1
|
Ma S, Wang WX. Significance of zinc re-absorption in Zn dynamic regulation in marine fish revealed by pharmacokinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125106. [PMID: 39393760 DOI: 10.1016/j.envpol.2024.125106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Zinc (Zn) is an essential but toxic trace element and is widely available in the natural environment. In the present study, we developed a re-absorption physiologically based pharmacokinetic (PBPK) model based on long-term dietary exposure to gain insights into the physiological mechanisms of uptake, tissue distribution, storage, and excretion of Zn in marine juvenile gilt-head breams Sparus aurata (with stomach). The PBPK model incorporated the kinetic processes of Zn transfer from fish liver to gastrointestinal system and used the Markov Monte Carlo algorithm to estimate the distribution of model parameters. The model fit indicated that the stomach and intestine of fish were key organs in regulating the concentration of Zn entering the internal environment, with excess exogenous Zn (120 mg/kg) being excreted in feces (rate constant of 5.23 d-1). Modeling results also indicated that liver (3.00 d-1), spleen (1.41 d-1) and kidney (0.51 d-1) were the main tissues responding to blood Zn flux by accumulation and detoxification. Fish kidneys exposed to 60 mg/kg and 120 mg/kg Zn had different regenerative capacities, resulting in different detoxification functions. A higher dietary Zn (120 mg/kg) disrupted the intestinal reabsorption process in marine fish. This study showed that exogenous Zn was directly accumulated in organs through the gastrointestinal-hepatic system, which is an important pathways for regulating metal homeostasis in marine fish. The results provided important understanding of the mechanisms of metal regulation and transport in marine fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Dragun Z, Kiralj Z, Ivanković D, Bilić B, Kazazić S, Kazazić S. Iron-binding biomolecules in the soluble hepatic fraction of the northern pike (Esox lucius): two-dimensional chromatographic separation with mass spectrometry detection. Anal Bioanal Chem 2024; 416:5097-5109. [PMID: 39046506 DOI: 10.1007/s00216-024-05446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Iron plays vital roles in important biological processes in fish, but can be toxic in high concentrations. The information on metalloproteins that participate in maintenance of Fe homeostasis in an esocid fish, the northern pike, as an important freshwater bioindicator species, are rather scarce. The aim of this study was to identify main cytosolic constituents that sequester Fe in the northern pike liver. The method applied consisted of two-dimensional HPLC separation of Fe-binding biomolecules, based on anion-exchange followed by size-exclusion fractionation. Apparent molecular masses of two main Fe-metalloproteins isolated by this procedure were ~360 kDa and ~50 kDa, with the former having more acidic pI, and indicated presence of ferritin and hemoglobin, respectively. MALDI-TOF-MS provided confirmation of ferritin subunit with a m/z peak at 20.65 kDa, and hemoglobin with spectra containing main m/z peak at 16.1 kDa, and smaller peaks at 32.1, 48.2, and 7.95 kDa (single-charged Hb-monomer, dimer, and trimer, and double-charged monomer, respectively). LC-MS/MS with subsequent MASCOT database search confirmed the presence of Hb-β subunits and pointed to close relation between esocid and salmonid fishes. Further efforts should be directed towards optimization of the conditions for metalloprotein analysis by mass spectrometry, to extend the knowledge on intracellular metal-handling mechanisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Zoran Kiralj
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Dušica Ivanković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Branka Bilić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Saša Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Snježana Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
3
|
Dragun Z, Kiralj Z, Pećnjak A, Ivanković D. The study of acidic/basic nature of metallothioneins and other metal-binding biomolecules in the soluble hepatic fraction of the northern pike (Esox lucius). Int J Biol Macromol 2024; 256:128209. [PMID: 37992940 DOI: 10.1016/j.ijbiomac.2023.128209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Since fish metalloproteins are still not thoroughly characterized, the aim of this study was to investigate the acidic/basic nature of biomolecules involved in the sequestration of twelve selected metals in the soluble hepatic fraction of an important aquatic bioindicator organism, namely the fish species northern pike (Esox lucius). For this purpose, the hyphenated system HPLC-ICP-MS was applied, with chromatographic separation based on anion/cation-exchange principle at physiological pH (7.4). The results indicated predominant acidic nature of metal-binding peptides/proteins in the studied hepatic fraction. More than 90 % of Ag, Cd, Co, Cu, Fe, Mo, and Pb were eluted with negatively charged biomolecules, and >70 % of Bi, Mn, and Zn. Thallium was revealed to bind equally to negatively and positively charged biomolecules, and Cs predominantly to positively charged ones. The majority of acidic (negatively charged) metalloproteins/peptides were coeluted within the elution time range of applied standard proteins, having pIs clustered around 4-6. Furthermore, binding of several metals (Ag, Cd, Cu, Zn) to two MT-isoforms was assumed, with Cd and Zn preferentially bound to MT1 and Ag to MT2, and Cu evenly distributed between the two. The results presented here are the first of their kind for the important bioindicator species, the northern pike, as well as one of the rare comprehensive studies on the acidic/basic nature of metal-binding biomolecules in fish, which can contribute significantly to a better understanding of the behaviour and fate of metals in the fish organism, specifically in liver as main metabolic and detoxification organ.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia
| | - Ana Pećnjak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
4
|
Zhang C, Du S, Ma Q, Zhang L. Cytosolic distribution of copper in the gills of field-collected oysters with different copper bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165631. [PMID: 37467977 DOI: 10.1016/j.scitotenv.2023.165631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Oysters can hyper-accumulate copper (Cu) without apparent toxicity, but the mechanism of sequestering excessive cytosolic Cu in oysters remains unclear. We here investigated the Cu distribution in the cytosolic proteins (CPs) in the gills of oysters (Crassostrea hongkongensis) through size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Oysters collected from the southern coast of China contained a gradient of gill Cu concentrations ranging from 132 to 3540 μg g-1 (dry weight), with 7-41 % of Cu distributed in the CPs fraction. The CPs-Cu concentrations were 8.6 times higher in oysters with high Cu concentrations compared to low concentrations. In the CPs, Cu was dispersed with a broad range of molecular weight, suggesting the involvement of various cytosolic proteins in Cu binding. Among the 10 major Cu peaks, peaks 2 (>600 kDa) and peak 8 (18 kDa) contained substantial Cu and showed obvious differences in response to the variation of CPs-Cu levels. Peak 8 contained metallothionein-like proteins that decreased their role in Cu binding as CPs-Cu concentrations increased. LC-MS/MS analysis revealed that peak 2 contained macromolecular protein complexes (MPCs), which played a critical role in binding excess Cu. The comparison with other bivalve species further suggested that sequestering excess CPs-Cu in MPCs was a special strategy employed by oysters in response to high Cu accumulation. This study provides valuable insights into the mechanism of hyper-accumulation and sequestration of Cu in oysters and helps to better understand Cu biomonitoring by oysters.
Collapse
Affiliation(s)
- Canchuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Sen Du
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qunhuan Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China.
| |
Collapse
|
5
|
Li H, Zeng Y, Wang C, Chen W, Zou M. Variation in the burden and chemical forms of thallium in non-detoxified tissues of tilapia fish (Oreochromis niloticus) from waterborne exposure. CHEMOSPHERE 2023; 333:138884. [PMID: 37187377 DOI: 10.1016/j.chemosphere.2023.138884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Thallium (Tl) is highly toxic to aquatic ecosystems, but information about its concentration and distribution characteristics in different fish tissues is limited. In this study, juvenile tilapia (Oreochromis niloticus) were exposed to Tl solutions with different sub-lethal concentrations for 28 days, and the Tl concentrations and distribution patterns in the fish non-detoxified tissues (gills, muscle, and bone) were analyzed. The Tl chemical form fractions, Tl-ethanol, Tl-HCl, and Tl-residual, corresponding to easy, moderate, and difficult migration fraction, respectively, in the fish tissues were obtained by sequential extractant approach. The Tl concentrations of different fractions and total burden were determined using graphite furnace atomic absorption spectrophotometry. Exposure-concentration effect determined the Tl burden in the fish tissues. The average Tl-total concentration factors were 360, 447, and 593 in the bone, gills, and muscle, respectively, and the limited variation during the exposure period indicates that tilapia have a strong ability to self-regulate and achieve Tl homeostasis. However, Tl fractions varied in tissues, and the Tl-HCl fraction dominated in the gills (60.1%) and bone (59.0%), switchover Tl-ethanol fraction dominated in the muscle (68.3%). This study has shown that Tl can be easily taken up by fish during 28-days-period and largely distributed in non-detoxified tissues especially muscle, in which concurrent risks of high Tl-total burden and high levels of Tl in the form of easy migration fraction, posing possible risks to public health.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Yanyi Zeng
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Chao Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
6
|
Kljaković-Gašpić Z, Dvoršćak M, Orct T, Sekovanić A, Klinčić D, Jagić K, Šebešćen D, Klasiček E, Zanella D. Metal(loid)s and persistent organic pollutants in yellow European eel from the Raša River, Croatia. MARINE POLLUTION BULLETIN 2023; 187:114527. [PMID: 36608477 DOI: 10.1016/j.marpolbul.2022.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The anthropogenic impact on the aquatic environment of the Raša River (Croatia) was investigated through the analysis of seven polybrominated diphenyl ethers (PBDEs), seven polychlorinated biphenyls (PCBs), three DDT isomers, and 22 major and trace elements using yellow European eel (Anguilla anguilla L.) as a biological indicator of contamination. The obtained data indicated generally low contamination status in the surrounding area. Levels of all organic contaminants in muscle significantly increased with lipid content, length, weight and body condition. In both muscle and liver, most metal(loid)s decreased or remained unchanged with increasing size, while at downstream location only several elements (Cd, Cu, Fe, Na, Se, U, V, Zn) accumulated in the liver with fish growth. Spatial analysis revealed higher pressure of Ag, Cd, Cr, Mo, Tl, U, and V at the downstream location, revealing the potentially limited impact of historical coal mining industry on the lower reaches of the Raša River.
Collapse
Affiliation(s)
- Zorana Kljaković-Gašpić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia.
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Dora Šebešćen
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| | - Elena Klasiček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| | - Davor Zanella
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| |
Collapse
|
7
|
Dragun Z, Ivanković D, Krasnići N, Kiralj Z, Cvitanović M, Karamatić I, Valić D, Barac F, Filipović Marijić V, Mijošek T, Gjurčević E, Matanović K, Kužir S. Metal-binding biomolecules in the liver of northern pike (Esox lucius Linnaeus, 1758): The first data for the family Esocidae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109327. [PMID: 35276358 DOI: 10.1016/j.cbpc.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Metal-handling strategies of various fish species are known to vary significantly in association with their intracellular metal behaviour. Thus, to better understand the possible consequences of increased metal exposure in fish it is important to perform comparative studies on metal-binding biomolecules in organs of different species. This study was the first of this kind on a liver of an esocid fish (northern pike, Esox lucius), and the gathered information were compared to fish belonging to three other families, Leuciscidae, Cyprinidae and Salmonidae. Distributions of ten elements among cytosolic biomolecules of different molecular masses were studied by size exclusion HPLC combined offline with high resolution ICP-MS. The results indicated predominant association of Co, Fe and Mo to high molecular mass biomolecules (>100 kDa), of Zn and Bi to both high and medium molecular mass biomolecules (>30 kDa), of Mn and Se to medium molecular mass biomolecules (30-100 kDa), and Ag, Cd and Cu to low molecular mass biomolecules (10-30 kDa), presumably metallothioneins. Evident binding to metallothioneins was also detected for Zn and Bi. For several metals, distinct differences were observed when cytosolic metal distributions of northern pike were compared to leuciscids, salmonids and cyprinids. More pronounced Zn binding to metallothioneins was recorded in leuciscids and cyprinids than both esocids and salmonids, whereas cytosolic Mn and Se distributions clearly differed between all studied fish families. Accordingly, in assessment of metal pollution it is vital to consider the exposed species, which requires prior comprehensive comparative research on numerous aquatic organisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Marita Cvitanović
- Faculty of Science, Department of Biology, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Ivana Karamatić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Fran Barac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Emil Gjurčević
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Krešimir Matanović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Snježana Kužir
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| |
Collapse
|
8
|
Le TTY, Kiwitt G, Nahar N, Nachev M, Grabner D, Sures B. What contributes to the metal-specific partitioning in the chub-acanthocephalan system? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106178. [PMID: 35489172 DOI: 10.1016/j.aquatox.2022.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models have been applied to simulate the absorption, distribution, metabolism, and elimination of various toxicants in fish. This approach allows for considering metal accumulation in intestinal parasites. Unlike "semi" physiologically-based models developed for metals, metal accumulation in fish was characterised based on metal-specific parameters (the fraction in blood plasma and the tissue-blood partition coefficient) and physiological characteristics of the fish (the blood flow and the tissue weight) in our PBPK model. In the model, intestinal parasites were considered a sink of metals from the host intestine. The model was calibrated with data for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticolliis. Metal concentrations in this fish-parasite system were monitored in Ag and Co treatments in duplicate during a 48-day exposure phase (Ag and Co were added to tap water at concentrations of 1 and 2 µg/L, respectively) and a 51-day depuration phase. Their concentrations in the gills increased during the exposure phase and decreased in the depuration phase. A similar pattern was observed for Ag concentrations in other chub organs, while a relatively stable pattern for Co indicates regulations in the accumulation of essential metals by chubs. The metals were taken up by the acanthocephalans at similar rate constants. These results indicate that metal availability to parasites, which is determined by the internal distribution and fate, is critical to metal accumulation in the acanthocephalans. The high concentration of Ag in the liver as well as the high rate of Ag excretion from the liver to the intestine might contribute to higher concentrations of metals in the bile complexes in the intestine, which are available to the parasites, but not to the reabsorption by the host intestine. The opposite pattern might explain the lower availability of Co to the acanthocephalans.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Gina Kiwitt
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Nazmun Nahar
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
9
|
Milošković A, Stojković Piperac M, Kojadinović N, Radenković M, Đuretanović S, Čerba D, Milošević Đ, Simić V. Potentially toxic elements in invasive fish species Prussian carp (Carassius gibelio) from different freshwater ecosystems and human exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29152-29164. [PMID: 34993776 DOI: 10.1007/s11356-021-17865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, and Zn were detected in the muscle and gills of Prussian carp from three different freshwater ecosystems: isolated ponds and the South Morava River in Serbia, and Kopačko Lake in complex wetland ecosystem of the Kopački Rit Nature Reserve in Croatia. The main goals of the present research were to assess the concentrations of potentially toxic elements (PTEs) in the muscle and gills of Prussian carp (Carassius gibelio), to examine whether abiotic factors from three different freshwater ecosystems affect the accumulation of PTEs in fish tissues, and to estimate the human health risk resulting from fish consumption. There were only six concentrations of PTEs in the gill tissue (Cr, Hg, Mn, Pb, Sn, and Zn) that were not significantly different among the different freshwater ecosystems. In the muscles, the differences were much less visible. Kopačko Lake distinguished with the highest values of metal pollution index (MPI) for muscles (0.24) and isolated ponds with the highest values of MPI for gills (0.8). The redundancy analysis (RDA) showed that concentrations of Al, Mn, Zn, Cu, and Fe in the gill tissue were significantly correlated with the environmental variables. In contrast, the RDA based on element concentrations in the fish muscles indicated no significant relationship with the environment. Isolated ponds, with no inflow of freshwater, stand out as the most polluted, followed by Kopačko Lake with occasional floods. Flowing freshwater ecosystem South Morava River can be single out as at least polluted with PTEs. The target hazard quotients (THQ) and hazard index (HI) suggested there were no significant noncarcinogenic health risks. The target carcinogenic risk factor (TR) for As and Pb confirmed there were no cancer risks related to human fish consumption. Since the elevated concentrations of toxic Cd and As in Prussian carp were estimated, an early warning should be assumed, especially for fishing activities in these areas.
Collapse
Affiliation(s)
- Aleksandra Milošković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Milica Stojković Piperac
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Nataša Kojadinović
- Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milena Radenković
- Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Simona Đuretanović
- Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Dubravka Čerba
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Đurađ Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Vladica Simić
- Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
10
|
Mijošek T, Filipović Marijić V, Dragun Z, Krasnići N, Ivanković D, Redžović Z, Erk M. First insight in trace element distribution in the intestinal cytosol of two freshwater fish species challenged with moderate environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149274. [PMID: 34375239 DOI: 10.1016/j.scitotenv.2021.149274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Cytosolic distribution of six essential elements and nonessential Cd among biomolecules of different molecular masses was investigated in the intestine of brown trout (Salmo trutta) from the karst Krka River and Prussian carp (Carassius gibelio) from the lowland Ilova River. Fish were sampled at two locations (reference and contaminated) and in two seasons (autumn and spring). Analyses were conducted by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Although studied salmonid and cyprinid fish have different biological characteristics, obtained profiles often showed mostly similar patterns in both species. Specifically, Cd and Cu were dominantly bound to metallothioneins in both species, but the same association was not observed for Zn, whereas Mo distribution was similar in the intestine of both fish species with two well shaped and clear peaks in HMM (100-400 kDa) and VLMM (2-8 kDa) range. In brown trout, Se was mostly associated with biomolecules of very low molecular masses (VLMM, <10 kDa), whereas significant additional elution in HMM region (30-303 kDa) was observed only in Prussian carp. Iron binding to VLMM biomolecules (1.8-14 kDa) was observed only in brown trouts, and of Zn in Prussian carps. Cobalt was mostly bound to HMM biomolecules (85-235 kDa) in brown trout and to VLMM biomolecules (0.7-18 kDa) in Prussian carp. Comparison of intestinal profiles with previously published data on liver and gills revealed some similarities in distribution, but also organ-specific differences due to the different function and composition of each organ. As so far there is no published data on intestinal trace metal distribution, the obtained results represent the novel findings, and the key point for the exact identification of specific metal-binding biomolecules which could eventually be used as biomarkers of metal exposure or effects.
Collapse
Affiliation(s)
- Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zuzana Redžović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|