1
|
Xue Q, He M, Meng Z, Lu X, Wang Z, Liang L, Mo X. Modulated use of high-concentration invasive biochar in waste-to-energy strategies: Impact analysis on microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124547. [PMID: 39987878 DOI: 10.1016/j.jenvman.2025.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
As a potential amendment, biochar has attracted considerable attention for its impact on soil microbial communities. However, there is little consensus regarding the impacts of biochar derived from invasive plants on microbial communities in coastal saline wetland soils. In this study, we used Juglans regia biochar (JBC) and two other invasive plant biochar, Spartina alterniflora biochar (SBC) and Flaveria bidentis biochar (FBC) to saline soils at rates of 1%, 3%, and 5% (w/w). The results demonstrated that the application of biochar led to a reduction in microbial community diversity, particularly evident in the 5% SBC and FBC treatments. Furthermore, the 5% FBC treatment resulted in a notable decline in community richness. With regard to species composition, the addition of SBC and FBC resulted in a notable impact on the relative abundance of Acidobacteria in comparison to JBC. Additionally, 5% SBC led to a reduction in the relative abundance of Bacteroidetes by 21.49%-23.90%, and 5% FBC reduced the relative abundance of Nitrospirae by 14.71%-17.86%. The addition of biochar enhanced the overall complexity of the community. Specifically, adding 5% SBC boosted the complexity of the microbial network and encouraged cooperative relationships among microorganisms. However, this community became more vulnerable to environmental changes and exhibited weaker anti-interference capabilities. Moreover, 5% JBC and 5% SBC altered the community assembly process from deterministic to stochastic. We emphasize the importance of carefully selecting biochar types during soil remediation, with particular attention to the application of high concentrations of biochar. This paper lays the groundwork for long-term practice in soil remediation through the approach of "treating waste with waste".
Collapse
Affiliation(s)
- Qing Xue
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Mengxuan He
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Zirui Meng
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xueqiang Lu
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ziyi Wang
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Limin Liang
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China
| | - Xunqiang Mo
- Faculty of Geography, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
2
|
Xia H, Liu H, Gong P, Li P, Xu Q, Zhang Q, Sun M, Meng Q, Ye F, Yin W. Study of the mechanism by which Bacillus subtilis improves the soil bacterial community environment in severely saline-alkali cotton fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178000. [PMID: 39671925 DOI: 10.1016/j.scitotenv.2024.178000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Soil salinization severely damages the soil bacterial community environment. Bacillus subtilis can improve bacterial communities and enhance crop nutrient absorption. However, the mechanism by which B. subtilis improves the bacterial community environment in heavily saline-alkali-treated cotton fields is currently unclear. Therefore, this study adopted a field plot experiment and established four bacterial treatments (0, 9, 12, and 15 kg·ha-1) to investigate the environmental improvement mechanism of B. subtilis on soil bacterial communities in severely saline alkali cotton fields was studied. Compared with the CK treatment, the application of B. subtilis significantly increased the available nitrogen (25.34 %), available phosphorus (50.894 %), available potassium (86.87 %), and urease (112.961 %) contents but significantly reduced the soil pH (1.07 %) and salt content (39.73 %) and significantly increased the proline (245.116 %) and superoxide dismutase (237.46 %) contents in the leaves and significantly reduced the malondialdehyde content (47.30 %). This is mainly because B. subtilis enhances the diversity of bacterial communities and affects catalase, urease, phosphatase, and protease activities, thereby promoting nutrient release in the soil and improving soil fertility; specifically, B. subtilis promotes the secretion of oxalic acid, formic acid, malic acid, and soluble total sugars in cotton roots. The organic acids in root exudates lower the soil pH and chelate with salt ions in the soil, reducing the concentration of soluble salts and providing a suitable environment for B. subtilis. Soluble total sugars can provide energy and carbon sources for bacteria, maintaining the health and diversity of rhizosphere bacterial communities. The results of the principal component analysis revealed that the application rate of B. subtilis was 12 kg·ha-1, which had the greatest effect on improving the soil bacterial community in severely saline-alkali cotton fields. The research results provide a theoretical basis and practical reference for microbial improvement in severely saline-alkali land in arid areas.
Collapse
Affiliation(s)
- Hanji Xia
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Hongguang Liu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China.
| | - Ping Gong
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Pengfei Li
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Qiang Xu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Qian Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Mingyue Sun
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Qiang Meng
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Fuhai Ye
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Weizhen Yin
- Shihezi Boli Engineering Management Co., Ltd., China
| |
Collapse
|
3
|
Palai SP, Sahoo BP, Senapati S, Panda AK, Bastia TK, Rath P, Parhi PK. A review on exploring pyrolysis potential of invasive aquatic plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123017. [PMID: 39476678 DOI: 10.1016/j.jenvman.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The rapid spread of invasive aquatic plants poses significant ecological and economic challenges, necessitating effective management strategies. Pyrolysis, a thermochemical decomposition process in an oxygen-free environment, offers a promising solution for converting these plant-based biomass sources into biochar. Biochar, produced through the pyrolysis of organic materials in low-oxygen environments, has high carbon content, excellent resistance to degradation, and high aromaticity, making it a valuable resource for various industries, including agriculture, environment, and energy sectors and supports the circular economy. Invasive aquatic plants are widely distributed and are ideal resources for biochar production. Pyrolysis of invasive aquatic plants offers multiple benefits, including protecting ecosystems from aggressive species, promoting human health, mitigating aquatic weed proliferation, and generating other renewable energy resources. Invasive plant-derived biochar has emerged as a novel material, distinguished from traditional biochar by its unique structure and composition. This study explores the pyrolysis potential of various invasive aquatic plants by examining biochar's origins, analysing how pyrolysis conditions affect the conversion of these invasive aquatic plants, and exploring characterization methods, applications, and future potential of biochar derived from these plants. An economic analysis of biochar pyrolyzed from invasive aquatic plants is also reviewed and reported.
Collapse
Affiliation(s)
- S P Palai
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - B P Sahoo
- KIIT-TBI, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - S Senapati
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - A K Panda
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - T K Bastia
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - P Rath
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - P K Parhi
- Department of Chemistry, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India.
| |
Collapse
|
4
|
Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, Tahir A, Nafees-Ur-Rehman M, Shaukat M, Sultan H, Zou R, Khan MN, Nie L. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176104. [PMID: 39250966 DOI: 10.1016/j.scitotenv.2024.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ummah Rais
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Faisalabad, Punjab, Pakistan
| | - Asad Shah
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ashar Tahir
- Rubber Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, Hainan, China
| | | | - Muhammad Shaukat
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, 44310 Islamabad, Pakistan
| | - Haider Sultan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ruilong Zou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| |
Collapse
|
5
|
Hou J, Yi G, Hao Y, Li L, Shen L, Zhang Q. The effect of combined application of biochar and phosphate fertilizers on phosphorus transformation in saline-alkali soil and its microbiological mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175610. [PMID: 39163936 DOI: 10.1016/j.scitotenv.2024.175610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
This study investigated the effects of combining Phragmites australis-based biochar, prepared at 400 °C, with various types of phosphate fertilizers-soluble, insoluble, and organic-on the content and transformation of phosphorus fractions in saline-alkali soil. Additionally, we explored microbiological mechanisms driving these transformations. The results showed that this combination significantly increased the concentrations of dicalcium phosphate (Ca2P), octacalcium phosphate (Ca8P), aluminum phosphate (AlP), moderately labile organic phosphorus (MLOP), and resistant organic phosphorus (MROP) in soil. Conversely, the levels of hydroxyapatite (Ca10P) and highly resistant organic phosphorus (HROP) decreased. The increase in labile organic phosphorus (LOP) content or decrease in iron phosphate (FeP) was found to effectively enhance the availability of Olsen phosphorus (Olsen-P) in soil. Furthermore, the study revealed that biochar mixed with organic phosphate fertilizers increased the activity of soil acid phosphatase (ACP) and neutral phosphatase (NEP), while reducing alkaline phosphatase (ALP) activity. In contrast, biochar combined with soluble and insoluble phosphate fertilizers decreased the activity of ACP (22.59 % and 28.57 %, respectively) and NEP (62.50 % and 11.11 %, respectively), with the combination with insoluble fertilizers also reducing ALP activity by 55.84 %, whereas the soluble combination increased it by 190.34 %. Additionally, the co-application of biochar and phosphate fertilizers altered the composition and abundance of the gene phoD-harboring microbial community, enhancing the abundance of Proteobacteria and reducing that of Actinobacteria. Correlation analysis between phoD-functional microbial species and various phosphorus fractions showed that Rhodopseudomonas was significantly associated with several phosphorus components, exhibiting a positive correlation with Ca2P, Ca8P, AlP, LOP, MLOP, and MROP, but a negative relationship with Ca10P. These findings suggest that the combined application of biochar and phosphate fertilizers could change the abundance of Rhodopseudomonas, potentially influencing phosphorus cycling in the soil. This research provides a strong scientific foundation for the efficient combined use of biochar and phosphate fertilizers in managing saline-alkali soil.
Collapse
Affiliation(s)
- Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Guanwen Yi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yufeng Hao
- Shanghai Chemical Industry Park Property Management Co., Ltd., Shanghai 201507, China
| | - Liting Li
- Shanghai Chemical Industry Park-The National Economical and Technological Development Zone, Shanghai 201507, China
| | - Lichun Shen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
6
|
He M, Yao W, Meng Z, Liu J, Yan W, Meng W. Microplastic-contamination can reshape plant community by affecting soil properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116844. [PMID: 39128455 DOI: 10.1016/j.ecoenv.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microplastics, as emerging contaminants, pose a serious threat to terrestrial ecosystems, yet their impact on plant communities remains largely unexplored. This study utilized the soil seed bank to establish naturally germinated plant communities and investigated the effects of polyethylene (PE) and polypropylene (PP) on community characteristics. Additionally, the study aimed to elucidate the mechanisms by which variations in soil properties influenced plant community. The results indicated that microplastics led to a significant increase in soil available potassium (AK), likely due to alterations in soil microorganism proliferation. Furthermore, microplastics caused a decrease in soil salinity, total phosphorus (TP), and ammonium nitrogen (AN). Additionally, plant community composition shifted, resulting in reduced stability and niche breadth of dominant species. Microplastics also impacted niche overlap and interspecific associations among dominant species, possibly due to the reduced accessibility of resources for dominant species. Salinity, AK, and TP were identified as major drivers of changes in niche breadth, niche overlap, and community stability, with TP exerting the strongest impact on plant community composition. These findings provide valuable insights for the restoration of plant communities in coastal saline-alkali wetland contaminated by microplastics.
Collapse
Affiliation(s)
- Mengxuan He
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China
| | - Wenshuang Yao
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China
| | - Zirui Meng
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wei Yan
- Tianjin Urban Planning & Design Institute Co., LTD, Tianjin 300190, China.
| | - Weiqing Meng
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
7
|
Cai Y, Ren L, Wu L, Li J, Yang S, Song X, Li X. Saline-alkali soil amended with biochar derived from maricultural-solid-waste: Ameliorative effect and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122134. [PMID: 39151340 DOI: 10.1016/j.jenvman.2024.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
At present, it is estimated that approximately 800 million hectares of arable land worldwide is saline-alkali soil, which has become one of the major limiting factors restricting global agricultural productivity. Meanwhile, the residual food and excreta of mariculture animals, accompanied by potential eutrophication pollution, remain an unresolved issue due to salinity. In this study, the ameliorative effects of biochar (BC700) prepared from maricultural-solid-waste on the biological properties and physicochemical of saline-alkali soil and Salicornia europaea L growth were investigated. Supplements of 1, 3 and 5% BC700 significantly increased the total nitrogen, available phosphorus, available potassium and organic carbon in soil by 2.00-68.30%, 26.74-64.96%, 7.74-52.53% and 3.43-64.96%, respectively. And BC700 significantly reduced soil pH. This occurred with enhanced soil urease, sucrase and alkaline phosphatase activities and alterations to the bacterial community structure, thus improving P and N cycling and the soil physicochemical properties. In addition, BC700 has weakened the competition between saline soil microorganisms and also changed the key species of microbial networks. Co-utilization of BC700 and S. europaea cultivation could increase the stability of the soil microbial community while the growth of the plant was significantly promoted by 19.8-25.4%. Supplements of 3% BC700 are recommended as an eco-friendly and effective treatment for the recycling of mariculture wastes for the improvement of saline-alkali soils.
Collapse
Affiliation(s)
- Yongkun Cai
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China
| | - Liping Ren
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Lele Wu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou, 310021, P. R. China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China.
| |
Collapse
|
8
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
9
|
Liu J, Sun P, Chen Y, Guo J, Liu L, Zhao X, Xin J, Liu X. The regulation pathways of biochar and microorganism in soil-plant system by multiple statistical methods: The forms of carbon participation in coastal wetlands. CHEMOSPHERE 2024; 362:142918. [PMID: 39043273 DOI: 10.1016/j.chemosphere.2024.142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/25/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ping Sun
- Key Laboratory of Geological Safety of Coastal Urban Underground Space (Qingdao Geo-Engineering Surveying Institute), Qingdao, 266101, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xinyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
10
|
Jaffar MT, Chang W, Zhang J, Mukhtar A, Mushtaq Z, Ahmed M, Zahir ZA, Siddique KHM. Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121418. [PMID: 38852408 DOI: 10.1016/j.jenvman.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.
Collapse
Affiliation(s)
| | - Wenqian Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jianguo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zain Mushtaq
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
11
|
Wang Z, He M, Lu X, Meng Z, Liu J, Mo X. Biochar addition can negatively affect plant community performance when altering soil properties in saline-alkali wetlands. FRONTIERS IN PLANT SCIENCE 2024; 15:1347658. [PMID: 38817931 PMCID: PMC11137290 DOI: 10.3389/fpls.2024.1347658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Biochar is a widely proposed solution for improving degraded soil in coastal wetland ecosystems. However, the impacts of biochar addition on the soil and plant communities in the wetland remains largely unknown. In this study, we conducted a greenhouse experiment using soil seed bank from a coastal saline-alkaline wetland. Three types of biochar, including Juglans regia biochar (JBC), Spartina alterniflora biochar (SBC) and Flaveria bidentis biochar (FBC), were added to the saline-alkaline soil at ratios of 1%, 3% and 5% (w/w). Our findings revealed that biochar addition significantly increased soil pH, and increased available potassium (AK) by 3.74% - 170.91%, while reduced soil salinity (expect for 3% SBC and 5%SBC) by 28.08% - 46.93%. Among the different biochar types, the application of 5% FBC was found to be the most effective in increasing nutrients and reducing salinity. Furthermore, biochar addition generally resulted in a decrease of 7.27% - 90.94% in species abundance, 17.26% - 61.21% in community height, 12.28% - 56.42% in stem diameter, 55.34% - 90.11% in total biomass and 29.22% - 78.55% in root tissue density (RTD). In particular, such negative effects was the worst in the SBC samples. However, 3% and 5% SBC increased specific root length (SRL) by 177.89% and 265.65%, and specific root surface area (SRSA) by 477.02% and 286.57%, respectively. The findings suggested that the plant community performance was primarily affected by soil pH, salinity and nutrients levels. Furthermore, biochar addition also influenced species diversity and functional diversity, ultimately affecting ecosystem stability. Therefore, it is important to consider the negative findings indirectly indicate the ecological risks associated with biochar addition in coastal salt-alkaline soils. Furthermore, Spartina alterniflora was needed to desalt before carbonization to prevent soil salinization when using S. alterniflora biochar, as it is a halophyte.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, China
| | - Xueqiang Lu
- College of Environment Science and Engineering, Nankai University, Tianjin, China
| | - Zirui Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, China
| |
Collapse
|
12
|
Wang M, Yang X. Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment. PeerJ 2024; 12:e16992. [PMID: 38426138 PMCID: PMC10903360 DOI: 10.7717/peerj.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) have a specific symbiotic relationship with plants and rhizosphere soil. The purpose of this study was to evaluate the effects of PGPR on blueberry plant growth, rhizospheric soil nutrients and the microbial community. Methods In this study, nine PGPR strains, belonging to the genera Pseudomonas and Buttiauxella, were selected and added into the soil in which the blueberry cuttings were planted. All the physiological indexes of the cuttings and all rhizospheric soil element contents were determined on day 6 after the quartic root irrigation experiments were completed. The microbial diversity in the soil was determined using high-throughput amplicon sequencing technology. The correlations between phosphorus solubilization, the auxin production of PGPR strains, and the physiological indexes of blueberry plants, and the correlation between rhizospheric microbial diversity and soil element contents were determined using the Pearson's correlation, Kendall's tau correlation and Spearman's rank correlation analysis methods. Results The branch number, leaf number, chlorophyllcontentand plant height of the treated blueberry group were significantly higher than those of the control group. The rhizospheric soil element contents also increased after PGPR root irrigation. The rhizospheric microbial community structure changed significantly under the PGPR of root irrigation. The dominant phyla, except Actinomycetota, in the soil samples had the greatest correlation with phosphorus solubilization and the auxin production of PGPR strains. The branch number, leaf number, and chlorophyllcontent had a positive correlation with the phosphorus solubilization and auxin production of PGPR strains and soil element contents. In conclusion, plant growth could be promoted by the root irrigation of PGPR to improve rhizospheric soil nutrients and the microenvironment, with modification of the rhizospheric soil microbial community. Discussion Plant growth could be promoted by the root irrigation of PGPR to improve rhizospheric soil nutrients and the microenvironment, with the modification of the rhizospheric soil microbial community. These data may help us to better understand the positive effects of PGPR on blueberry growth and the rhizosphere soil microenvironment, as well as provide a research basis for the subsequent development of a rhizosphere-promoting microbial fertilizer.
Collapse
Affiliation(s)
- Mengjiao Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinling-Ba Mountains, Hanzhong, Shaanxi, China
- Shaanxi Key Laboratory of Bioresources, Hanzhong, Shaanxi, China
| | - Xinlong Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
13
|
Wang X, Riaz M, Babar S, Eldesouki Z, Liu B, Xia H, Li Y, Wang J, Xia X, Jiang C. Alterations in the composition and metabolite profiles of the saline-alkali soil microbial community through biochar application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120033. [PMID: 38218168 DOI: 10.1016/j.jenvman.2024.120033] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Saline-alkali soil poses significant chanllenges to sustainable development of agriculture. Although biochar is commonly used as a soil organic amendment, its microbial remediation mechanism on saline-alkali soil requires further confirmation. To address this, we conducted a pot experiment using cotton seedlings to explore the potential remediation mechanism of rice straw biochar (BC) at three different levels on saline-alkaline soil. The results showed that adding of 2% biochar greatly improved the quality of saline-alkaline soil by reducing pH levels, electrical conductivity (EC), and water-soluble ions. Moreover, biochar increased the soil organic matter (SOM), nutrient availability and extracellular enzyme activity. Interestingly, it also reduced soil salinity and salt content in various cotton plant tissues. Additionally, biochar had a notable impact on the composition of the microbial community, causing changes in soil metabolic pathways. Notably, the addition of biochar promoted the growth and metabolism of dominant salt-tolerant bacteria, such as Proteobacteria, Bacteroidota, Acidobacteriota, and Actinobacteriota. By enhancing the positive correlation between microorganisms and metabolites, biochar alleviated the inhibitory effect of salt ions on microorganisms. In conclusion, the incorporation of biochar significantly improves the soil microenvironment, reduces soil salinity, and shows promise in ameliorating saline-alkaline soil conditions.
Collapse
Affiliation(s)
- Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, 832000, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zeinab Eldesouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Bo Liu
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, PR China.
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
14
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
15
|
Xu X, Guo L, Wang S, Ren M, Zhao P, Huang Z, Jia H, Wang J, Lin A. Comprehensive evaluation of the risk system for heavy metals in the rehabilitated saline-alkali land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119117. [PMID: 37806271 DOI: 10.1016/j.jenvman.2023.119117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
A comprehensive assessment of the heavy metal system in the rehabilitated saline-alkali land holds significant importance, as the in-situ remediation process utilizing amendments substantially alters the initial physicochemical properties of the soil, which could lead to the migration or reactivation of previously stabilized heavy metals. In this context, the present study aims to evaluate the heavy metal content and health risk within the improved saline-alkali soil-plant system. Moreover, a comprehensive evaluation based on the TOPSIS-RSR method is carried out to accurately gauge the soil health status. The findings indicate that the modification process has an impact on the concentrations of heavy metals in the soil and crops, causing either an increase or decrease. However, the level of heavy metal pollution in the improved saline-alkali soil and rape remains within safe limits. The results of the migration of heavy metals after amendment application indicated that the migration of heavy metals in the soil was influenced by the properties of the heavy metals, the composition of the amendment, and leaching. Furthermore, the total non-carcinogenic hazard quotients in the soil and rape were within the safe threshold for all populations. The findings provided novel insights into the status and risk assessment of the pollution of improved saline-alkali soil.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ziyi Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
16
|
Liu S, Hou J, Zhang S, Zhang X, Zhang Q. The transformation of heavy metal speciation during rapid high-temperature aerobic fermentation of food waste and their potential mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119030. [PMID: 37741195 DOI: 10.1016/j.jenvman.2023.119030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
In this study, the content changes of multiple trace heavy metals (HMs) in food waste using a new rapid high-temperature aerobic fermentation (RTAF) technology and their relationships with different physicochemical factors were researched. The results indicated that the content of HMs in the decomposed products met the industry standards for organic fertilizers (NY/T525-2021, China). Physicochemical factors played an important role in controlling the changes in HM content. The component evolution of dissolved organic matter was studied, and its influences on the transformation of HM speciation showed that the RTAF process converted proteins into humus-like substances. Redundancy analysis revealed that the main factors driving the speciation transformation of HMs were tyrosine-like substances or microbial-derived humus (C3), molecular weight of dissolved organic matter (SUVA254) and humification degree (E250/E365). The increase in humification degree contributed to passivating HMs. The correlation network analysis results showed that the exchangeable HMs (Exc-HMs) were related to Lactobacillus and Pediococcu. Additionally, the cytoskeleton, coenzyme transport and metabolic function of microorganisms affected the Exc-HM content. These research results can provide a scientific basis for the prevention and control of HM pollution during the treatment of food waste.
Collapse
Affiliation(s)
- Shujia Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Shanghai SUS Environment Co, LTD., Shanghai, 201703, China
| | - JinJu Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai, 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
17
|
Farooqi ZUR, Qadir AA, Alserae H, Raza A, Mohy-Ud-Din W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109889-109920. [PMID: 37792186 DOI: 10.1007/s11356-023-30143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Ayesha Abdul Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hussein Alserae
- Department of Soil Sciences and Water Resources, College of Agricultural Engineering Science, Baghdad University, Baghdad, Iraq
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
18
|
Cui C, Shen J, Zhu Y, Chen X, Liu S, Yang J. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163279. [PMID: 37019226 DOI: 10.1016/j.scitotenv.2023.163279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contaminated saline-alkali soil is commonly salinized and hardened, which leads to low self-purification efficiency, making it difficult to reuse and remediate. In this study, pot experiments were conducted to investigate remediation of PAH contaminated saline-alkali soil using biochar-immobilized Martelella sp. AD-3, and Suaeda salsa L (S. salsa). Reduction in phenanthrene concentration, PAH degradation functional genes, and the microbial community in the soil were analyzed. The soil properties and plant growth parameters were also analyzed. After a 40-day remediation, the removal rate of phenanthrene by biochar-immobilized bacteria combined with S. salsa (MBP group) was 91.67 %. Additionally, soil pH and electrical conductivity (EC) reduced by 0.15 and 1.78 ds/m, respectively. The fresh weight and leaf pigment contents increased by 1.30 and 1.35 times, respectively, which effectively alleviated the growth pressure on S. salsa in PAH-contaminated saline-alkali soil. Furthermore, this remediation resulted in abundance of PAH degradation functional genes in the soil, with a value of 2.01 × 103 copies/g. The abundance of other PAH degraders such as Halomonas, Marinobacter, and Methylophaga in soil also increased. Furthermore, the highest abundance of Martelella genus was observed after the MBP treatment, indicating that strain AD-3 has a higher survival ability in the rhizosphere of S. salsa under the protection of biochar. This study provides a green, low-cost technique for remediation of PAH-contaminated saline-alkali soils.
Collapse
Affiliation(s)
- Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiamin Shen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco-Chongming, Fudan University, Shanghai 200438, China
| | - Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
19
|
Cui X, Lou L, Zhang Y, Yan B. Study of the distribution of Glycyrrhiza uralensis production areas as well as the factors affecting yield and quality. Sci Rep 2023; 13:5160. [PMID: 36991024 PMCID: PMC10060575 DOI: 10.1038/s41598-023-31946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Wild licorice in China is mainly distributed in northern China, such as Gansu, Ningxia, and Inner Mongolia Provinces. The origin of wild licorice has varied among historical periods. The cultivated origin of planted licorice has the same as 59.26% of wild licorice. The distribution of cultivated licorice was shifted to the northwest relative to that of wild licorice. The yield and quality of cultivated licorice vary greatly from different origins, showing a certain pattern of variation from west to east. The same batch of licorice seedlings was planted at 8 sites overlapping the main licorice production areas in China. The yield and quality of licorice in the Baicheng experimental plot were low. The yield of licorice in the Jingtai and Altay experimental plots was high, but the quality was poor. The quality of licorice in Chifeng and Yuzhong experimental sites was high, but the yield was low. Principal component analysis of environmental and soil factors generated five characteristic roots with a cumulative contribution rate of 80%, three of which were related to soil and referred to as the soil charge factor, soil water factor, and soil nutrient factor, and the load coefficients of the water and nutrient factor were the largest. Soil conditions, especially water and nutrients, might have a substantial effect on the observed changes in the licorice production area. Generally, the regulation of water and nutrients merits special attention when selecting areas for the production and cultivation of licorice. This study can provide reference for the selection of cultivated licorice production areas and the research of high-quality cultivation techniques.
Collapse
Affiliation(s)
- Xinping Cui
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Lou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yan Zhang
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Binbin Yan
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
20
|
Wang K, Hou J, Zhang S, Hu W, Yi G, Chen W, Cheng L, Zhang Q. Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160478. [PMID: 36574551 DOI: 10.1016/j.scitotenv.2022.160478] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The contradiction between population growth and soil degradation has been increasingly prominent, such that novel fertilizers (e.g., biochar and microbial fertilizers) should be urgently developed. Biochar is a promising fertilizer carrier for microbial fertilizers due to its porous structure. However, the preparation and mechanisms of the effects of biochar-based microbial fertilizers have been rarely investigated. In this study, biochar, Bacillus, and exogenous N-P-K fertilizers served as the raw materials to prepare biochar-based microbial fertilizers (BCMFs) by optimizing the preparation methods and the process parameters. Moreover, the release patterns of N-P-K were analyzed. A pot experiment was performed on pakchoi to examine the effect of the BCMFs and explore its synergistic effect on soil fertility. The results of this study indicated that adsorption by biochar maintained bacterial activity, whereas the granulation process reduced bacterial activity. The adsorption-granulation process increased the content of total nitrogen and organic matter in the soil while enhancing the slow-release effect of the BCMFs. The Elovich model was capable of describing the nitrogen release of the BCMFs, including the diffusion and chemical processes. As indicated by the result of the column leaching experiment, the BCMFs stopped nutrient leaching more significantly than the conventional fertilizers (CF), especially in stopping N and P leaching. The use of the BCMFs improved the available soil nutrients and soil quality while enhancing the abundance of bacteria correlated with carbon and nitrogen metabolism in the soil. Moreover, a 20 % reduction in the use of the BCMFs did not significantly affect the soil available N and P and the growth status of pakchoi. The result of redundancy analysis indicated that the cation exchange capacity (CEC), NH4+-N, NO3--N, β-glucosidase (BG), urease (URE), and alkaline phosphatase (AlkP) were the six critical environmental factors for the microbial community structure and could explain 94.8 % of the variance. The BCMFs up-regulated the levels of the above six factors, especially CEC and BG, thus improving the soil quality and enhancing the soil fertility.
Collapse
Affiliation(s)
- Kainan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjin Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Guanwen Yi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
21
|
Wang S, Gao P, Zhang Q, Shi Y, Guo X, Lv Q, Wu W, Zhang X, Li M, Meng Q. Biochar improves soil quality and wheat yield in saline-alkali soils beyond organic fertilizer in a 3-year field trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19097-19110. [PMID: 36223021 DOI: 10.1007/s11356-022-23499-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to examine the effects of biochar compared to organic fertilizer on soil quality and wheat yield in the saline-alkaline lands. A 3-year field trial was conducted on moderately saline-alkaline land in the Yellow River Delta region (YRD) with six treatments: biochar (B1: 5 t, B2: 10 t, B3: 20 t ha-1 year-1) and organic fertilizer (OF1: 5 t, OF2: 7.5 t ha-1 year-1) as well as control (CK). The results showed that both biochar and organic fertilizer increased total organic carbon (TOC), total nitrogen (TN), NH4+-N, and NO3--N, and reduced pH, thereby increasing soil microbial biomass carbon (MBC) and nitrogen (MBN), MBC/TOC ratio, and MBN/TN ratio, but organic fertilizer increased soil nutrients and microbial biomass better than biochar. Correlation analysis revealed that soil water content (SWC), soil salt content (SSC), and Na+ were the most important factors influencing wheat yield. When compared to CK, the SSC and Na+ decreased by 5.55-7.52% and 3.86-9.39%, respectively, and SWC increased by 5.14-5.62% in the biochar treatment, while they increased by 1.07-10.19%, 1.08-7.58%, and 2.96-3.84% in the organic fertilizer treatment, respectively. Accordingly, wheat yield of biochar treatment was 0.90-14.71% higher than that of organic fertilizer treatment (4.49-4.80 t ha-1) and CK (4.47 t ha-1). Collectively, B2 had the lowest SSC and Na+ and the highest yield and was significantly better than the organic fertilizer treatment, as well as efficiently increasing soil nutrients and microbial biomass, suggesting that it may be a better agricultural practice for improving soil quality and increasing wheat yield in the YRD.
Collapse
Affiliation(s)
- Shibin Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| | - Peiling Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China.
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo City, 255049, Shandong province, China.
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianglin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| | - Qingxin Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| | - Wei Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| | - Xue Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| | - Mengzhao Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| | - Qingmei Meng
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo City, 255049, Shandong province, China
| |
Collapse
|
22
|
Yan B, Hou J, Li W, Luo L, Ye M, Zhao Z, Wang W. A review on the plant resources of important medicinal licorice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115823. [PMID: 36220512 DOI: 10.1016/j.jep.2022.115823] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrizae Radix et Rhizoma has various effects, including tonifying the spleen and qi, clearing heat and toxic substances, eliminating phlegm, relieving cough and pain, and harmonizing the effects of other medicines. It is widely used in the pharmaceutical and food industries. AIMS OF THE STUDY This review systematically collates the identification of Glycyrrhiza Linn. species with medicinal value and their distributions. The morphological and genetic characteristics, distribution, quantity of reserves in China, suitable environment, and area of suitable habitat of important medicinal species were reviewed. The effects of the natural environment and cultivation management (water and nutrients) on the growth and quality of licorice were reviewed. The aim is to make people have a systematic understanding of the status of medicinal plant resources of the G. Linn., and understand the natural and human factors that affect its quality, so as to provide help for the collection of resources of the important medicinal licorice and the human control of its quality in the future. MATERIALS AND METHODS We conducted extensive searches of the primary literature, master's and doctoral theses, and pharmacopeias of many countries using PubMed, Geenmedical, CNKI, Web of Science, SCI-hub and other databases. The keywords used in searches included "classification of Glycyrrhiza," "medicinal Glycyrrhiza," "distribution of Glycyrrhiza," and "suitable environment for Glycyrrhiza" The results of research conducted by our research group on the morphological and genetic characteristics, natural distribution, and effects of artificial regulation on the growth and quality of licorice were summarized. RESULTS There are approximately 29 species of G. Linn. worldwide, including 15 species with medicinal value. These species occur on all continents except Antarctica across 41 countries. Only one licorice is recorded in Indian pharmacopoia,two species are recorded in US and Japanese pharmacopoeias,and three species are recorded in most national pharmacopoeias: G. glabra Linn., G. uralensis Fisch. and G. inflata Batalin. These three medicinal licorice species are mainly distributed in Eurasia, especially Central Asia. The main morphological differences between these three medicinal licorice species are in the leaves, inflorescences, pods, and seeds, and they can be distinguished by ITS and psbA-trnH sequences. The reserves of wild licorice in China have decreased annually to 1.04 million(t) in 2010. The cultivation area of G. uralensis Fisch in China is currently approximately 26,900 hm2. Soil conditions have a substantial effect on the yield and quality of G. uralensis Fisch, especially water and nutrients. Appropriate irrigation and fertilization measures can enhance the quality of G. uralensis Fisch. CONCLUSIONS G. Linn. species and their natural distributions were summarized. The morphology, genetic characteristics, suitable environment, and area of suitable habitat of three medicinal licorice species collected in major countries were described. The main environmental conditions and cultivation measures affecting their growth and medicinal quality were determined. This article provides a comprehensive review on G. Linn. medicinal plant resources to enhance the future use of these resources.
Collapse
Affiliation(s)
- Binbin Yan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, Beijing, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, Beijing, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Junling Hou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102, Beijing, China
| | - Wenbin Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102, Beijing, China
| | - Lin Luo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102, Beijing, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Zhongzhen Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102, Beijing, China; School of Chinese Medicine, Hong Kong Baptist University, 999077 Hong Kong Special Administrative Region, China.
| | - Wenquan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102, Beijing, China.
| |
Collapse
|
23
|
Liang S, Wang SN, Zhou LL, Sun S, Zhang J, Zhuang LL. Combination of Biochar and Functional Bacteria Drives the Ecological Improvement of Saline-Alkali Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:284. [PMID: 36678996 PMCID: PMC9864812 DOI: 10.3390/plants12020284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The addition of functional bacteria (FB) is low-cost and is widely applied in saline-alkali soil remediation, which may gradually become ineffective due to inter-specific competition with indigenous bacteria. To improve the adaptability of FB, the target FB strains were isolated from local saline-alkali soil, and the combined effects of FB and biochar were explored. The results showed that FB isolated from local soil showed better growth than the purchased strains under high saline-alkali conditions. However, the indigenous community still weakened the function of added FB. Biochar addition provided a specific niche and increased the relative abundance of FB, especially for Proteobacteria and Bacteroidota. As a result, the co-addition of 10% biochar and FB significantly increased the soil available phosphorus (AP) by 74.85% and available nitrogen (AN) by 114.53%. Zea Mays's growth (in terms of height) was enhanced by 87.92% due to the decreased salinity stress and extra nutrients provided.
Collapse
Affiliation(s)
- Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Sheng-Nan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lu-Lu Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuo Sun
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang 050000, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
24
|
Hasnain M, Munir N, Abideen Z, Zulfiqar F, Koyro HW, El-Naggar A, Caçador I, Duarte B, Rinklebe J, Yong JWH. Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114408. [PMID: 36516621 DOI: 10.1016/j.ecoenv.2022.114408] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan.
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100 Pakistan.
| | - Hans Werner Koyro
- Institute of Plant Ecology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Isabel Caçador
- MARE-Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisbon; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisbon; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
25
|
Sun R, Zheng H, Yin S, Zhang X, You X, Wu H, Suo F, Han K, Cheng Y, Zhang C, Li Y. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155183. [PMID: 35421479 DOI: 10.1016/j.scitotenv.2022.155183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 05/25/2023]
Abstract
Biochar (i.e., pyrochar and hydrochar) application is a promising strategy to improve soil quality and productivity. However, the comparison of biochars with different carbonization methods and feedstocks for the plant growth in the coastal salt-affected soil remains limited. In this study, a 30-day microcosmic experiment was conducted to compare the effects of pyrochars and hydrochars derived from reed straw (RPC and RHC) and cow manure (CPC and CHC) on the peanut (Arachis hypogaea L.) seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The results showed that RPC, CHC and CPC significantly elevated fresh shoot weight by 67.77%-89.37%, whereas the RHC amendment showed little effect. The malondialdehyde contents in peanut seedling leaves were significantly declined by 25.28%-35.51% with pyrochar and hydrochar amendments, which might be associated with the enhanced proline contents and K/Na ratios. The stimulation of certain phytohormones (i.e., indole-3-acetic acid, zeatin riboside, gibberellic acid 3) in peanut seedlings with pyrochar and hydrochar amendments might be attributed to the growth enhancement. RPC, CPC and CHC improved the soil properties and fertility such as cation-exchange capacity (CEC), total nitrogen, and available potassium and water holding capacity (WHC) of the coastal salt-affected soil. However, RHC not only significantly decreased soil CEC and WHC, but also increased soil exchangeable sodium percentage. The abundances of soil beneficial bacteria, such as f_Gemmatimonadacea, Sphingomonas, Blastococcus and Lysobacter were enhanced by RPC, CHC and CPC amendments, which were mainly associated with the increased WHC and CEC. Fungal community was less sensitive to pyrochar and hydrochar amendments than bacterial community according to the relative abundance and diversity, and beneficial fungi, such as Oidiodendron and Sarocladium were enriched in the CHC soil. Overall, the application of RPC, CHC and CPC showed greater potentials for the enhancement of peanut growth in a coastal salt-affected soil.
Collapse
Affiliation(s)
- Ruixue Sun
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hao Zheng
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Haiyun Wu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Kunxu Han
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
26
|
Li H, Luo N, Ji C, Li J, Zhang L, Xiao L, She X, Liu Z, Li Y, Liu C, Guo Q, Lai H. Liquid Organic Fertilizer Amendment Alters Rhizosphere Microbial Community Structure and Co-occurrence Patterns and Improves Sunflower Yield Under Salinity-Alkalinity Stress. MICROBIAL ECOLOGY 2022; 84:423-438. [PMID: 34535834 DOI: 10.1007/s00248-021-01870-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Response of rhizosphere microbial community structure and co-occurrence patterns to liquid organic fertilizer in sunflower cropland was investigated. Moderate and severe saline-alkaline soils were treated with liquid organic fertilizer containing mainly small molecular organic compounds (450 g L-1) at a rate of 4500 L ha-1 year-1 over 2 years. Compared with the untreated soils, organic fertilizer treatment increased soil nutrient concentrations by 13.8-137.1% while reducing soil pH and salinity by 5.6% and 54.7%, respectively. Organic fertilizer treatment also improved sunflower yield, plant number, and plant height by 28.6-67.3%. Following organic fertilizer treatment, fungal α-diversity was increased, and the effects of salinity-alkalinity stress on rhizosphere microbial communities were alleviated. The relative abundances of some halotolerant microbes and phytopathogenic fungi were reduced in organic fertilizer-treated soils, in contrast to increases in the relative abundances of plant growth-promoting microbes and organic matter decomposers, such as Nocardioides, Rhizophagus, and Stachybotrys. Network analysis revealed that severe salinity-alkalinity stress stimulated cooperation among bacteria, while organic fertilizer treatment tended to stimulate the ecosystem functions of fungi with higher proportions of fungi-bacteria and fungi-fungi links. More keystone taxa (e.g., Amycolatopsis, Variovorax, and Gemmatimonas) were positively correlated with soil nutrient concentrations and crop yield-related traits in organic fertilizer-treated soils. Overall, liquid organic fertilizer amendment could attenuate the adverse effects of salinity-alkalinity stress on sunflower yield by improving soil quality and optimizing rhizosphere microbial community structure and co-occurrence patterns.
Collapse
Affiliation(s)
- Haiyang Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Nanyan Luo
- Tongchuan Institute of Agricultural Sciences, Tongchuan, 727000, China
| | - Chenglong Ji
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Jin Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Lan Zhang
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Li Xiao
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Xiaolin She
- Tongchuan Institute of Agricultural Sciences, Tongchuan, 727000, China
| | - Zhe Liu
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Cunshou Liu
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
27
|
Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:96-110. [PMID: 35576892 DOI: 10.1016/j.plaphy.2022.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jiaxuan Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
28
|
Sheng H, Yin Y, Xiang L, Wang Z, Harindintwali JD, Cheng J, Ge J, Zhang L, Jiang X, Yu X, Wang F. Sorption of N-acyl homoserine lactones on maize straw derived biochars: Characterization, kinetics and isotherm analysis. CHEMOSPHERE 2022; 299:134446. [PMID: 35358551 DOI: 10.1016/j.chemosphere.2022.134446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soil amendment with biochar may trigger a series of positive and negative biological effects, partly because it interferes quorum sensing (QS) signals synthesized by microorganisms for communication. However, the mechanisms through which biochar interacts with these QS signals remain elusive. This study explored the mechanisms of interactions between N-acyl homoserine lactones (AHLs) and two maize straw-derived biochars (MBs) with different pyrolysis temperature. Pseudo-second-order equation model best depicted AHLs sorption kinetics on MBs. The intra-particle diffusion model revealed that AHLs sorption onto MBs consists of several stages. The sorption isotherms data of AHLs on MBs were in well agreement with both Langmuir and Freundlich models, indicating the occurrence of energetic distribution of active sites on the heterogeneous biochar with multilayer sorption. However, the AHLs sorption capacity on MBs varied, with biochar pyrolyzed at 600 °C displaying a higher AHLs sorption capacity compared with biochar pyrolyzed at 300 °C. It may be attributed to a variety of physiochemical interactions such as pore filling, functional groups complexation, hydrogen bond, and hydrophobic action. The adsorption/partitioning model results and thermodynamic parameters of Gibbs free energy (ΔG) confirmed that physical and chemical sorption occurred concurrently throughout the whole AHLs sorption process, with physical partitioning playing a greater role than surface sorption. The findings suggest that soil amendment with biochar may have a variety of effects on intra/inter-cellular communication, further implying biochar can be specially prepared to mediate soil processes related to microbial communication, like pollutant biodegradation, and carbon/nitrogen cycling.
Collapse
Affiliation(s)
- Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Yin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Cheng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Ge
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Leigang Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyang Yu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Fazzalari A, Abou‐Zaid M, Briens C, Briens L. Impact of post‐pyrolysis wash on biochar properties. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anthony Fazzalari
- Faculty of Engineering The University of Western Ontario London ON Canada
| | - Mamdouh Abou‐Zaid
- Faculty of Engineering The University of Western Ontario London ON Canada
| | - Cedric Briens
- Faculty of Engineering The University of Western Ontario London ON Canada
| | - Lauren Briens
- Faculty of Engineering The University of Western Ontario London ON Canada
| |
Collapse
|
30
|
Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The available literary data suggest the general applicability and benefits of different biochar products in various soil–plant–environment systems. Due to its high porosity, biochar might generally improve the physicochemical and biological properties of supplemented soils. Among the direct and indirect effects are (i) improved water-retention capacity, (ii) enhanced soil organic matter content, (iii) pH increase, (iv) better N and P availability, and (v) greater potential uptake of meso- and micronutrients. These are connected to the advantage of an enhanced soil oxygen content. The large porous surface area of biochar might indirectly protect the survival of microorganisms, while the adsorbed organic materials may improve the growth of both bacteria and fungi. On the other hand, N2-fixing Rhizobium bacteria and P-mobilizing mycorrhiza fungi might respond negatively to biochar’s application. In arid circumstances with limited water and nutrient availability, a synergistic positive effect was found in biochar–microbial combined applications. Biochar seems to be a valuable soil supplement if its application is connected with optimized soil–plant–environment conditions. This work aims to give a general review of the potential benefits and drawbacks of biochar application to soil, highlighting its impacts on the soil–plant–microbe system.
Collapse
|
31
|
Yang Q, Ravnskov S, Pullens JWM, Andersen MN. Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151649. [PMID: 34785223 DOI: 10.1016/j.scitotenv.2021.151649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrolyzed biomass, generating biochar for use as soil amendment, is recognized as a promising strategy for carbon sequestration. Current understanding of the interactions between biochar, arbuscular mycorrhizal (AM), and plant photosynthesis, in terms of biochemical processes and CO2 uptake, is fragmentary. The aim of this study was to investigate the effects on photosynthesis in potato including maximum rate of carboxylation by Rubisco (Vcmax), maximum rate of electron transport rate for RuBP-regeneration (Jmax), mesophyll conductance (gm) and other plant traits. Four types of biochar (wheat or miscanthus straw pellets pyrolyzed at temperatures of either 550 °C or 700 °C) were amended into low phosphorus soil. Potato plants were inoculated with the AM fungus Rhizophagus irregularis (M+) or not (M-). The results showed that four types of biochar generally decreased nitrogen and phosphorus content of potato, especially the biochars pyrolyzed at high temperature. This negative effect of biochar on nutrient content was alleviated by AM. It was found that Vcmax was limited by low plant nitrogen content as well as leaf area and phosphorus content. Plant phosphorus content also limited Jmax, which was mutually constrained by Vcmax of leaves. Low gm was an additional limiting factor for photosynthesis. The gm was positively correlated to nitrogen content, which influenced the leaf anatomical structure by alteration of leaf mass per area. In conclusion, the influence of interactions between quality of biochar and AM symbiosis on photosynthesis of potato seems to relate to effects on plant nutrient content and leaf structures. Accordingly, a model for the dependence of Vcmax on nitrogen and phosphorus content and their interactive effect exhibited a high correlation coefficient. As potato plants form AM symbiosis under natural field conditions, the extent and interaction with the quality of amended biochar can be a determining factor for plant nutrient content, growth and yield.
Collapse
Affiliation(s)
- Qi Yang
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Sabine Ravnskov
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | - Mathias Neumann Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
32
|
Łapczyńska-Kordon B, Ślipek Z, Słomka-Polonis K, Styks J, Hebda T, Francik S. Physicochemical Properties of Biochar Produced from Goldenrod Plants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2615. [PMID: 35407947 PMCID: PMC9000654 DOI: 10.3390/ma15072615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Torrefaction is one of the methods of thermal treatment of biomass, which allows obtaining a product of better quality in the form of biochar. The aim of the paper was to analyze the possibility of using goldenrod (Solidago canadensis, Solidago gigantea) for the production of biochar. The torrefaction process involved the vegetative and generative parts as well as the whole plant at temperatures of 250 °C and 275 °C, for 3 h. Next, the physicochemical properties of the raw material and biochar were determined, namely moisture content, ash content, volatile matter content, calorific value, and heat of combustion. The bulk density of raw biomass and biochar was also determined. It was found that after biomass torrefaction, the ash content, calorific value, and heat of combustion increased, while volatile matter content decreased. It has been observed that in both the case of raw biomass and biochar, the plant species and the sampled parts have a significant impact on the ash content, volatile matter content, calorific value, and heat of combustion.
Collapse
Affiliation(s)
- Bogusława Łapczyńska-Kordon
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Zbigniew Ślipek
- Technical Institute, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland;
| | - Karolina Słomka-Polonis
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Jakub Styks
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Tomasz Hebda
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| |
Collapse
|
33
|
Song G, Qin F, Yu J, Tang L, Pang Y, Zhang C, Wang J, Deng L. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127663. [PMID: 34799169 DOI: 10.1016/j.jhazmat.2021.127663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 05/28/2023]
Abstract
Biochar, a carbonaceous material with engineering potential, has gained attention as an efficient catalyst in persulfate-based advanced oxidation processes (PS-AOPs). Although biomass feedstocks are known as a critical factor for the performance of biochar, the relationship between the catalytic efficiency/mechanism and the types of biomass feedstocks is still unclear. Thus, according to recent advances in experimental and theoretical researches, this paper provides a systematic review of the properties of biochar, and the relationship between catalytic performance in PS-AOPs and biomass feedstocks, where the differences in physicochemical properties (surface properties, pore structure, etc.) and activation path of different sourced biochars, are introduced. In addition, how the tailoring of biochar (such as heteroatomic doping and co-pyrolysis of biomass) affects its activation efficiency and mechanism in PS-AOPs is summarized. Finally, the suitable application scenarios or systems of different sourced biochars, appropriate methods to improve the catalytic performance of different types of biochar and the prospects and challenges for the development of biochar in PS-AOPs are proposed.
Collapse
Affiliation(s)
- Ge Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Ya Pang
- Department of Biology and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lifei Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
34
|
Li K, Zhao S, Guan W, Li KJ. Planktonic bacteria in white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) aquaculture ponds in a salt-alkaline region. Lett Appl Microbiol 2021; 74:212-219. [PMID: 34778977 DOI: 10.1111/lam.13600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Aquaculture in salt-alkaline regions is encouraged in China, and culture of many aquatic species has been introduced into these areas. In this study, we cultured two species, white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) separately in aquaculture ponds in a salt-alkaline region in northwest China and assessed the impacts of the aquaculture operations on the planktonic bacterial community in the culture ponds. Culture of both species decreased the planktonic bacterial diversity and altered the bacterial community structure in the aquaculture ponds compared with the source water. Among the 10 dominant bacterial phyla, 8 were significantly correlated with environmental parameters; the exception was Actinobacteriota, the most dominant phylum, and Firmicutes. Proteobacteria and Bacteroidota abundances showed significant positive correlations with alkalinity, whereas Patescibacteria, Cyanobacteria, Planctomycetota, and Verrucomicrobiota abundance were positively correlated with salinity. Linear regression analysis showed that alkalinity was positively correlated with bacterial beta diversity and salinity was negatively correlated with that. In addition, white shrimp aquaculture significantly lowered the alkalinity, which suggests that culture of this species in inland salt-alkaline regions is a potential dealkalization solution.
Collapse
Affiliation(s)
- K Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - S Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - W Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - K J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
35
|
Biochar Amendments Improve Licorice ( Glycyrrhiza uralensis Fisch.) Growth and Nutrient Uptake under Salt Stress. PLANTS 2021; 10:plants10102135. [PMID: 34685945 PMCID: PMC8539127 DOI: 10.3390/plants10102135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.
Collapse
|
36
|
Wang S, Zheng J, Wang Y, Yang Q, Chen T, Chen Y, Chi D, Xia G, Siddique KH, Wang T. Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application. FRONTIERS IN PLANT SCIENCE 2021; 12:650432. [PMID: 34135920 PMCID: PMC8200678 DOI: 10.3389/fpls.2021.650432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/03/2021] [Indexed: 05/31/2023]
Abstract
The effect of biochar application on photosynthetic traits and yield in peanut (Arachis hypogaea L.) is not well understood. A 2-year field experiment was conducted in Northwest Liaoning, China to evaluate the effect of biochar application [0, 10, 20, and 40 t ha-1 (B0, B10, B20, and B40)] on leaf gas exchange parameters, chlorophyll fluorescence parameters, and yield of peanut. B10 improved photochemical quenching at flowering and pod set and reduced non-photochemical quenching at pod set, relative to B0. B10 and B20 increased actual photochemical efficiency and decreased regulated energy dissipated at pod set, relative to B0. B10 significantly increased net photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency at flowering and pod set, relative to B0. Compared with B0, B10 significantly improved peanut yield (14.6 and 13.7%) and kernel yield (20.2 and 14.4%). Biochar application increased leaf nitrogen content. B10 and B20 significantly increased plant nitrogen accumulation, as compared to B0. The net photosynthetic rate of peanut leaves had a linear correlation with plant nitrogen accumulation and peanut yield. The application of 10 t ha-1 biochar produced the highest peanut yield by enhancing leaf photosynthetic capacity, and is thus a promising strategy for peanut production in Northwest Liaoning, China.
Collapse
Affiliation(s)
- Shujun Wang
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Junlin Zheng
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Yujia Wang
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Qingfeng Yang
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Taotao Chen
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Daocai Chi
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Guimin Xia
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Tieliang Wang
- Key Laboratory of Agricultural Soil and Water Engineering of Liaoning Province, College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
37
|
Zhang L, Ren Y, Xue Y, Cui Z, Wei Q, Han C, He J. Preparation of biochar by mango peel and its adsorption characteristics of Cd(ii) in solution. RSC Adv 2020; 10:35878-35888. [PMID: 35517110 PMCID: PMC9056954 DOI: 10.1039/d0ra06586b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Biochars were prepared by pyrolyzing mango peel waste at 300, 400, 500, 600 and 700 °C. Various characterizations were carried out to explore the effect of pyrolysis temperature on the biochars. The data indicated that the physical and chemical properties of biochar such as pH, element ratio, specific surface area and functional groups changed with the increase of pyrolysis temperature. The yield and contents of hydrogen, nitrogen and oxygen decreased, while contents of the ash and carbon, pH and specific surface area of the biochars increased. In addition, the molar ratios of H/C, O/C and (O + N)/C decreased. In this study, batch adsorption experiments for Cd(ii) adsorption were performed with initial Cd(ii) concentrations of 10-300 mg L-1, contact times of 0-2880 min, various pH (2-8) and biochar dose (1-20 g L-1). Langmuir isotherm and pseudo-second-order kinetics models were better fits than other models, suggesting the dominant adsorption of mango peel biochars is via monolayer adsorption. Biochar derived at 500 °C was found to have the highest adsorption capacity of 13.28 mg g-1 among all biochars and the adsorption efficiency was still 67.7% of the initial adsorption capacity after desorption for 4 times. Based on adsorption kinetics and isotherm analysis in combination with EDS, FTIR and XRD analysis, it was concluded that cation exchange, complexation with surface functional groups and precipitation with minerals were the dominant mechanisms responsible for Cd adsorption by mango peel biochar. The study suggested that mango peel can be recycled to biochars and can be used as a low-cost adsorbent for Cd(ii) removal from wastewater.
Collapse
Affiliation(s)
- Liming Zhang
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center Changzhou 213164 PR China
| | - Yuhao Xue
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Zhiwen Cui
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Qihang Wei
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Chuan Han
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center Changzhou 213164 PR China
| |
Collapse
|