1
|
Hong Y, Ding Q, Yang T, Li X, Song N, Zhang J. Per- and polyfluoroalkyl substances (PFAS) in drinking water systems in the lower Yangtze River: source, fate, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:197. [PMID: 40325274 DOI: 10.1007/s10653-025-02506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The Yangtze River is significantly impacted by industrial activities related to per- and polyfluoroalkyl substances (PFAS) in China, posing potential threats to drinking water safety. So far, our knowledge of PFAS occurrence in the river and their fate in the whole drinking water supply systems remains limited. We conducted a comprehensive investigation of PFAS in Jiangsu's drinking water systems, using the target screening method. 12 perfluoroalkyl acids (PFAAs) and 7 emerging PFAS were detected and precisely quantified in the whole treatment process water flows, as well as source water and household tap water with concentrations of 61.34-90.40 ng/L. PFAAs [PFOA (30.26 ng/L), PFBS (23.25 ng/L), PFBA (18.82 ng/L) and PFHxA (16.89 ng/L)] and 8:8 PFPiA (13.63 ng/L) were the dominant pollutants in the low Yangtze River. PFBA (19.92 ng/L), PFBS (15.02 ng/L) and PFOA (11.94 ng/L) were major contaminants in tap water. The powder activated carbon pre-treatment in DWTP-B could remove 21.36-65.84% of long-chain PFAS, especially PFOA. Ozonation achieved slight emerging PFAS removal (3.22-11.06%), while PFAAs concentrations exhibited an increase. Granular active carbon filtration was effective in removing long-chain PFAS, with DWTP-B outperforming DWTP-A. PFSAs (3.12-22.09%) had a better removal than PFCAs (- 0.62 to 19.54%). Infants and children face a moderate health risk of PFAS intake through drinking water, peaking at the age group of 9 months to 1 year (HQ = 2.45). These findings underscore the necessity for improved PFAS removal technologies and stricter regulation of PFAS contamination in the Yangtze River to reduce exposure.
Collapse
Affiliation(s)
- Yuan Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Tingting Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Xiaoqin Li
- Yangzhou Center for Disease Control and Prevention, Yangzhou, 225100, Jiangsu, China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Zhao S, Sun Y, Duan J, Zhang T, Xiao Y, Zhu Y, Jia Y, Zhong W, Zhu L. Impacts of Gestational F-53B Exposure on Fetal Neurodevelopment: Insights from Placental and Thyroid Hormone Disruption. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:308-320. [PMID: 40144320 PMCID: PMC11934197 DOI: 10.1021/envhealth.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 03/28/2025]
Abstract
It has been evidenced that chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) have strong potential cross the placental barrier, but their adverse effects on offspring remain unclear. In this study, pregnant mice received daily intraperitoneal injections of chlorinated polyfluorinated ether sulfonate (Cl-PFESA; commercially known as F-53B, primarily comprising 6:2 Cl-PFESA and 8:2 Cl-PFESA) at dosages of 40 and 200 μg/kg from gestational days 6 to 17. Following gestational exposure, distinct accumulation of 6:2 and 8:2 Cl-PFESAs was observed in both the placenta and fetal brain, confirming their penetration across the placental and fetal blood-brain barriers. Maternal exposure to F-53B disrupted the placental 11β-hydroxysteroid dehydrogenase type 2 (hsd11b2) barrier, characterized by hypermethylation of its promoter, decreased blood sinusoids in labyrinth layer, and downregulation of the nutrient transport genes, thereby severely impairing the placenta's protective and nutrient transfer functions. Concomitantly, significant fetal intrauterine growth restriction indicated by decreased fetal weight and crown-rump length was observed. Additionally, changes in thyroid hormones, along with transcriptional and DNA methylation alterations in the promoter regions of transthyretin (ttr) and deiodinase 3 (dio3) genes, were noted in the placenta. These epigenetic changes might affect the maternal-fetal transport of thyroid hormones, possibly leading to disrupted thyroid function in the F1 generation. With the decreased nutrient transport capacity of the placenta, T4 levels in the fetus are significantly reduced, resulting in significant fetal neurodevelopmental abnormalities, reduced nerve cell proliferation (Ki67), and damage to synaptic plasticity. This study reveals unveil the hidden dangers of F-53B, highlighting its neurotoxic effects on fetal development through the disruption of thyroid hormone transport across the placenta.
Collapse
Affiliation(s)
- Sujuan Zhao
- School
of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yumeng Sun
- Key
Laboratory of Pollution Processes and Environmental Criteria, Ministry
of Education, Tianjin Key Laboratory of Environmental Remediation
and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiayao Duan
- School
of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tianxu Zhang
- Key
Laboratory of Pollution Processes and Environmental Criteria, Ministry
of Education, Tianjin Key Laboratory of Environmental Remediation
and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuchun Xiao
- School
of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yumin Zhu
- Key
Laboratory of Pollution Processes and Environmental Criteria, Ministry
of Education, Tianjin Key Laboratory of Environmental Remediation
and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yibo Jia
- Key
Laboratory of Pollution Processes and Environmental Criteria, Ministry
of Education, Tianjin Key Laboratory of Environmental Remediation
and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key
Laboratory of Pollution Processes and Environmental Criteria, Ministry
of Education, Tianjin Key Laboratory of Environmental Remediation
and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key
Laboratory of Pollution Processes and Environmental Criteria, Ministry
of Education, Tianjin Key Laboratory of Environmental Remediation
and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Zhou Y, Liu Y, Yuan X, Ruan Y, Chen H. Distinct binding affinity of perfluoroalkyl acids to plant and animal proteins revealed by dialysis experiments, fluorescence spectroscopy, and QSAR modeling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117902. [PMID: 39965320 DOI: 10.1016/j.ecoenv.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Understanding the binding dynamics between perfluoroalkyl acids (PFAAs) and proteins is crucial for risk assessment, as protein binding plays a vital role in the bioaccumulation of PFAAs. This study employed dialysis experiments to measure the protein-water partition coefficient of PFAAs with representative plant and animal proteins, including standard bovine serum albumin, soy protein isolate, and C-phycocyanin. Fluorescence spectroscopy was investigated to elucidate the binding affinity of PFAAs on bovine serum albumin (BSA). Additionally, through the construction of the quantitative structure-activity relationship (QSAR) model, this research comprehensively analyzed the binding characteristics of various PFAAs to proteins, offering insights into the molecular mechanisms of PFAAs-protein interactions. The results revealed that the binding capacity of bovine serum albumin for PFAAs was significantly superior to that of C-phycocyanin and soy protein isolate. Electrostatic attraction was the predominant factor influencing the interaction between proteins and PFAAs. The binding of PFAAs to proteins was chiefly mediated by tryptophan residues, and there was no notable change in the protein conformation pre- and post-binding. Finally, the QSAR models, constructed with energy gap (Egap) between the highest occupied and the lowest unoccupied molecular orbitals, the net charge of the most negative atom (q), and ionic volume as descriptors, suggested that the hydrophobic interactions, electrostatic interactions, and the stability of PFAA molecule are key factors affecting PFAA-protein binding. This study enhances our comprehension of the binding capacity of animal and plant proteins to PFAAs, while also establishing a foundation for future research on the binding of emerging PFAA alternatives to proteins.
Collapse
Affiliation(s)
- Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaojia Yuan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuefei Ruan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Lei H, Lu Y, Wang P, Xie X, Li J, An X, Liang Z, Sun B, Wang C. Shift from legacy to emerging per- and polyfluoroalkyl substances for watershed management along the coast of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125153. [PMID: 39427954 DOI: 10.1016/j.envpol.2024.125153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Per- and polyfluoroalkyl substances and their short-chain alternatives have attracted world-wide attention due to their widespread presence and persistence in the environment. However, the sources, environmental fate, and driving forces of PFAS in coastal ecosystems remain poorly understood. In this study, the spatial distribution, source apportionment, and driving mechanisms of PFAS were investigated through a comprehensive analysis of water samples collected along the China's coastline. The concentrations of Σ25PFAS in water samples followed a general pattern, with higher levels observed in northern coastal zones of China than the south, ranging from 0.72 to 1872.21 ng L-1. PFOA and PFBA were dominant. Emerging short-chain PFAS, such as PFBS, PFBA, F-53B and GenX, were frequently detected, with detection rates of 97%, 99%, 95% and 77%, respectively. This indicated a shift in coastal PFAS contamination from legacy compounds to emerging short-chain alternatives. Source apportionment using the Positive Matrix Factorization model identified key contributors to PFAS pollution, including textile production, volatile precursors, precious metal industries, aqueous film-forming foam, metal-plating, electrochemical fluorination, and fluoropolymer manufacturing. Additionally, PFAS concentrations were significantly positively correlated with cultivated land, urban area, and wastewater discharge, while negatively correlated with annual precipitation and woodland coverage (p < 0.05). Socio-economic development was identified as a major driver of PFAS emissions, while the hydrological factors and vegetation coverage can significantly enhance watershed resilience against PFAS pollution.
Collapse
Affiliation(s)
- Haojie Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xingwei Xie
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Jialong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Zian Liang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| |
Collapse
|
5
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
6
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Qu R, Wang J, Li X, Zhang Y, Yin T, Yang P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. TOXICS 2024; 12:678. [PMID: 39330606 PMCID: PMC11435644 DOI: 10.3390/toxics12090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
PFAS (per- and polyfluoroalkyl substances) have been extensively used across numerous industries and consumer goods. Due to their high persistence and mobility, they are ubiquitous in the environment. Exposure to PFAS occurs in people via multiple pathways such as dermal contact, water supply, air inhalation, and dietary intake. Even if some PFAS are being phased out because of their persistent presence in the environment and harmful impacts on human health, mixes of replacement and legacy PFAS will continue to pollute the ecosystem. Numerous toxicological investigations have revealed harmful effects of PFAS exposure on female reproductive health, e.g., polycystic ovaries syndrome, premature ovarian failure, endometriosis, reproductive system tumors, pregnancy complications, and adverse pregnancy outcomes. Despite extensive epidemiological studies on the reproductive toxicity of PFAS, research findings remain inconsistent, and the underlying mechanisms are not well understood. In this review, we give an in-depth description of the sources and pathways of PFAS, and then review the reproductive toxicity of PFAS and its possible mechanisms.
Collapse
Affiliation(s)
- Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tailang Yin
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
8
|
Ihn Y, Cho Y, Lee I, Oh JS, Moon HB, Choi K. Thyroid and neurobehavioral effects of DiNP on GH3 cells and larval zebrafish (Danio rerio). CHEMOSPHERE 2024; 362:142593. [PMID: 38866335 DOI: 10.1016/j.chemosphere.2024.142593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Diisononyl phthalate (DiNP) has been used to replace bis(2-ethylhexyl) phthalate (DEHP) and is frequently found in the environment and humans. DiNP is reported for its anti-androgenic activity; however, little is known about its effects on thyroid function and neurodevelopment. In the present study, the thyroid disruption and neurobehavioral alteration potential of DiNP and its major metabolites were assessed in a rat pituitary carcinoma cell line (GH3) and embryo-larval zebrafish (Danio rerio). In GH3 cells, exposure to DiNP and its metabolites not only increased proliferation but also induced transcriptional changes in several target genes, which were different from those observed with DEHP exposure. In larval fish, a 5-day exposure to DiNP caused significant increases in thyroid hormone levels, following a similar pattern to that reported for DEHP exposure. Following exposure to DiNP, the activity of the larval fish decreased, and neurodevelopment-related genes, such as c-fos, elavl3, and mbp, were down-regulated. These changes are generally similar to those observed for DEHP. Up-regulation of gap43 and down-regulation of elavl3 gene, which are important for both thyroid hormone production and neurodevelopment, respectively, support the potential for both thyroid and behavioral disruption of DiNP. Overall, these results emphasize the need to consider the adverse thyroid and neurodevelopmental effects in developing regulations for DEHP-replacing phthalates.
Collapse
Affiliation(s)
- Yunchul Ihn
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yoojin Cho
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jin-Su Oh
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
10
|
Coperchini F, Greco A, Rotondi M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects? J Endocrinol Invest 2024; 47:1863-1879. [PMID: 38522066 PMCID: PMC11266260 DOI: 10.1007/s40618-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Britton KN, Judson RS, Hill BN, Jarema KA, Olin JK, Knapp BR, Lowery M, Feshuk M, Brown J, Padilla S. Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:501. [PMID: 39058153 PMCID: PMC11281043 DOI: 10.3390/toxics12070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 μM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 μM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.
Collapse
Affiliation(s)
- Katy N. Britton
- Oak Ridge Associated Universities Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Computational Toxicology and Bioinformatics Branch, Research Triangle Park, NC 27711, USA;
| | - Bridgett N. Hill
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Morgan Lowery
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Madison Feshuk
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Data Extraction and Quality Evaluation Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jason Brown
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Application Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| |
Collapse
|
12
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
13
|
Mou Y, Liao W, Liang Y, Li Y, Zhao M, Guo Y, Sun Q, Tang J, Wang Z. Environmental pollutants induce NLRP3 inflammasome activation and pyroptosis: Roles and mechanisms in various diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165851. [PMID: 37516172 DOI: 10.1016/j.scitotenv.2023.165851] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Environmental pollution is changing with economic development. Most environmental pollutants are characterized by stable chemical properties, strong migration, potential toxicity, and multiple exposure routes. Harmful substances are discharged excessively, and large quantities of unknown new compounds are emerging, being transmitted and amplifying in the food chain. The increasingly severe problems of environmental pollution have forced people to re-examine the relationship between environmental pollution and health. Pyroptosis and activation of the NLRP3 inflammasome are critical in maintaining the immune balance and regulating the inflammatory process. Numerous diseases caused by environmental pollutants are closely related to NLRP3 inflammasome activation and pyroptosis. We intend to systematically explain the steps and important events that are common in life but easily overlooked by which environmental pollutants activate the NLRP3 inflammasome and pyroptosis pathways. This comprehensive review also discusses the interaction network between environmental pollutants, the NLRP3 inflammasome, pyroptosis, and diseases. Thus, research progress on the impact of decreasing oxidative stress levels to inhibit the NLRP3 inflammasome and pyroptosis, thereby repairing homeostasis and reshaping health, is systematically examined. This review aims to deepen the understanding of the impact of environmental pollutants on life and health and provide a theoretical basis and potential programs for the development of corresponding treatment strategies.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun Liang
- The Third People's Hospital of Chengdu, Chengdu 610014, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaoyao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
14
|
Ivantsova E, Lopez-Scarim V, Sultan A, English C, Biju A, Souders CL, Padillo-Anthemides NE, Konig I, Martyniuk CJ. Evidence for neurotoxicity and oxidative stress in zebrafish embryos/larvae treated with HFPO-DA ammonium salt (GenX). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104315. [PMID: 37984673 DOI: 10.1016/j.etap.2023.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
"GenX" [ammonium perfluoro (2-methyl-3-oxahexanoate] was developed as a replacement chemical for toxic perfluorinated compounds to be used in product manufacturing. Here, we assessed developmental, mitochondrial, and behavioral toxicity endpoints in zebrafish embryos/larvae exposed to GenX. GenX exerted low toxicity to zebrafish embryos/larvae up to 20 mg/L. GenX did not affect mitochondrial oxidative phosphorylation nor ATP levels. ROS levels were reduced in larvae fish exposed to 10 and 100 µg/L, indicative of an antioxidant defense; however, ROS levels were elevated in fish exposed to 1000 µg/L. Increased expression of cox1 and sod2 in GenX exposed 7-day larvae was noted. GenX (0.1 or 1 µg/L) altered transcripts associated with neurotoxicity (elavl3, gfap, gap43, manf, and tubb). Locomotor activity of larvae was reduced by 100 µg/L GenX, but only in light periods. Perturbations of anxiety-related behaviors in larvae were not observed with GenX exposure. These data inform risk assessments for long-lived perfluorinated chemicals of concern.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Victoria Lopez-Scarim
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Amany Sultan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Animal Health Research Institute, Agriculture Research Center (ARC), Egypt
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Angel Biju
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Natalia E Padillo-Anthemides
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA; UF Genetics Institute, Genetics and Genomics Graduate Program, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute and the Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
15
|
Yang Y, Bai X, Lu J, Zou R, Ding R, Hua X. Assessment of five typical environmental endocrine disruptors and thyroid cancer risk: a meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1283087. [PMID: 38027118 PMCID: PMC10643203 DOI: 10.3389/fendo.2023.1283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction There are conflicting reports on the association between environmental endocrine disruptors (EEDs) and thyroid cancer. This meta-analysis aimed to elucidate the relationship between EEDs and thyroid cancer. Methods We searched for epidemiological studies on EEDs and thyroid cancer published in PubMed and Web of Science up to December 2022. We then screened the articles that could extract data on EEDs concentration levels in both thyroid cancer patients and healthy controls. We excluded articles that could not calculate effect sizes, focused on other thyroid diseases, or lacked controls. Standardized mean difference (SMD) was calculated to analyze the association between EEDs and thyroid cancer. We measured the heterogeneity among the included studies using I2, assessed publication bias by Egger's and Begg's test, and evaluated article quality using the Newcastle-Ottawa Quality Score (NOS). In the end, fifteen eligible case-control studies were included. Results Our comprehensive analysis revealed that polychlorinated biphenyls (PCBs) were negatively associated with thyroid cancer{ SMD = -0.03, 95% confidence interval (CI) = (-0.05, -0.00), P = 0.03}, while polybrominated diphenyl ethers (PBDEs), phthalates (PAEs), and heavy metals were positively associated with thyroid cancer{PBDEs: SMD = 0.14, 95%CI = (0.04, 0.23), P = 0.007; PAEs: SMD = 0.30, 95%CI = (0.02, 0.58), P = 0.04; heavy metals: SMD = 0.21, 95%CI = (0.11, 0.32), P < 0.001}. We did not find a statistically significant relationship between bisphenol A (BPA) and thyroid cancer. Most of the included studies did not show publication bias, except for those on PCBs. Discussion Our results indicate that exposure to certain EEDs, such as PBDEs, PAEs, and heavy metals, increases the risk of thyroid cancer. However, further large-scale epidemiological studies and mechanism studies are needed to verify these potential relationships and understand the underlying biological mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Liu M, Yi S, Yu H, Zhang T, Dong F, Zhu L. Underlying Mechanisms for the Sex- and Chemical-Specific Hepatotoxicity of Perfluoroalkyl Phosphinic Acids in Common Carp ( Cyprinus carpio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14515-14525. [PMID: 37728733 DOI: 10.1021/acs.est.3c04964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The hepatotoxicities of perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been extensively investigated, while little is known about the sex-specific differences. In this study, common carp were exposed to the emerging perfluoroalkyl phosphinic acids (6:6 and 8:8 PFPiAs) for 14 days to disclose sex-specific hepatotoxicity. Apparent hepatotoxicity, including cell necrosis, apoptosis, and steatosis, was observed in both male and female carp liver. The observed hepatocyte steatosis was predominantly attributed to the dysregulation of hepatic lipid metabolism but was based on sex-specific mechanisms. It was manifested as inhibited oxidative decomposition of fatty acids (FAs) in the female liver, whereas it enhanced the uptake of FAs into the male liver, both of which led to excessive lipid accumulation. Untargeted lipidomics validated that the metabolism pathways of FA, sphingolipid, glycerolipid, and glycerophospholipid were disrupted by both compounds, leading to the generation of reactive oxygen species and oxidative stress. The oxidative stress further evolved into inflammation, manifested as promoted expression of proinflammatory cytokines and repressed expression of anti-inflammatory cytokines. Consistently, all of the changes were more noticeable in male carp, suggesting that male fish were more susceptible to PFPiA disruption. 8:8 PFPiA was less accumulated but caused stronger hepatotoxicity than 6:6 PFPiA, possibly because of the stronger binding capacity of 8:8 PFPiA to nuclear transcription factors mediating lipid metabolism and inflammation. The findings of this study highlight the significance of sex- and chemical-dependent bioaccumulation and the toxicity of PFASs in organisms.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Liu X, Zhang L, Liu J, Zaya G, Wang Y, Xiang Q, Li J, Wu Y. 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonates Exert Stronger Thyroid Homeostasis Disruptive Effects in Newborns than Perfluorooctanesulfonate: Evidence Based on Bayesian Benchmark Dose Values from a Population Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11489-11498. [PMID: 37490343 DOI: 10.1021/acs.est.3c03952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Growing toxicologic evidence suggests that emerging perfluoroalkyl substances (PFASs), like chlorinated polyfluoroalkyl ether sulfonate (Cl-PFESA), may be as toxic or more toxic than perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA). However, further investigations are needed in terms of the human health risk assessment. This study examined the effects of emerging and legacy PFAS exposure on newborn thyroid homeostasis and compared the thyroid disruption caused by 6:2 Cl-PFESA and PFOS using a benchmark dose approach. The health effects of mixture and individual exposure were estimated using the partial least-squares (PLS) model and linear regression, respectively. A Bayesian benchmark dose (BMD) analysis determined the BMD value for adverse effect comparison between 6:2 Cl-PFESA and PFOS. The median (interquartile range) concentrations of 6:2 Cl-PFESA (0.573 [0.351-0.872] ng/mL), PFOS (0.674 [0.462-1.007] ng/mL), and PFOA (1.457 [1.034, 2.405] ng/mL) were found to be similar. The PLS model ranked the PFAS variables' importance in projection (VIP) scores as follows: 6:2 Cl-PFESA > PFOS > PFOA. Linear regression showed that 6:2 Cl-PFESA had a positive association with free triiodothyronine (FT3, P = 0.006) and triiodothyronine (T3, P = 0.014), while PFOS had a marginally significant positive association with FT3 alone (P = 0.042). The BMD analysis indicated that the estimated BMD10 for 6:2 Cl-PFESA (1.01 ng/mL) was lower than that for PFOS (1.66 ng/mL) in relation to a 10% increase in FT3. These findings suggest that 6:2 Cl-PFESA, an alternative to PFOS, has a more pronounced impact on newborns' thyroid homeostasis compared to PFOS and other legacy PFASs.
Collapse
Affiliation(s)
- Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Gerili Zaya
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuxin Wang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Qian Xiang
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100021, China
| |
Collapse
|
19
|
Zhang T, Zhu L, Sun Y, Yang L, Yi S, Zhong W. Novel Insights on 6:6 Perfluoroalkyl Phosphonic Acid-Induced Melanin Synthesis Disorders Leading to Pigmentation in Tadpoles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11032-11042. [PMID: 37467139 DOI: 10.1021/acs.est.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are widely present in aquatic environments and can potentially harm aquatic organisms. Pigmentation affects the probability of aquatic organisms being preyed on and serves as an important toxic endpoint of development, but little is known about the impacts of PFPiAs on the development of aquatic organisms. In this study, Xenopus laevis embryos were exposed to 6:6 PFPiA (1, 10, and 100 nM) for 14 days. The developed tadpoles exhibited evident pigmentation with increased melanin particle size and density on the skin. Pathological and behavioral experiments revealed that the retinal layers became thinner, reducing the photosensitivity and disturbing the circadian rhythm of the tadpoles. Compared to the control group, the exposed tadpoles showed higher levels but less changes of melanin throughout the light/dark cycle, as well as distinct oxidative damage. Consequently, the expression level of microphthalmia-associated transcription factor (MITF), a key factor inducing melanin synthesis, increased significantly. Molecular docking analysis suggested that 6:6 PFPiA forms strong interactions in the binding pocket of MITF, implying that it could activate MITF directly. The activation of MITF ultimately promotes melanin synthesis, resulting in pigmentation on tadpoles.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Xie X, Lu Y, Wang P, Lei H, Liang Z. Per- and polyfluoroalkyl substances in marine organisms along the coast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162492. [PMID: 36863594 DOI: 10.1016/j.scitotenv.2023.162492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large and complex class of synthetic chemicals widely used in industrial and domestic products. This study compiled and analyzed the distribution and composition of PFASs in marine organisms sampled along the coast of China from 2002 to 2020. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were dominant in bivalves, cephalopods, crustaceans, bony fish and mammals. PFOA in bivalves, crustaceans, bony fish and mammals gradually decreased from north to south along the coast of China, and the PFOA contents of bivalves and gastropods in the Bohai Sea (BS) and the Yellow Sea (YS) were higher than those of PFOS. The increased production and use of PFOA have been detected by biomonitoring temporal treads in mammals. For the organisms in the East China Sea (ECS) and the South China Sea (SCS), which were less polluted by PFOA compared to BS and YS, PFOS was universally higher than PFOA. The PFOS of mammals with high trophic levels was significantly higher than that of other taxa. This study is conducive to better understanding the monitoring information of PFASs of marine organisms in China and is of great significance for PFAS pollution control and management.
Collapse
Affiliation(s)
- Xingwei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zian Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
21
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
22
|
Crisalli AM, Cai A, Cho BP. Probing the Interactions of Perfluorocarboxylic Acids of Various Chain Lengths with Human Serum Albumin: Calorimetric and Spectroscopic Investigations. Chem Res Toxicol 2023; 36:703-713. [PMID: 37001030 PMCID: PMC11091765 DOI: 10.1021/acs.chemrestox.3c00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Despite an exponential increase in PFAS research over the past two decades, the mechanisms behind how PFAS cause adverse health effects are still poorly understood. Protein interactions are considered a significant driver of bioaccumulation and subsequent toxicity from re-exposure; however, most of the available literature is limited to legacy PFAS. We utilized microcalorimetric and spectroscopic methods to systematically investigate the binding between human serum albumin (HSA) and perfluorocarboxylic acids (PFCAs) of varying chain lengths and their nonfluorinated fatty acid (FA) counterparts. The results reveal the optimal chain length for significant PFCA-HSA binding and some fundamental interactions, i.e., the polar carboxylic head of PFCA is countered by ionizable amino acids such as arginine, and the fluorocarbon tails stabilized by hydrophobic residues like leucine and valine. Additionally, fluorine's unique polarizability contributes to PFCA's stronger binding affinities relative to the corresponding fatty acids. Based on these observations, we posit that PFCAs likely bind to HSA in a "cavity-filling" manner, provided they have an appropriate size and shape to accommodate the electrostatic interactions. The results reported herein widen the pool of structural information to explain PFAS bioaccumulation patterns and toxicity and support the development of more accurate computational modeling of protein-PFAS interactions. TOC graphic created with Biorender.com.
Collapse
Affiliation(s)
- Alicia M Crisalli
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
23
|
Liu YZ, Yang K, Zhang W, Zhang Q, Liu TF, Xu T, Li Y, Ran RX, Yang K, Cao YF, Fang ZZ. Inhibition of human sulfotransferases (SULTs) by per- and polyfluoroalkyl substances (PFASs) and structure-activity relationship. Food Chem Toxicol 2023; 174:113664. [PMID: 36775137 DOI: 10.1016/j.fct.2023.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of highly fluorinated aliphatic substances widely used in industrial and commercial applications. This study aims to determine the inhibition of PFASs towards sulfotransferases (SULTs) activity, and trying to explain the toxicity mechanism of PFASs. In vitro recombinant SULTs-catalyzed sulfation of p-nitrophenol (PNP) was utilized as a probe reaction. The incubation system was consisted of PFASs, SULTs, PNP, 3'-phosphoadenosine-5'-phosphosulfate, MgCl2 and Tris-HCl buffer. Ultra-performance liquid chromatography was employed for analysis of the metabolites. All tested PFASs showed inhibition towards SULTs. The longer the carbon chain length of the PFASs terminated with -COOH, the higher is its capability of inhibiting SULT1A3. PFASs with -SO3H had a relatively higher ability to inhibit SULT1A3 activity than those with -COOH, -I and -OH. The inhibition kinetic parameter was 2.16 and 1.42 μM for PFOS-SULT1A1, PFTA-SULT1B1. In vitro in vivo extrapolation showed that the concentration of PFOS and PFTA in human matrices might be higher than the threshold for inducing inhibition of SULTs. Therefore, PFASs could interfere with the metabolic pathways catalyzed by SULTs in vivo. All these results will help to understand the toxicity of PFASs from the perspective of metabolism.
Collapse
Affiliation(s)
- Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, 050000, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institute, Hefei, 230032, China
| | - Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qian Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Baoding First Central Hospital, Baoding, 071000, China
| | - Tong-Feng Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Tong Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Rui-Xue Ran
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, ShangHai, 200032, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, 050000, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institute, Hefei, 230032, China.
| |
Collapse
|
24
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Xu J, Zhang W, Zhong S, Xie X, Che H, Si W, Tuo X, Xu D, Zhao S. Microcystin-leucine-arginine affects brain gene expression programs and behaviors of offspring through paternal epigenetic information. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159032. [PMID: 36167133 DOI: 10.1016/j.scitotenv.2022.159032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) adversely affects male reproduction and interferes with the development of the offspring. Here, we establish a zebrafish (Danio rerio) model to understand the cross-generational effects of MC-LR in a male-lineage transmission pattern. F0 embryos were reared in water containing MC-LR (0, 5, and 25 μg/L) for 90 days and the developmental indices of F1 and F2 embryos were then measured with no MC-LR treatment. The results show that paternal MC-LR exposure reduced the hatching rate, heart rate and body weight in F1 and F2 generations. Global DNA methylation significantly increased in sperm and testes with the elevation expressions of DNA methyltransferases. Meanwhile, DNA methylation of brain-derived neurotrophic factor (bdnf) promoter was increased in sperm after paternal MC-LR exposure. Subsequently, increased DNA methylation of bdnf promoter and decreased gene expression of bdnf in the brain of F1 male zebrafish were detected. F1 offspring born to F0 males exhibit the depression of BDNF/AKT/CREB pathway and recapitulate these paternal neurodevelopment phenotypes in F2 offspring. In addition, the DNA methylations of dio3b and gad1b promoters were decreased and gene expressions of gad1b and dio3b were increased, accompanied with neurotransmitter disturbances in the brain of F1 male zebrafish after paternal MC-LR exposure. These data revealed that MC-LR displays a potential epigenetic impact on the germ line, reprogramming the epigenetic and transcriptional regulation of brain development, and contributing to aberrant expression of neurodevelopment-related genes and behavior disorders.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weiyun Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Shengzheng Zhong
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xinxin Xie
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weirong Si
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
26
|
Zhang T, Zhao S, Dong F, Jia Y, Chen X, Sun Y, Zhu L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6:6 PFPiA through Disturbing the Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1028-1038. [PMID: 36594808 DOI: 10.1021/acs.est.2c04765] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are frequently detected in aquatic environments, but the neurotoxic effects and underlying mechanisms remain unclear. In this study, male zebrafish were exposed to 6:6 PFPiA (1 and 10 nM) for 28 days, which exhibited anxiety-like symptoms. Gut microbiome results indicated that 6:6 PFPiA significantly increased the abundance of Gram-negative bacteria, leading to enhanced levels of lipopolysaccharide (LPS) and inflammation in the gut. The LPS was delivered to the brain through the gut-brain axis (GBA), damaged the blood-brain barrier (BBB), stimulated neuroinflammation, and caused apoptosis as well as neural injury in the brain. This mechanism was verified by the fact that antibiotics reduced the LPS levels in the gut and brain, accompanied by reduced inflammatory responses and anxiety-like behavior. The BBB damage also resulted in the enhanced accumulation of 6:6 PFPiA in the brain, where it might bind strongly with and activate aryl hydrocarbon receptor (AhR) to induce brain inflammation directly. Additionally, as the fish received treatment with an inhibitor of AhR, the inflammation response and anxiety-like behavior decreased distinctly. This study sheds light on the new mechanisms of neurotoxicity-induced 6:6 PFPiA due to the interruption on GBA.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Sujuan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- School of Public Health, Anhui Medical University, Hefei 230032, P.R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
27
|
Cao Z, Li J, Yang M, Gong H, Xiang F, Zheng H, Cai X, Xu S, Zhou A, Xiao H. Prenatal exposure to perfluorooctane sulfonate alternatives and associations with neonatal thyroid stimulating hormone concentration: A birth cohort study. CHEMOSPHERE 2023; 311:136940. [PMID: 36273603 DOI: 10.1016/j.chemosphere.2022.136940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA) and perfluorobutane sulfonate (PFBS), used as perfluorooctanesulfonate (PFOS) alternatives, were indicated as thyroid hormone disruptive toxicants in experimental studies. However, it is unclear whether prenatal exposure to Cl-PFESA and PFBS affects neonatal thyroid stimulating hormone (TSH) in human. OBJECTIVE To disclose the relationships between prenatal Cl-PFESAs and PFBS exposure and neonatal thyroid-stimulating hormone (TSH) levels based on a perspective cohort study. METHODS A total of 1015 pairs of mother and newborn were included from an ongoing birth cohort study in Wuhan, China, between 2013 and 2014. Six PFASs in cord blood sera and TSH concentration in neonatal postpartum heel sticks blood were quantified. Mixed linear and weighted quantile sum (WQS) regression models were applied to assess the individual and combination effects of PFASs exposure on neonatal TSH levels with multiple covariates adjustments. RESULTS After adjusting for potential confounders and other five PFASs, for each 1-ng/mL increase of PFBS or 8:2 Cl-PFESA, was negatively associated with 25.90% (95%CI: 37.37%, -12.32%; P < 0.001) and 27.19% (95%CI: 46.15%, -1.55%; P = 0.033) change in TSH in male but not female infants, respectively. No significant association was found between other PFASs exposure and neonatal TSH. Higher PFAS mixture in cord blood was significantly associated with decrease TSH concentration in all newborns (β = -0.36; 95%CI: 0.58, -0.13; P = 0.001) identified by WQS regression model. PFBS, PFOS and 6:2 Cl-PFESA were the major contributors to the neonatal TSH decrement with the weights of 56.50%, 18.71%, 12.81% among PFAS mixture, respectively. CONCLUSIONS our prospective cohort study suggested a negative association of cord serum PFBS and 8:2 CI-PFESA with TSH concentration in newborns, especially for boys. Additional studies are required to elaborate on the underlying biological mechanisms, especially for PFBS.
Collapse
Affiliation(s)
- Zhongqiang Cao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Junwei Li
- Department of Pediatrics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Meng Yang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjian Gong
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Feiyan Xiang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Zheng
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaonan Cai
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Aifen Zhou
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Han Xiao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
28
|
Lin CY, Lee HL, Chen CW, Wang C, Sung FC, Su TC. Global DNA methylation mediates the association between serum perfluorooctane sulfonate and carotid intima-media thickness in young and middle-aged Taiwanese populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113782. [PMID: 35753273 DOI: 10.1016/j.ecoenv.2022.113782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals used in the manufacture of many everyday products. Previous reports have shown PFAS exposure may contribute to cardiovascular diseases (CVD). Recent studies have also identified a critical role for DNA methylation, a model of epigenetic regulation, in the pathogenesis of CVD. Additionally, PFAS has been shown to affect DNA methylation. Our previous study reported the positive association between serum perfluorooctane sulfonate (PFOS) levels and mean carotid intima-media thickness (CIMT), a biomarker of arteriosclerosis, in a cohort composed of adolescent and young adult Taiwanese. However, the contribution of DNA methylation in the mechanism of PFOS-induced arteriosclerosis has never been explored in previous literature. APPROACH AND RESULTS In this cross-sectional study, we included 1425 young and middle-aged Taiwanese individuals (12-63 years) to investigate the correlation between serum PFOS levels, 5mdC/dG (a global DNA methylation marker) and the mean CIMT. We showed that the positive association between serum PFOS levels, 5mdC/dG, and mean CIMT. The regression coefficients of mean CIMT with a one-unit increase in ln-PFOS concentration were higher when the levels of 5mdC/dG were above the 50th percentile in the multiple regression analysis. In the structural equation model (SEM), the results showed that serum PFOS levels were directly correlated with mean CIMT and indirectly correlated with CIMT through 5mdC/dG. CONCLUSIONS Our results showed that PFOS exposure has direct associations on arteriosclerosis and indirect direct associations on arteriosclerosis through DNA methylation. The results suggest that DNA methylation might regulate the relationship between PFOS and arteriosclerosis in the study subjects. Additional works are required to understand the causal inference between PFOS, DNA methylation, and arteriosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
29
|
Weng X, Liang H, Tan Y, Chen J, Fei Q, Liu S, Guo X, Wen L, Wu Y, Jing C. Mixed effects of perfluoroalkyl and polyfluoroalkyl substances exposure on cognitive function among people over 60 years old from NHANES. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32093-32104. [PMID: 35013956 DOI: 10.1007/s11356-021-17789-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The relationship between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and cognitive function are inconsistent, and the mixed effects of PFAS on cognitive function are still unclear. We aimed to evaluate the joint effects of PFAS on cognitive function assessed using four tests as follows: the Consortium to Establish a Registry for Alzheimer's Disease Immediate Recall Test (IRT), Delayed Recall Test (DRT), the Animal Fluency Test (AFT), and the Digit Symbol Substitution Test (DSST) in the US elderly. A total of 777 individuals aged ≥ 60 from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 were included in this study. Multivariable logistic regression and Bayesian kernel machine regression (BKMR) were constructed to estimate the overall and the individual effects of PFAS exposure on cognitive function. There were 21.36%, 22.65%, 21.62%, and 21.24% participants with cognitive decline in IRT, DRT, AFT, and DSST, respectively. After multivariable adjustment, perfluorooctanoic acid (PFOA) was inversely associated with cognitive decline in IRT, DRT, and AFT, while no significant association was observed between any other PFAS and cognitive decline. Compared with the lowest quartile, the adjusted odds ratio of cognitive decline with a 95% confidence interval (CI) for the highest quartile of PFOA was 0.33 (95% CI: 0.15-0.69) in IRT, 0.50 (0.26-0.96) in DRT, and 0.45 (0.21-0.95) in AFT. In BKMR analysis, the overall effect of mixtures was significantly protective on cognitive decline in IRT, of which PFOA made the greatest contribution. The consistent protective effect in DRT and DSST was observed when all the chemicals were at their 50th percentile or below it. No significant interaction was observed among PFAS for cognitive function. These findings suggested that PFAS mixture at a low level of current exposure of the US population may have a protective effect on cognitive function.
Collapse
Affiliation(s)
- Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qiaoyuan Fei
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xinrong Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
30
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
31
|
Zhang X, Sun Y, Gao Y, Liu Z, Ding J, Zhang C, Liu W, Zhang H, Zhuang S. Thyroid Dysfunction of Zebrafish ( Danio rerio) after Early-Life Exposure and Discontinued Exposure to Tetrabromobiphenyl (BB-80) and OH-BB-80. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2519-2528. [PMID: 35075897 DOI: 10.1021/acs.est.1c07767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3,3',5,5'-Tetrabromobiphenyl (BB-80) was once used as additive flame retardants. Whether its early exposure and discontinued exposure alter thyroid function remains unknown. We investigate adverse effects after early-life exposure and discontinued exposure to BB-80 and hydroxylated BB-80 (OH-BB-80) on thyroid hormone (TH) levels, thyroid tissue, and transcriptome profiles in zebrafish larvae. BB-80 at 10 μg/L induces pathological changes of thyroid with reduced thyroid follicles in larvae (P < 0.05), whereas OH-BB-80 significantly increases T4 and T3 contents (1.8 and 2.5 times of the control, P < 0.05) at 14 days postfertilization (dpf) without morphological thyroid alterations. BB-80 and OH-BB-80 cause transcriptome aberrations with key differentially expressed genes involved in the disruption of TH synthesis and signal transduction (BB-80 at 14 dpf) or TH pathway activation (OH-BB-80 at 21 dpf). After 7 days of discontinued exposure, thyroglobulin (tg) and thyroid peroxidase (tpo) genes are downregulated (P < 0.05) by 52 and 48% for BB-80 and by 49 and 39% for OH-BB-80, respectively; however, the whole-body TH levels fail to fully recover, and the locomotor activity is impaired more by BB-80. Our results indicate significant adverse impacts of BB-80 and OH-BB-80 on TH homeostasis and thyroid function of zebrafish.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiquan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Jiafeng Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston, Clear Lake, Texas 77058, United States
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Shulin Zhuang
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, National Demonstration Center for Experimental Environment and Resources Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
33
|
Stockin KA, Yi S, Northcott GL, Betty EL, Machovsky-Capuska GE, Jones B, Perrott MR, Law RJ, Rumsby A, Thelen MA, Graham L, Palmer EI, Tremblay LA. Per- and polyfluoroalkyl substances (PFAS), trace elements and life history parameters of mass-stranded common dolphins (Delphinus delphis) in New Zealand. MARINE POLLUTION BULLETIN 2021; 173:112896. [PMID: 34601248 DOI: 10.1016/j.marpolbul.2021.112896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Profiles of 33 PFAS analytes and 12 essential and non-essential trace elements were measured in livers of stranded common dolphins (Delphinus delphis) from New Zealand. PFAS concentrations reported were largely comparable to those measured in other marine mammal species globally and composed mostly of long-chain compounds including perfluorooctanesulfonic acid (PFOS), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid (PFTrDA) and perfluorooctanesulfonamide (FOSA). PFAS profiles did not vary significantly by location, body condition, or life history. Notably, significant positive correlations were observed within respective PFAS and trace elements. However, only negative correlations were evident between these two contaminant types, suggesting different exposure and metabolic pathways. Age-associated concentrations were found for PFTrDA and four trace elements, i.e. silver, mercury, cadmium, selenium, indicating differences in the bioaccumulation biomagnification mechanisms. Overall, our results contribute to global understanding of accumulation of PFAS by offering first insights of PFAS exposure in cetaceans living within South Pacific Australasian waters.
Collapse
Affiliation(s)
- K A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand.
| | - S Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - G L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - E L Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| | - G E Machovsky-Capuska
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand; The Charles Perkins Centre, The University of Sydney, New South Wales, Australia
| | - B Jones
- School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142, New Zealand
| | - M R Perrott
- School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - R J Law
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand; Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - A Rumsby
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - M A Thelen
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| | - L Graham
- AsureQuality Limited, PO Box 31 242, Lower Hutt, New Zealand
| | - E I Palmer
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Private Bag 102 904, Auckland 0745, New Zealand
| | - L A Tremblay
- School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142, New Zealand; Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| |
Collapse
|
34
|
Deji Z, Liu P, Wang X, Zhang X, Luo Y, Huang Z. Association between maternal exposure to perfluoroalkyl and polyfluoroalkyl substances and risks of adverse pregnancy outcomes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146984. [PMID: 34088118 DOI: 10.1016/j.scitotenv.2021.146984] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), a class of persistent endocrine-disrupting chemicals, are widely used in consumer products due to their unique amphiphilic properties. Previous epidemiological studies suggest association of maternal PFASs exposure and adverse pregnancy outcomes, while evidences about the association are inconsistent. The aim of this systematic review and meta-analysis is to assess the relationship of maternal PFASs exposure and adverse pregnancy outcomes. Twenty-one relevant studies were identified from three databases before 2020. The quality, heterogeneity and possibility of publication bias of included studies were evaluated by Newcastle-Ottawa Scale, Q-statistic and Begg's test, respectively. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were obtained by means of random-effects meta-analysis models. Meta-analysis results revealed that maternal exposure to perfluorooctane sulfonic acid (PFOS) may have a positive association with preterm birth (OR = 1.20, 95% CI: 1.04, 1.38). The pooled estimates also showed limited evidence of association between maternal perfluorononanoic acid (PFNA) exposure and miscarriage (OR = 1.48, 95% CI: 0.92, 2.38) with obvious heterogeneity (I2 = 93.9, p < 0.01). However, no such significant associations were found between the other PFASs and miscarriage, stillbirth and preterm birth. In addition, the subgroup analyses showed that studies on the relationship of maternal PFASs exposure and miscarriage were mainly contributed by developed countries. The meta-analysis results indicated maternal exposure to PFOS can increase the risk of preterm birth. The results of the included studies are inconsistent and the effects of PFASs on human health are complex. Further studies with enough samples are required to verify these findings.
Collapse
Affiliation(s)
- Zhuoma Deji
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xin Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Yuehua Luo
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
35
|
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116929. [PMID: 33751946 DOI: 10.1016/j.envpol.2021.116929] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 05/09/2023]
Abstract
Increasing studies are examining per- and polyfluoroalkyl substances (PFAS) induced toxicity and resulting health outcomes, including epigenetic modifications (e.g., DNA methylation, histone modification, microRNA expression). We critically reviewed current evidence from human epidemiological, in vitro, and animal studies, including mammalian and aquatic model organisms. Epidemiological studies identified the associations between perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) exposure and epigenetic changes in both adult populations and birth cohorts. For in vitro studies, various cell types including neuroblasts, preadipocytes, and hepatocytes have been employed to understand epigenetic effects of PFAS. In studies with animal models, effects of early life exposure to PFAS have been examined using rodent models, and aquatic models (e.g., zebrafish) have been more frequently used in recent years. Several studies highlighted oxidative stress as a key mediator between epigenetic modification and health effects. Collectively, previous research clearly suggest involvement of epigenetic mechanisms in PFAS induced toxicity, though these efforts have primarily focused on specific PFASs (i.e. mainly PFOS and PFOA) or endpoints (i.e. cancer). Additional studies are necessary to define specific linkages among epigenetic mechanisms and related biomarkers or phenotypical changes. In addition, future research is also needed for understudied PFAS and complex mixtures. Studies of epigenetic effects elicited by individual PFAS and mixtures are needed within an adverse outcome pathways framework, which will advance an understanding of PFAS risks to public health and the environment, and support efforts to design less hazardous chemicals.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| | - Isha Thapar
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Honors College, Baylor University, Waco, TX, 76706, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| |
Collapse
|
36
|
Guo J, Zhang J, Wang Z, Zhang L, Qi X, Zhang Y, Chang X, Wu C, Zhou Z. Umbilical cord serum perfluoroalkyl substance mixtures in relation to thyroid function of newborns: Findings from Sheyang Mini Birth Cohort Study. CHEMOSPHERE 2021; 273:129664. [PMID: 33493812 DOI: 10.1016/j.chemosphere.2021.129664] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The epidemiological evidence on the associations between prenatal exposure to perfluoroalkyl substances (PFAS) and thyroid hormones in newborns was inconclusive. OBJECTIVES We aimed to estimate associations of fetal exposure to PFAS individually and in mixtures with thyroid function of newborns. METHODS A total of 490 mother-newborn pairs were included from Sheyang Mini Birth Cohort Study (SMBCS), a prospective cohort that recruited between June 2009 and January 2010. 12 PFAS and 7 thyroid function indicators were quantified in umbilical cord serum. We examined associations of prenatal exposure to individual and a mixture of PFAS with thyroid function indicators using multivariable linear regression and weighted quantile sum (WQS) regression models with adjustment for potential confounders, respectively. RESULTS Higher cord serum concentrations of PFAS mixtures were related to increases in TT4 and FT4 levels, and reductions in TSH concentrations of newborns. Combining single-chemical models with multiple-chemical models, PFOS, PFNA and PFUnDA were associated with increased TT4 levels with contributing to the mixture effects of 46.4%, 22.8%, and 16.7%, respectively. PFOS exposure was in positive association with cord serum FT4 concentrations and contributed 28.9% to the joint effects of mixtures. PFNA and PFHpA were the most important contributors to the decreases of TSH levels of newborns with 46.3% and 45.0% among the mixtures, respectively. CONCLUSIONS The current findings indicated the thyroid disruption of individual PFAS and their mixtures in cord serum. Additional studies are warranted to explore the underlying biological mechanisms, particularly for PFAS mixtures.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Yubin Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
37
|
Rericha Y, Cao D, Truong L, Simonich M, Field JA, Tanguay RL. Behavior Effects of Structurally Diverse Per- and Polyfluoroalkyl Substances in Zebrafish. Chem Res Toxicol 2021; 34:1409-1416. [PMID: 34018735 DOI: 10.1021/acs.chemrestox.1c00101] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in the environment, and some pose significant human and environmental health concerns globally. While some PFAS induce adverse health effects, relatively few toxicological studies adequately address the broad structural diversity of this chemical class. In the current study, we evaluated 58 individual PFAS spanning 14 structural subclasses and 2 mixtures at single concentrations for developmental toxicity in zebrafish using highly sensitive behavior endpoints. Following developmental exposure to PFAS, zebrafish were assessed for mortality and challenged with an embryonic photomotor response (EPR) assay at 24 h postfertilization (hpf) and with larval photomotor response (LPR) and larval startle response assays at 120 hpf. We found that none of the tested PFAS exposures elicited significant mortality or aberrant EPR; however, exposure to 21 individual PFAS from multiple structural subclasses and 1 mixture induced aberrant larval behavior. We then evaluated developmental toxicity across a concentration range of 0-100 μM for 10 perfluoroalkyl carboxylic acids (PFCAs; 4-carbon perfluorobutanoic acid through the 13-carbon perfluorotridecanoic acid). Exposure to the PFCAs did not cause significant mortality or morphological effects, with the exception of perfluorooctanoic acid and perfluorononanoic acid, and did not induce aberrant EPR. All PFCAs, except for longer-chain perfluorododecanoic acid caused abnormal LPR following exposure to at least one concentration. In this study, we evaluated a broad set of PFAS not previously assessed for in vivo sublethal behavior endpoints and confirmed previous findings that exposure to some PFAS induces abnormal behavior in developing zebrafish. The data from this study will guide the selection of PFAS for which to investigate modes of toxic action.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, Oregon 97333, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Michael Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| |
Collapse
|
38
|
Chu S, Kwon BR, Lee YM, Zoh KD, Choi K. Effects of 2-ethylhexyl-4-methoxycinnamate (EHMC) on thyroid hormones and genes associated with thyroid, neurotoxic, and nephrotoxic responses in adult and larval zebrafish (Danio rerio). CHEMOSPHERE 2021; 263:128176. [PMID: 33297144 DOI: 10.1016/j.chemosphere.2020.128176] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
One of the most widely used UV filters, 2-ethylhexyl-4-methoxycinnamate (EHMC), has been widely detected in the environment. While its endocrine disruption potential has often been reported, toxicological information on EHMC is limited. This study was conducted to determine the thyroid, neurological and renal toxicity potentials of EHMC in adult male and embryo-larval zebrafish (Danio rerio). Following 21 d of exposure, plasma T3 concentration decreased in a concentration-dependent manner in adult zebrafish. Several genes related to thyroid hormone regulation were also downregulated in the brain, thyroid, and liver of the adult fish. In addition, upregulation of syn2a in the brain and downregulation of podocin and wt1a in the kidney were observed following the exposure in adult fish. In zebrafish larvae, following 120 h exposure to EHMC, whole-body T3 and T4 contents decreased, and thyroid hormone-related genes were downregulated. However, several genes showed different patterns of transcription in the larvae; for example, mbp and etv1 genes were downregulated and podocin was upregulated. Unlike adult fish, the larval fish showed significant genetic changes related to neurotoxicity. The hypothyroidism induced in the larval fish by the exposure might be potentially associated with the neurotoxic potential of EHMC. The implications of the observed hormonal and transcriptional-level changes in zebrafish at different life stages following long-term exposure warrant further investigation.
Collapse
Affiliation(s)
- Seoyoon Chu
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Ba Reum Kwon
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Young-Min Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
39
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|
40
|
Hao C, Gao Z, Liu X, Rong Z, Jia J, Kang K, Guo W, Li J. Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Sci Rep 2020; 10:19917. [PMID: 33199803 PMCID: PMC7670463 DOI: 10.1038/s41598-020-77085-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Propionate has been reported to exert antidepressant effects, but high-dose propionate may induce autism-like symptoms in experimental animals through induction of dysbiosis of neurotransmitters. The bi-directional effects of propionate seem to be dose-dependent. However, due to the pathological discrepancies between depression and autism, conclusions drawn from autism may not be simply transferable to depression. The effect and underlying action mechanisms of high-dose propionate on depression remains undetermined. To investigate the effects of propionate on depression, propionate dose gradients were intravenously administrated to rats exposed to chronic unpredictable mild stress (CUMS) for 1 week. Results of these behavioral tests demonstrate that low-dose propionate (2 mg/kg body weight/day) induces antidepressant effect through bodyweight recovery, elevated reward-seeking behaviors, and reduced depression-like behaviors, while high-dose propionate (200 mg/kg body weight/day) induces prodepressant effects opposite of those of low-dose propionate. A comprehensive profiling of neurotransmitters in the hippocampus demonstrated that CUMS induces reduction of NE (Norepinephrine), DA (Dopamine). GABA (γ-aminobutyric acid) was recovered by low-dose propionate, while high-dose propionate exerted more complicated effects on neurotransmitters, including reduction of NE, DA, 5-Hydroxytryptamine and Tryptophan, and increase of GABA, Kynurenine, Homovanillic acid, 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine. The neurotransmitters disturbed by high-dose propionate suggest metabolic disorders in the hippocampus, which were confirmed by the clear group separation in PCA of metabolomic profiling. The results of this study demonstrate the double-edged dose-dependent effects of propionate on depression and suggest potential cumulative toxicity of propionate as a food additive to mood disorders.
Collapse
Affiliation(s)
- Chunyan Hao
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Zefeng Gao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92, Wucheng Road, Xiaodian District, TaiyuanShanxi, 030006, China
| | - XianJun Liu
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Zhijiang Rong
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Jingjing Jia
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Kaiqi Kang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Weiwei Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jianguo Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92, Wucheng Road, Xiaodian District, TaiyuanShanxi, 030006, China.
| |
Collapse
|
41
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
42
|
Coperchini F, Croce L, Ricci G, Magri F, Rotondi M, Imbriani M, Chiovato L. Thyroid Disrupting Effects of Old and New Generation PFAS. Front Endocrinol (Lausanne) 2020; 11:612320. [PMID: 33542707 PMCID: PMC7851056 DOI: 10.3389/fendo.2020.612320] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a group of synthetic compounds widely used in industry plants due to their low grade of degradation, surfactant properties, thermic and flame resistance. These characteristics are useful for the industrial production, however they are also potentially dangerous for human health and for the environment. PFAS are persistent pollutants accumulating in waters and soil and recoverable in foods due to their release by food packaging. Humans are daily exposed to PFAS because these compounds are ubiquitous and, when assimilated, they are difficult to be eliminated, persisting for years both in humans and animals. Due to their persistence and potential danger to health, some old generation PFAS have been replaced by newly synthesized PFAS with the aim to use alternative compounds presumably safer for humans and the environment. Yet, the environmental pollution with PFAS remains a matter of concern worldwide and led to large-scale epidemiological studies both on plants' workers and on exposed people in the general population. In this context, strong concern emerged concerning the potential adverse effects of PFAS on the thyroid gland. Thyroid hormones play a critical role in the regulation of metabolism, and thyroid function is related to cardiovascular disease, fertility, and fetal neurodevelopment. In vitro, ex vivo data, and epidemiological studies suggested that PFASs may disrupt the thyroid hormone system in humans, with possible negative repercussions on the outcome of pregnancy and fetal-child development. However, data on the thyroid disrupting effect of PFAS remain controversial, as well as their impact on human health in different ages of life. Aim of the present paper is to review recent data on the effects of old and new generation PFAS on thyroid homeostasis. To this purpose we collected information from in vitro studies, animal models, and in vivo data on exposed workers, general population, and pregnant women.
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Laura Croce
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gianluca Ricci
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Flavia Magri
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- *Correspondence: Luca Chiovato,
| |
Collapse
|