe OE. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103914. [PMID: 35738461 DOI: 10.1016/j.etap.2022.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The increasingly broad and massive use of pharmaceuticals (human, veterinary) and personal care products in industrially developing nations makes their uncontrolled environmental and ecological impact a true concern. Focusing on Nigeria, this systematic literature search (databases: PubMed, ScienceDirect, Google Scholar, EMBASE, Scopus, Cochrane library and African Journals Online) aims to increase visibility to the issue. Among 275 articles identified, 7 were included in this systematic review. Studies indicated the presence of 11 personal care products (15.94 %) and 58 pharmaceutical products (84.06 %) in surface and ground water, leachates, runoffs, sludge, and sediments. The 42.86% (3/7) of reviewed studies reported 17 analgesics; 71.42 % (5/7) reported 16 antibiotics; 28.57 % (2/7) reported 5 lipid lowering drugs; 28.57% reported anti-malaria and fungal drugs; 14.29 % (1/7) reported estrogen drugs. Different studies report on sunscreen products, hormone, phytosterol, insect repellent, and β1 receptor. Gemfibrozil (<4-730 ng/L), Triclosan (55.1-297.7 ng/L), Triclocarban (35.6-232.4 ng/L), Trimethoprim (<1-388 ng/L) and Tramadol (<2-883 ng/L) had the highest range of concentrations. Findings confirm the need of i) legislation for environmental monitoring, including biota, ii) toxicological profiling of new market products, and iii) sensitization on appropriate use and disposal of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Aliyu Zakari-Jiya
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Bolaji Bernard Babatunde
- Department of Animal and Environmental Biology, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
36
|
Trawiński J, Skibiński R. Comparative analysis of in vivo and in silico toxicity evaluation of the organoiodine compounds towards D.magna using multivariate chemometric approach: A study on the example of amiodarone phototransformation products. CHEMOSPHERE 2022; 292:133420. [PMID: 34958789 DOI: 10.1016/j.chemosphere.2021.133420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In the present study the photochemical fate of organoiodine compound - amiodarone was performed. The drug turned out to be highly susceptible to UV-Vis irradiation, especially in the presence of humic substances and organic matrix. Qualitative LC-MS analysis revealed formation of twelve - mainly previously unreported - transformation products (TPs). Four major TPs were submitted to the toxicity analysis with the use of D. magna. All of the tested TPs presented higher toxic potential than the parent compound. The phenolic TPs were approximately 100 times more toxic than amiodarone. Toxic properties of the major TPs resulted in steadily increasing toxic potential of the photo-generated mixture over the time of irradiation. Moreover, the experimental toxicity data, concerning the TPs, were compared with results estimated by 6 in silico models with the use of a multivariate chemometric analysis. The results showed that the applied computational methods were able neither to correctly predict toxic properties of the studied compounds, nor the trends in change of their toxic parameters. Additional validation of in silico models ability to predict toxicity of iodinated organic compounds showed that the studied computational methods do not present sufficient prediction ability. Therefore their estimations concerning organoiodines should be verified using experimental tests.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland.
| |
Collapse
|
37
|
Zuo S, Meng H, Liang J, Zhen H, Zhu Y, Zhao Y, Zhang K, Dai J. Residues of Cardiovascular and Lipid-Lowering Drugs Pose a Risk to the Aquatic Ecosystem despite a High Wastewater Treatment Ratio in the Megacity Shanghai, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2312-2322. [PMID: 35129343 DOI: 10.1021/acs.est.1c05520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The residues of pharmaceuticals in surface waters of megacities and ecotoxicological implications are of particular concern. In this study, we combined field investigations and model simulations to explore the contamination of cardiovascular and lipid-lowering drugs, one group of the most prescribed medications globally, in surface waters of a typical megacity, Shanghai, with a high wastewater treatment ratio (≈96%). Among 26 target substances, 19 drugs were detected with aqueous concentrations ranging from 0.2 (ketanserin) to 715 ng/L (telmisartan). Of them, angiotensin II receptor antagonists, telmisartan and irbesartan, were dominant besides β-blockers. Spatial distribution analysis demonstrated their much higher levels in tributaries compared to the mainstream. The results of model simulations and field investigation revealed relatively low concentrations of cardiovascular and lipid-lowering drugs in surface waters of Shanghai compared to other cities in highly developed countries, which is associated with low per capita usage in China. Ecotoxicological studies in zebrafish embryos further revealed developmental effects, including altered hatching success and heart rate, by irbesartan, telmisartan, lidocaine, and their mixtures at ng/L concentrations, which are typical levels in surface waters. Overall, the present results suggest that the high wastewater treatment ratio was not sufficient to protect fish species in the aquatic ecosystem of Shanghai. Exposure to cardiovascular and lipid-lowering drugs and associated risks will further increase in the future due to healthcare improvements and population aging.
Collapse
Affiliation(s)
- Shaoqi Zuo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoyu Meng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiahui Liang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huajun Zhen
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
38
|
Rebelo P, Pacheco JG, Voroshylova IV, Melo A, Cordeiro MND, Delerue-Matos C. A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulation. Anal Chim Acta 2022; 1194:339410. [DOI: 10.1016/j.aca.2021.339410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022]
|
39
|
Mojiri A, Zhou JL, Ratnaweera H, Rezania S, Nazari V M. Pharmaceuticals and personal care products in aquatic environments and their removal by algae-based systems. CHEMOSPHERE 2022; 288:132580. [PMID: 34687686 DOI: 10.1016/j.chemosphere.2021.132580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The consumption of pharmaceuticals and personal care products (PPCPs) has been widely increasing, yet up to 90-95% of PPCPs consumed by human are excreted unmetabolized. Moreover, the most of PPCPs cannot be fully removed by wastewater treatment plants (WWTPs), which release PPCPs to natural water bodies, affecting aquatic ecosystems and potentially humans. This study sought to review the occurrence of PPCPs in natural water bodies globally, and assess the effects of important factors on the fluxes of pollutants into receiving waterways. The highest ibuprofen concentration (3738 ng/L) in tap water was reported in Nigeria, and the highest naproxen concentration (37,700 ng/L) was reported in groundwater wells in Penn State, USA. Moreover, the PPCPs have affected aquatic organisms such as fish. For instance, up to 24.4 × 103 ng/g of atenolol was detected in P. lineatus. Amongst different technologies to eliminate PPCPs, algae-based systems are environmentally friendly and effective because of the photosynthetic ability of algae to absorb CO2 and their flexibility to grow in different wastewater. Up to 99% of triclosan and less than 10% of trimethoprim were removed by Nannochloris sp., green algae. Moreover, variable concentrations of PPCPs might adversely affect the growth and production of algae. The exposure of algae to high concentrations of PPCPs can reduce the content of chlorophyll and protein due to producing reactive oxygen species (ROS), and affecting expression of some genes in chlorophyll (rbcL, psbA, psaB and psbc).
Collapse
Affiliation(s)
- Amin Mojiri
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway; Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mansoureh Nazari V
- School of Pharmacy, University of 17 August 1945, Jakarta, 14350, Indonesia
| |
Collapse
|
40
|
Mezzelani M, Regoli F. The Biological Effects of Pharmaceuticals in the Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:105-128. [PMID: 34425054 DOI: 10.1146/annurev-marine-040821-075606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species-including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics-and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
- Fano Marine Center, 61032 Fano, Italy
| |
Collapse
|
41
|
Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide. CHEMOSPHERE 2022; 287:132195. [PMID: 34826907 DOI: 10.1016/j.chemosphere.2021.132195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of substances with endocrine disruptive properties (EDs) not only impacts aquatic organisms but can also have a direct negative effect on human health. In this comprehensive worldwide review, we collected ecotoxicology and concentration data observed in surface water for 53 high-potency EDs and performed a risk assessment. The compounds were selected from the EU watchlist of priority substances, expanded with new compounds of emerging concern (total 41), where quantifiable data were available for the past three years (2018-2020). The risk quotients ranged from <0.01 for 22 substances to 1974 for tamoxifen. The frequency of samples in which the predicted no-effect concentrations were exceeded also varied, from 1.8% to 92.7%. By using the comprehensive multi-parameter risk assessment in our study, the most current to date, we determined that tamoxifen, imidacloprid, clothianidin, four bisphenols (BPA, BPF, BPS, and BPAF), PFOA, amoxicillin, and three steroid hormones (estriol, estrone, and cyproterone) pose significant risks in the environment. Comparing two structurally very similar bisphenols, BPA and BPB, suggested that the risk from BPB is currently underestimated by at least four orders of magnitude due to the lack of ecotoxicological data availability. The methodological limitations encountered suggest that a standardized methodology for data selection and assessment is necessary, highlighting the fact that some substances are currently under-represented in the field of ecotoxicological research. A new prioritization system is therefore presented, which provides a potential basis for new substances to be included in environmental monitoring lists.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
42
|
Ping S, Lin W, Liu A, Gao Z, Lin H, Ren Y. Ultraviolet photolysis of four typical cardiovascular drugs: mechanisms, influencing factors, degradation pathways, and toxicity trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60663-60675. [PMID: 34164790 DOI: 10.1007/s11356-021-15000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The cardiovascular drugs (CDDs), such as metoprolol (MET), atenolol (ATE), bezafibrate (BZB), and atorvastatin (ATO), have been frequently detected in the water environment. They can cause potential threats to the ecological environment and human health due to their "pseudo-persistence" effect. In this study, the photolysis kinetics, degradation mechanisms, by-products, influencing factors, and acute toxicity of these four typical CDDs under polychromatic ultraviolet irradiation (200-400 nm) were investigated. The results showed that the photolysis of ATE, BZB, MET, and ATO all followed pseudo-first-order kinetics, and their average photon quantum yields of the wavelength studied were 0.14×10-2, 0.33×10-3, 0.78×10-4, and 0.24×10-4 mol einstein-1, respectively. Singlet oxygen (1O2), hydroxyl radical (·OH), and the triplet-excited state of the cardiovascular drug (3CDD*) were all involved in the photolysis while 1O2 was the dominator. The effects of NO3-, Cl-, HCO3-, and humic acid (HA) on the photolysis were the combination of light-shielding, quenching, and excitation of reactive species. Seven, four, four, and nine photolysis products of ATO, BZB, ATE, and MET were identified, respectively, and their possible degradation pathways were proposed. The acute toxicity of ATE was basically unchanged during photolysis; however, ATO, BZB, and MET toxicity all increased due to the generation of ketonization and hydroxylation products.
Collapse
Affiliation(s)
- Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Anchen Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Zhihan Gao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China.
| |
Collapse
|
43
|
2D/2D Heterojunction systems for the removal of organic pollutants: A review. Adv Colloid Interface Sci 2021; 297:102540. [PMID: 34634576 DOI: 10.1016/j.cis.2021.102540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022]
Abstract
Photocatalysis is considered to be an effective way to remove organic pollutants, but the key to photocatalysis is finding a high-efficiency and stable photocatalyst. 2D materials-based heterojunction has aroused widespread concerns in photocatalysis because of its merits in more active sites, adjustable band gaps and shorter charge transfer distance. Among various 2D heterojunction systems, 2D/2D heterojunction with a face-to-face contact interface is regarded as a highly promising photocatalyst. Due to the strong coupling interface in 2D/2D heterojunction, the separation and migration of photoexcited electron-hole pairs are facilitated, which enhances the photocatalytic performance. Thus, the design of 2D/2D heterojunction can become a potential model for expanding the application of photocatalysis in the removal of organic pollutants. Herein, in this review, we first summarize the fundamental principles, classification, and strategies for elevating photocatalytic performance. Then, the synthesis and application of the 2D/2D heterojunction system for the removal of organic pollutants are discussed. Finally, the challenges and perspectives in 2D/2D heterojunction photocatalysts and their application for removing organic pollutants are presented.
Collapse
|
44
|
Sumpter JP, Runnalls TJ, Donnachie RL, Owen SF. A comprehensive aquatic risk assessment of the beta-blocker propranolol, based on the results of over 600 research papers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148617. [PMID: 34182447 DOI: 10.1016/j.scitotenv.2021.148617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive aquatic environmental risk assessment (ERA) of the human pharmaceutical propranolol was conducted, based on all available scientific literature. Over 200 papers provided information on environmental concentrations (77 of which provided river concentrations) and 98 dealt with potential environmental effects. The median concentration of propranolol in rivers was 7.1 ng/L (range of median values of individual studies 0.07 to 89 ng/L), and the highest individual value was 590 ng/L. Sixty-eight EC50 values for 35 species were available. The lowest EC50 value was 0.084 mg/L. A species sensitivity distribution (SSD) provided an HC50 value of 6.64 mg/L and an HC5 value of 0.22 mg/L. Thus, there was a difference of nearly 6 orders of magnitude between the median river concentration and the HC50 value, and over 4 orders of magnitude between the median river concentration and the HC5 value. Even if an assessment factor of 100 was applied to the HC5 value, to provide considerable protection to all species, the safety margin is over 100-fold. However, nearly half of all papers reporting effects of propranolol did not provide an EC50 value. Some reported that very low concentrations of propranolol caused effects. The lowest concentration reported to cause an effect - in fact, a range of biochemical and physiological effects on mussels - was 0.3 ng/L. In none of these 'low concentration' papers was a sigmoidal concentration-response relationship obtained. Although inclusion of data from these papers in the ERA cause a change in the conclusion reached, we are sceptical of the repeatability of these 'low concentration' results. We conclude that concentrations of propranolol present currently in rivers throughout the world do not constitute a risk to aquatic organisms. We discuss the need to improve the quality of ecotoxicology research so that more robust ERAs acceptable to all stakeholders can be completed.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | - Rachel L Donnachie
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Now at Imperial College London, Exhibition Road, South Kensington, London SW7 2A2, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| |
Collapse
|
45
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
46
|
Non-targeted screening of trace organic contaminants in surface waters by a multi-tool approach based on combinatorial analysis of tandem mass spectra and open access databases. Talanta 2021; 230:122293. [PMID: 33934765 DOI: 10.1016/j.talanta.2021.122293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
Non-targeted screening (NTS) in mass spectrometry (MS) helps alleviate the shortcoming of targeted analysis such as missing the presence of concerning compounds that are not monitored and its lack of retrospective analysis to subsequently look for new contaminants. Most NTS workflows include high resolution tandem mass spectrometry (HRMS2) and structure annotation with libraries which are still limited. However, in silico combinatorial fragmentation tools that simulate MS2 spectra are available to help close the gap of missing compounds in empirical libraries. Three NTS tools were combined and used to detect and identify unknown contaminants at ultra-trace levels in surface waters in real samples in this qualitative study. Two of them were based on combinatorial fragmentation databases, MetFrag and the Similar Partition Searching algorithm (SPS), and the third, the Global Natural Products Social Networking (GNPS), was an ensemble of empirical databases. The three NTS tools were applied to the analysis of real samples from a local river. A total of 253 contaminants were identified by combining all three tools: 209 were assigned a probable structure and 44 were confirmed using reference standards. The two major classes of contaminants observed were pharmaceuticals and consumer product additives. Among the confirmed compounds, octylphenol ethoxylates, denatonium, irbesartan and telmisartan are reported for the first time in surface waters in Canada. The workflow presented in this work uses three highly complementary NTS tools and it is a powerful approach to help identify and strategically select contaminants and their transformation products for subsequent targeted analysis and uncover new trends in surface water contamination.
Collapse
|
47
|
Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment. MEMBRANES 2020; 10:membranes10100281. [PMID: 33066241 PMCID: PMC7602016 DOI: 10.3390/membranes10100281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023]
Abstract
The rapid urbanization and water shortage impose an urgent need in improving sustainable water management without compromising the socioeconomic development all around the world. In this context, reclaimed wastewater has been recognized as a sustainable water management strategy since it represents an alternative water resource for non-potable or (indirect) potable use. The conventional wastewater remediation approaches for the removal of different emerging contaminants (pharmaceuticals, dyes, metal ions, etc.) are unable to remove/destroy them completely. Hybrid membrane processes (HMPs) are a powerful solution for removing emerging pollutants from wastewater. On this aspect, the present paper focused on HMPs obtained by the synergic coupling of biological and/or chemical reaction driven processes with membrane processes, giving a critical overview and particular emphasis on some case studies reported in the pertinent literature. By using these processes, a satisfactory quality of treated water can be achieved, permitting its sustainable reuse in the hydrologic cycle while minimizing environmental and economic impact.
Collapse
|