1
|
Holloway T, Bratburd JR, Fiore AM, Kerr GH, Mao J. Satellite data to support air quality assessment and management. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2025; 75:429-463. [PMID: 40434184 DOI: 10.1080/10962247.2025.2484153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 05/29/2025]
Abstract
Satellite data have long been recognized as valuable for air quality applications. These applications are in a stage of rapid growth: new geostationary satellites provide hourly or sub-hourly data; improvements in algorithms convert measured wavelengths into retrievals of atmospheric constituents; advances in machine learning support improved estimates of near-surface pollution; and growing interest among air quality managers has led to a range of new satellite data applications. Considering mainly activities in the United States under the Clean Air Act, we discuss proven applications relevant to air quality management, including: informing epidemiological studies and health risk assessments for setting regulatory standards; evaluating regulatory models; constraining emissions inventories; supporting Exceptional Event Demonstrations through tracking wildfire plumes and other sources; characterizing emission patterns and ozone-forming chemistry for State Implementation Plans; improving air quality forecasting; and tracking long-term trends to evaluate regulatory impact. Air quality professionals are increasingly using satellite data for these and related analyses, but barriers remain. This review provides a summary of satellite products used in applications for air quality and related health assessments; progress in using satellite observations for deriving surface-level air quality information across scales; and their use in air quality management.Implications: The review covers advancements in satellite data for air quality applications over the last 15 years. Success with satellite applications, especially for PM2.5 and NO2, include use in health risk assessment, constraining emissions inventories, and supporting tracking short- and long-term trends with regulatory relevance. Solutions co-developed between researchers and practitioners show promise for continued improvements in the use and value of satellite data for air quality applications.
Collapse
Affiliation(s)
- Tracey Holloway
- Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI, USA
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer R Bratburd
- Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI, USA
| | - Arlene M Fiore
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gaige H Kerr
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA
| | - Jingqiu Mao
- Geophysical Institute, Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
2
|
Barent A, Munde S, Kerns E, Li H, Swain C, Tranisi N, Bell JE. Transportation-Associated Carbon Dioxide Emissions Avoided by Use of Telehealth Through COVID-19 Pandemic. Telemed J E Health 2025; 31:590-596. [PMID: 39907098 DOI: 10.1089/tmj.2024.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Background: Increasing carbon dioxide (CO2) in the atmosphere contributes to Earth's warming, which has negative impacts on human health. The health care system is a major contributor to CO2 emissions. Telehealth has the capacity to reduce health-care-related emissions by eliminating patient travel to in-person appointments. Methods: Data were obtained from Nebraska Medicine's (NM) electronic medical record. Parameters included patient zip code, provider location, calendar year of visit, and provider specialty. Euclidean distance from centroid zip code to clinic location was calculated. Environmental Protection Agency estimates were used to convert mileage to CO2 saved. Results: During the period January 1, 2019, to January 31, 2022, the NM health care system completed 214,241 telemedicine visits for patients whose home zip code is within Nebraska, resulting in greater than 2,600 metric tons of CO2 avoided. Telehealth appointments increased by more than 22,000% from 2019 to 2020. An average of 12.38 kg of CO2 was avoided with each telehealth visit. Medical specialties that avoided the most CO2 included family medicine, endocrinology, and infectious disease. Conclusion: This study demonstrates the capability of the NM health care system to rapidly adjust to an emergency pandemic by drastically increasing the use of telehealth, which also avoided thousands of tons of transportation-associated CO2 emissions. Telehealth appointments increased during the height of the pandemic by more than 22,000%. Telehealth is an effective CO2 emission-reducing strategy and a worthy avenue to further explore reduced health-care-related emissions.
Collapse
Affiliation(s)
- Anna Barent
- College of Medicine, University of Nebraska Medical Center College of Medicine, Omaha, Nebraska, USA
| | - Siddhi Munde
- School of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - El Kerns
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Haiyue Li
- School of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Charity Swain
- Digital Care Applications, Nebraska Medicine, Omaha Nebraska, USA
| | - Nicole Tranisi
- Market Intelligence Department, Nebraska Medicine, Omaha, Nebraska, USA
| | - Jesse E Bell
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Ashraf S, Pausata FSR, Leroyer S, Stevens R, Munoz‐Alpizar R. Impact of Reduced Anthropogenic Emissions Associated With COVID-19 Lockdown on PM 2.5 Concentration and Canopy Urban Heat Island in Canada. GEOHEALTH 2025; 9:e2023GH000975. [PMID: 39897438 PMCID: PMC11786188 DOI: 10.1029/2023gh000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
Extensive lockdowns during the COVID-19 pandemic caused a remarkable decline in human activities that have influenced urban climate, especially air quality and urban heat islands. However, the impact of such changes on local climate based on long term ground-level observations has hitherto not been investigated. Using air pollution measurements for the four major Canadian metropolitan areas (Toronto, Montreal, Vancouver, and Calgary), we find that PM2.5 markedly decreased during and after lockdowns with peak reduction ranging between 42% and 53% relative to the 2000-2019 reference period. Moreover, we show a substantial decline in canopy urban heat island intensity during lockdown and in the post lockdowns periods with peak reduction ranging between 0.7°C and 1.6°C in comparison with the 20-year preceding period. The results of this study may provide insights for local policymakers to define the regulation strategies to facilitate air quality improvement in urban areas.
Collapse
Affiliation(s)
- Samaneh Ashraf
- Department of Chemistry, University of Montreal (UdeM)MontrealQCCanada
- Centre ESCER (Étude et la Simulation du Climat à l’Échelle Régionale) and GEOTOP (Research Centre in Earth System Dynamics), Department of Earth and Atmospheric Sciences, University of Quebec in Montreal (UQAM)MontrealQCCanada
| | - Francesco S. R. Pausata
- Centre ESCER (Étude et la Simulation du Climat à l’Échelle Régionale) and GEOTOP (Research Centre in Earth System Dynamics), Department of Earth and Atmospheric Sciences, University of Quebec in Montreal (UQAM)MontrealQCCanada
| | - Sylvie Leroyer
- Meteorological Research DivisionEnvironment and Climate Change CanadaMontrealQCCanada
| | - Robin Stevens
- Department of Chemistry, University of Montreal (UdeM)MontrealQCCanada
- Climate Research DivisionEnvironment and Climate Change CanadaVictoriaBCCanada
| | - Rodrigo Munoz‐Alpizar
- Meteorological Service of Canada, Environment and Climate Change CanadaMontrealQCCanada
| |
Collapse
|
4
|
Hoppstock-Mattson B, Weis D, Maton J, Hublet G, Mattielli N. Local honey reflects environmental changes in metal concentrations and lead isotope ratios during COVID-19 restrictions in Brussels, Belgium, and Vancouver, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178077. [PMID: 39721527 DOI: 10.1016/j.scitotenv.2024.178077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Effective methods for measuring sudden environmental changes are crucial for understanding how cities respond to shifts in human activity. This study examines atmospheric metal outputs during the COVID-19 restrictions using honey samples collected from three land use types in Brussels Capital Region (BCR), Belgium, and Metro Vancouver Regional District (MVRD), Canada to study changes as the result of restrictions. By comparing these cities with distinct sizes, ages, and structures, we assess how urban environments responded to pandemic-induced restrictions. We present honey samples, analyzed for metal concentration and Pb isotope ratios, to provide insights into the impacts of reduced human activity in different land use types. In BCR, significant increases of Al, Cd, Cr, Cu, Fe, Ni, Pb, Ti, and V were observed in suburban sites, while in MVRD, significant decreases of Cr, Pb, Sb, Ti, and V were observed in suburban sites. The increase in metal concentrations in BCR suburban sites indicates a shift in metal emission patterns due to changes in human activity during the restrictions. Conversely, the decrease in metal concentrations in MVRD suburban areas aligns with expectations of reduced pollution during restrictions. Pb isotope ratios of BCR vary more widely and do not show any spatial trends by land use, suggesting that Pb concentrations in BCR may be more homogenized. In MVRD, significant differences in 208Pb/206Pb were observed during the restrictions, wherein honey sampled from rural sites had more radiogenic (lower 208Pb/206Pb) Pb isotope ratios. This difference suggests that honey may be more sensitive to Pb isotope ratio changes in environments with a less extensive history of metal use, such as rural British Columbia. This research demonstrates the potential of honey as a biomonitor for sudden environmental shifts. This study contributes to a global geochemical honey database, enabling tracking of environmental trends across diverse urban settings worldwide.
Collapse
Affiliation(s)
- Brooke Hoppstock-Mattson
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Dominique Weis
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Joséphine Maton
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Geneviève Hublet
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Nadine Mattielli
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, ULB, CP 160/02, Avenue F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| |
Collapse
|
5
|
Lachover-Roth I, Cohen-Engler A, Furman Y, Rosman Y, Meir-Shafrir K, Mozer-Mandel M, Farladansky-Gershnabel S, Biron-Shental T, Confino-Cohen R. Infants born during COVID-19 pandemic experience increased susceptibility to airway hyperresponsiveness. FRONTIERS IN ALLERGY 2024; 5:1512182. [PMID: 39737062 PMCID: PMC11683114 DOI: 10.3389/falgy.2024.1512182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Background Asthma, allergic rhinitis, atopic dermatitis, and food allergy are type 2 inflammation diseases. Since the 1960s, the prevalence of those diseases has steadily increased, presumably due to the "Hygiene hypothesis" which suggests that early exposure of infants to pathogens, siblings, and environmental dust, has a protective effect against the development of allergic diseases. The COVID-19 pandemic increased environmental hygiene due to lockdowns, masks, and social distancing. Objective To compare the prevalence of allergic diseases among children born before and during the pandemic. Methods The Cow's Milk Early Exposure Trial prospectively followed newborns until 12-months of age using monthly survey and examined milk allergy development. Some were born before the first COVID-19 lockdown in Israel (April 2018-March 2020), and some were born during the pandemic (March 2020-May 2021). The monthly surveys included questions regarding atopic comorbidities. Results A total of 1,989 infants completed 12-months of follow-up. Among them, 1,086(54.5%) were diagnosed with at least one atopic disease. Among 235 infants born after the last lockdown, 162 were diagnosed with airway hyperresponsiveness (AHR)(68.9%), significantly more than in any other group. No other significant differences were found between the study groups. Conclusions There was no significant difference in the development of atopic comorbidities between infants born before and during the pandemic. Significantly more infants who were born after restrictions were eased were diagnosed AHR. A longer follow-up period is needed to obtain a better understanding of the influence of the COVID-19 restrictions on the development of atopic comorbidities. Clinical Trial Registry NIH Clinical Trials Registry: NCT02785679.
Collapse
Affiliation(s)
- Idit Lachover-Roth
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Cohen-Engler
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Yael Furman
- Faculty of Medical and Health Sciences, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Yossi Rosman
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Meir-Shafrir
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Michal Mozer-Mandel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Sivan Farladansky-Gershnabel
- Faculty of Medical and Health Sciences, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Tal Biron-Shental
- Faculty of Medical and Health Sciences, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
7
|
Lee HJ, Kim NR, Shin MY. Capabilities of satellite Geostationary Environment Monitoring Spectrometer (GEMS) NO 2 data for hourly ambient NO 2 exposure modeling. ENVIRONMENTAL RESEARCH 2024; 261:119633. [PMID: 39025348 DOI: 10.1016/j.envres.2024.119633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The Geostationary Environment Monitoring Spectrometer (GEMS) is the world's first geostationary instrument that monitors hourly gaseous air pollutant levels, including nitrogen dioxide (NO2). Using the first-of-its-kind capabilities of GEMS NO2 data, we examined how well GEMS NO2 levels can explain the spatiotemporal variabilities in hourly NO2 concentrations in the Republic of Korea for the year 2022. A correlation analysis between hourly GEMS NO2 levels and ground NO2 concentrations showed a higher spatial correlation [Pearson r = 0.56 (SD = 0.20)] than a temporal one [Pearson r = 0.42 (SD = 0.14)], on average. To take advantage of the enhanced spatial predictability of GEMS NO2 data, we employed a mixed effects model to allow hour-specific relationships between GEMS NO2 and NO2 concentrations on a given day in each region and subsequently estimated hourly NO2 concentrations in all urban and rural areas. The 10-fold cross validation demonstrated R2 = 0.72, mean absolute error (MAE) = 3.7 ppb, and root mean squared error (RMSE) = 5.5 ppb. The hourly variations of the relationships were attributed particularly to those of wind speed among meteorological parameters considered in this study. The spatial distributions of hourly estimated NO2 concentrations were highly correlated between hours [average r = 0.91 (SD = 0.06)]. Nonetheless, they represented the diurnal patterns of urban versus rural NO2 contrasts during the day [urban/rural NO2 ratios from 1.22 (5 p.m.) to 1.37 (12 p.m.)]. The newly retrieved GEMS NO2 data enable temporally as well as spatially resolved NO2 exposure assessment. In combination with the time-activity patterns of individual subjects, the GEMS NO2 data can generate 'sub-population' exposure estimates and therefore enhance health effect studies.
Collapse
Affiliation(s)
- Hyung Joo Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea.
| | - Na Rae Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea
| | - Min Young Shin
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea
| |
Collapse
|
8
|
Vohra K, Marais EA, Achakulwisut P, Lu G, Kelly JM, Harkins C, McDonald B. Influence of Oil and Gas End-Use on Summertime Particulate Matter and Ozone Pollution in the Eastern US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19736-19747. [PMID: 39417565 PMCID: PMC11542890 DOI: 10.1021/acs.est.4c10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The influence of oil and gas end-use activities on ambient air quality is complex and understudied, particularly in regions where intensive end-use activities and large biogenic emissions of isoprene coincide. In these regions, vehicular emissions of nitrogen oxides (NOx≡NO + NO2) modulate the oxidative fate of isoprene, a biogenic precursor of the harmful air pollutants ozone, formaldehyde, and particulate matter (PM2.5). Here, we investigate the direct and indirect influence of the end-use emissions on ambient air quality. To do so, we use the GEOS-Chem model with focus on the eastern United States (US) in summer. Regional mean end-use NOx of 1.4 ppb suppresses isoprene secondary organic aerosol (OA) formation by just 0.02 μg m-3 and enhances abundance of the carcinogen formaldehyde by 0.3 ppb. Formation of other reactive oxygenated volatile organic compounds is also enhanced, contributing to end-use maximum daily mean 8-h ozone (MDA8 O3) of 8 ppb. End-use PM2.5 is mostly (67%) anthropogenic OA, followed by 20% secondary inorganic sulfate, nitrate and ammonium and 11% black carbon. These adverse effects on eastern US summertime air quality suggest potential for severe air quality degradation in regions like the tropics with year-round biogenic emissions, growing oil and gas end-use and limited environmental regulation.
Collapse
Affiliation(s)
- Karn Vohra
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Eloise A. Marais
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Ploy Achakulwisut
- Stockholm
Environment Institute US, Seattle, Washington 98101, United States
| | - Gongda Lu
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Jamie M. Kelly
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Colin Harkins
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Brian McDonald
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
9
|
Hernández-Vásquez A, Vargas-Fernández R, Rojas Hancco JJ, Olivares Schneider JG, Turpo Cayo EY. Variations in air pollution before, during and after the COVID-19 lockdown in Peruvian cities. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1142. [PMID: 39480539 DOI: 10.1007/s10661-024-13282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024]
Abstract
The high concentrations of air pollutants in Peru remain a persistent problem, significantly impacting public health. Understanding the extent to which the COVID-19 lockdown affected these contaminants is crucial. To determine variations in NO2, O3, CO, and SO2 concentrations in 10 Peruvian cities before, during, and after lockdown. A comparative ecological study was conducted in urban areas of 10 major Peruvian cities using the Google Earth Engine (GEE) platform. Data on atmospheric pollutant concentrations were extracted from the Sentinel-5P/TROPOMI satellite images for the period between March 16 and June 30, across the years 2019, 2020, 2021, and 2022, for comparative analysis. The Wilcoxon test was used to evaluate changes between the study periods. We included 10 urban cities located across three geographic regions of Peru. Most urban cities experienced a decrease in NO2 concentrations and an increase in O3 and CO levels during the lockdown, while SO2 concentrations remained relatively constant. The lockdown has caused variations in NO2, O3 and CO concentrations. Future studies with accurate data on air pollutant concentrations are needed to ensure targeted and effective interventions.
Collapse
Affiliation(s)
- Akram Hernández-Vásquez
- Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | - Jhonny Jonnatan Rojas Hancco
- Facultad de Ciencias e Ingeniería, Departamento de Ciencias Exactas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | |
Collapse
|
10
|
Ali MT, Rafizul IM, Bari QH. Dynamics of atmospheric emissions and meteorological variables in Bangladesh from pre-to post-COVID-19 lockdown. Heliyon 2024; 10:e39578. [PMID: 39498019 PMCID: PMC11533633 DOI: 10.1016/j.heliyon.2024.e39578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Following the COVID-19 restrictions, there was a sharp decline in global air quality and related environmental metrics. Due to the limited availability of in situ atmospheric data in Bangladesh, this study collected data on various air pollutants (NO2, SO2, CO, and PM2.5), greenhouse gases (CO2, CH4, and O3), as well as meteorological variables like Land Surface Temperature (LST), Relative Humidity (RH), Precipitation, surface albedo and Aerosol Optical Depth (AOD) from different datasets by Google Earth Engine (GEE), the International Energy Agency (IEA), NASA Giovanni, and NASA Power Access Viewer, covering periods before (2019), during (2020), and after (2021-2023) the COVID-19 lockdown in Bangladesh. GIS-based assessment alongside Principal Component Analysis (PCA) has been performed to explore the patterns, trends and correlations among the observed variables. Results showed in 2020 compared to 2019, NO2, SO2, CO, PM2.5, and CO2 concentrations decreases by 1.94, 16.67, 1.95, 2.08, and 6 %, respectively, while CH4 and O3 continued to rise. Meteorological variables exhibited a 0.16 °C decreases in LST, 6.4 % increases in RH, a 6 % reduction in AOD, and 6.36 % declines in surface albedo. Post-lockdown in 2021, air pollutants surged (NO2, SO2, CO, and PM2.5 increases by 17.3, 23.6, 0.6, and 8.3 %, respectively), with CO2, LST, and AOD rising by 8.5 %, 0.13 °C, and 8.3 %, and a slight 0.46 % decrease in RH compared to 2019 due to resuming more economic activities, transportation and industrial production works. The years 2022-2023 saw slight improvements in most variables except CH4, though concentrations did not revert to those of 2019. The findings of correlation coefficients revealed that pollutants and GHG are highly correlated with the meteorological variables specially with RH. This study underscores the substantial shifts in atmospheric variables from pre-to post-lockdown periods, offering valuable insights for more effective management of the greenhouse effect and air pollution control strategies.
Collapse
Affiliation(s)
- Md. Tushar Ali
- Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh
| | - Islam M. Rafizul
- Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh
| | - Quazi Hamidul Bari
- Department of Civil Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh
| |
Collapse
|
11
|
Shah SK, Bhandari K, Shah A, Chaurasiya G. COVID-19: vaccination, therapeutics and a review of the science and public health. Ann Med Surg (Lond) 2024; 86:5343-5353. [PMID: 39239001 PMCID: PMC11374161 DOI: 10.1097/ms9.0000000000002374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
COVID-19, stemming from the SARS-CoV-2 virus, has initiated a worldwide respiratory pandemic. Remarkable headway has been made in the realm of vaccination, as nearly every nation has initiated COVID-19 vaccine deployment. However, a mere 32.6% of individuals in low-income countries have received only a single vaccine dose. Unprecedented research and development endeavors have yielded over 170 COVID-19 vaccines, several of which are now in practical use. These vaccines have demonstrated remarkable efficacy in averting severe illness, hospitalization, and fatalities from COVID-19, even against emerging variants. Research pursuits persist, concentrating on novel vaccine technologies, oral and nasal vaccines, broader coronavirus protection, and vaccine combinations. In the realm of therapeutics, there have been significant strides in developing oral antiviral medications and monoclonal antibodies. Nonetheless, challenges in COVID-19 vaccination persist, encompassing issues of hesitancy, accessibility, financial barriers, knowledge gaps, and logistical hindrances. Robust monitoring via global agencies and reporting systems remains pivotal. Strategies for enhancing vaccination efficacy are rooted in fostering trust, countering misinformation, and expanding access. As for therapeutics, the approach involves dedicated research, clinical trials, regulatory streamlining, stockpiling, and international collaboration. Telemedicine and public awareness campaigns play integral roles in this effort, with coordination being the linchpin for preserving lives and mitigating the disease's impact. The global campaign against COVID-19 has witnessed substantial advancements, with an ongoing research focus on developing vaccines and therapeutics that are not only more accessible and affordable but also more effective, particularly for populations in low-income countries and vulnerable communities.
Collapse
Affiliation(s)
| | | | - Avish Shah
- Kist Medical College and Teaching Hospital, Imadol, Lalitpur
- Everest Hospital, New Baneshwor, Kathmandu, Nepal
| | | |
Collapse
|
12
|
Aziz G, Strielkowski W, Sarwar S, Tiwari AK. Implications of circular economy, digitalization and technological innovation to achieve sustainable environmental goal: Pre and post-vision 2030. Heliyon 2024; 10:e30978. [PMID: 38770279 PMCID: PMC11103535 DOI: 10.1016/j.heliyon.2024.e30978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
The current study contributes to the existing literature by constructing a digitalization index to investigate the significance of digitalization in controlling the environmental footprint. Moreover, the dataset is divided into pre-Vision 2030 and post-Vision 2030 implementation to scrutinize the progress of Saudi Vision 2030 to counter the environmental challenges. Vision 2030 is a strategic framework to reduce Saudi Arabia's dependence on oil, diversify its economy, and develop public service sectors such as health, education, infrastructure, recreation, and tourism. The findings have documented the negative coefficients for post-Vision 2030 and post-COVID-19 estimations, reflecting that a significant digitalization increase is useful for controlling the environmental externalities in Saudi Arabia. In the case of post-Vision 2030, the role of environmental technology turns out to be significant and negative, but with a lower magnitude. The study results are useful for drawing significant environmental policies through enhancing the digitalization parameters and advancement of technology.
Collapse
Affiliation(s)
- Ghazala Aziz
- Department of Business Administration, College of Administrative and Financial Sciences, Saudi Electronic University, Jeddah, Saudi Arabia
| | - Wadim Strielkowski
- Department of Trade and Finance, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Prague, Czech Republic
| | - Suleman Sarwar
- Department of Finance and Economics, College of Business, University of Jeddah, Jeddah, Saudi Arabia
| | | |
Collapse
|
13
|
Han Y, Gu X, Lin C, He M, Wang Y. Effects of COVID-19 on coastal and marine environments: Aggravated microplastic pollution, improved air quality, and future perspective. CHEMOSPHERE 2024; 355:141900. [PMID: 38579953 DOI: 10.1016/j.chemosphere.2024.141900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The COVID-19 pandemic during 2020-2023 has wrought adverse impacts on coastal and marine environments. This study conducts a comprehensive review of the collateral effects of COVID-19 on these ecosystems through literature review and bibliometric analysis. According to the output and citation analysis of these publications, researchers from the coastal countries in Asia, Europe, and America payed more attentions to this environmental issue than other continents. Specifically, India, China, and USA were the top three countries in the publications, with the proportion of 19.55%, 18.99%, and 12.01%, respectively. The COVID-19 pandemic significantly aggravated the plastic and microplastic pollution in coastal and marine environments by explosive production and unproper management of personal protective equipment (PPE). During the pandemic, the estimated mismanaged PPE waste ranged from 16.50 t/yr in Sweden to 250,371.39 t/yr in Indonesia. In addition, the PPE density ranged from 1.13 × 10-5 item/m2 to 2.79 item/m2 in the coastal regions worldwide, showing significant geographical variations. Besides, the emerging contaminants released from PPE into the coastal and marine environments cannot be neglected. The positive influence was that the COVID-19 lockdown worldwide reduced the release of air pollutants (e.g., fine particulate matter, NO2, CO, and SO2) and improved the air quality. The study also analyzed the relationships between sustainable development goals (SDGs) and the publications and revealed the dynamic changes of SDGs in different periods the COVID-19 pandemic. In conclusion, the air was cleaner due to the lockdown, but the coastal and marine contamination of plastic, microplastic, and emerging contaminants got worse during the COVID-19 pandemic. Last but not least, the study proposed four strategies to deal with the coastal and marine pollution caused by COVID-19, which were regular marine monitoring, performance of risk assessment, effective regulation of plastic wastes, and close international cooperation.
Collapse
Affiliation(s)
- Yixuan Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yidi Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Tewma C, Mifsud JL. The impact of air pollution on atherosclerotic cardiovascular disease development. THE BRITISH JOURNAL OF CARDIOLOGY 2024; 31:013. [PMID: 39555468 PMCID: PMC11562564 DOI: 10.5837/bjc.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Affiliation(s)
- Clayton Tewma
- Nurse at Mater Dei Hospital, and Law Student, Faculty of Health Sciences
| | - Justin Lee Mifsud
- Academic Researcher, Faculty of Health Sciences University of Malta, Msida, MSD 2080, Malta
| |
Collapse
|
15
|
Gao Z, Zhou X. A review of the CAMx, CMAQ, WRF-Chem and NAQPMS models: Application, evaluation and uncertainty factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123183. [PMID: 38110047 DOI: 10.1016/j.envpol.2023.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
With the gradual deepening of the research and governance of air pollution, chemical transport models (CTMs), especially the third-generation CTMs based on the "1 atm" theory, have been recognized as important tools for atmospheric environment research and air quality management. In this review article, we screened 2396 peer-reviewed manuscripts on the application of four pre-selected regional CTMs in the past five years. CAMx, CMAQ, WRF-Chem and NAQPMS models are well used in the simulation of atmospheric pollutants. In the simulation study of secondary pollutants such as O3, secondary organic aerosol (SOA), sulfates, nitrates, and ammonium (SNA), the CMAQ model has been widely applied. Secondly, model evaluation indicators are diverse, and the establishment of evaluation criteria has gone through the long-term efforts of predecessors. However, the model performance evaluation system still needs further specification. Furthermore, temporal-spatial resolution, emission inventory, meteorological field and atmospheric chemical mechanism are the main sources of uncertainty, and have certain interference with the simulation results. Among them, the inventory and mechanism are particularly important, and are also the top priorities in future simulation research.
Collapse
Affiliation(s)
- Zhaoqi Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Xuehua Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China.
| |
Collapse
|
16
|
Dalai D, Jandrotia R, Sharma S, Kanwar V, Kaushal J. Air pollution trend in Chandigarh during 2019-2022: status and influence of meteorological factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:164. [PMID: 38233679 DOI: 10.1007/s10661-024-12321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
The degradation of ambient air quality is a pressing global concern, and India, as a developing nation, has witnessed a rapid surge in industrial activities in recent decades. This surge has resulted in numerous Indian cities ranking among the world's most polluted urban areas. Chandigarh, strategically positioned within the Indo-Gangetic plains (IGP), has not escaped this distressing trend, experiencing a significant spike in air pollution levels. This study focuses on comprehending and addressing the air quality issues in Chandigarh, shedding light on the evolution of air pollution trends and their dependence on meteorological factors. Notably, the study reveals that, with the exception of O3, pollutant concentrations surge during the rice stubble burning season. These pollutants persist in the atmosphere for prolonged periods, exacerbating the situation during winter due to lower temperatures and heightened use of fossil fuels for heating by low-income households. In contrast, the wheat stubble burning period does not significantly impact pollutant concentrations. The study also identifies a spring peak in surface O3 concentrations, attributed to favorable high temperatures that promote the photochemical reactions responsible for this phenomenon, a distinctive feature in South Asia and the Himalayas. An examination of the connection between pollutant concentrations and meteorological parameters underscores that elevated pollutant levels, except for CO, are linked to lower relative humidity and temperatures. This suggests that current development patterns have contributed to the escalation of air pollution in Chandigarh, necessitating urgent interventions to preserve the city's aesthetics and the health of its residents. Furthermore, to model and monitor pollutant behavior in Chandigarh, more extensive and extended studies are imperative. Both short-term and long-term investigations into the environmental and health impacts of air pollutants, including primary and secondary pollutants, are of paramount importance. These endeavors are essential for the well-being of both the environment and the population of Chandigarh.
Collapse
Affiliation(s)
- Debendra Dalai
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Rupali Jandrotia
- Climate Change Cell, Department of Environment, Chandigarh Administration, Chandigarh, India
| | - Sanjay Sharma
- Department of Civil Engineering, NITTTR, Chandigarh, India
| | | | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
17
|
Rosa AH, Stubbings WA, Akinrinade OE, Jeunon Gontijo ES, Harrad S. Neural network for evaluation of the impact of the UK COVID-19 national lockdown on atmospheric concentrations of PAHs and PBDEs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122794. [PMID: 37926413 DOI: 10.1016/j.envpol.2023.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
The impact of measures to restrict population mobility during the COVID-19 pandemic on atmospheric concentrations of polycyclic aromatic hydrocarbons (PAH) and brominated flame retardants (BFRs) is poorly understood. This study analyses the effects of meteorological parameters and mobility restrictions during the COVID-19 pandemic on concentrations of PAH and BFRs at the University of Birmingham in the UK utilising a neural network (self-organising maps, SOM). Air sampling was performed using Polyurethane Foam (PUF) disk passive samplers between October 2019 and January 2021. Data on concentrations of PAH and BFRs were analysed using SOM and Spearman's rank correlation. Data on meteorological parameters (air temperature, wind, and relative humidity) and mobility restrictions during the pandemic were included in the analysis. Decabromodiphenyl ether (BDE-209) was the most abundant polybrominated diphenyl ether (PBDE) (23-91% Σ7PBDEs) but was detected at lower absolute concentrations (4.2-35.0 pg m-3) than in previous investigations in Birmingham. Air samples were clustered in five groups based on SOM analysis and the effects of meteorology and pandemic-related restrictions on population mobility could be visualised. Concentrations of most PAH decreased during the early stages of the pandemic when mobility was most restricted. SOM analysis also helped to identify the important influence of wind speed on contaminant concentrations, contributing to reduce the concentration of all analysed pollutants. In contrast, concentrations of most PBDEs remained similar or increased during the first COVID-19 lockdown which was attributed to their primarily indoor sources that were either unaffected or increased during lockdown.
Collapse
Affiliation(s)
- André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Olumide Emmanuel Akinrinade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Chemistry, University of Lagos, Lagos, Nigeria
| | - Erik Sartori Jeunon Gontijo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil; KISTERS AG, Business Unit HydroMet, Schoemperlenstr.12a, 76185, Karlsruhe, Germany
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
He J, Harkins C, O’Dell K, Li M, Francoeur C, Aikin KC, Anenberg S, Baker B, Brown SS, Coggon MM, Frost GJ, Gilman JB, Kondragunta S, Lamplugh A, Lyu C, Moon Z, Pierce BR, Schwantes RH, Stockwell CE, Warneke C, Yang K, Nowlan CR, González Abad G, McDonald BC. COVID-19 perturbation on US air quality and human health impact assessment. PNAS NEXUS 2024; 3:pgad483. [PMID: 38222466 PMCID: PMC10785034 DOI: 10.1093/pnasnexus/pgad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021. Compared with 2019 business-as-usual emission scenario, COVID-19 perturbations resulted in annual decreases of 10-15% in emissions of ozone (O3) and fine particle (PM2.5) gas-phase precursors, which are about two to four times larger than long-term annual trends during 2010-2019. While significant COVID-induced reductions in transportation and industrial activities, particularly in April-June 2020, resulted in overall national decreases in air pollutants, meteorological variability across the nation led to local increases or decreases of air pollutants, and mixed air quality changes across the United States between 2019 and 2020. Over a full year (April 2020 to March 2021), COVID-induced emission reductions led to 3-4% decreases in national population-weighted annual fourth maximum of daily maximum 8-h average O3 and annual PM2.5. Assuming these emission reductions could be maintained in the future, the result would be a 4-5% decrease in premature mortality attributable to ambient air pollution, suggesting that continued efforts to mitigate gaseous pollutants from anthropogenic sources can further protect human health from air pollution in the future.
Collapse
Affiliation(s)
- Jian He
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | - Colin Harkins
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | - Katelyn O’Dell
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Meng Li
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | - Colby Francoeur
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kenneth C Aikin
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | - Susan Anenberg
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Barry Baker
- NOAA Air Resources Laboratory, College Park, MD 20740, USA
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | | | | | | | - Shobha Kondragunta
- NOAA National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, College Park, MD 20740, USA
| | - Aaron Lamplugh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | - Congmeng Lyu
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | - Zachary Moon
- NOAA Air Resources Laboratory, College Park, MD 20740, USA
- Earth Resources Technology (ERT) Inc., Laurel, MD 20707, USA
| | - Bradley R Pierce
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Chelsea E Stockwell
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA
| | | | - Kai Yang
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA
| | - Caroline R Nowlan
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
19
|
Sara R, Radoias V, Kim Y. Hypertension effects of the COVID-19 lockdowns: Evidence from a repeated cross-sectional survey in Peru. ECONOMICS AND HUMAN BIOLOGY 2024; 52:101332. [PMID: 38113604 DOI: 10.1016/j.ehb.2023.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/06/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Using data from Peru and a quasi-experimental approach, we document significant increases in arterial blood pressure and in the incidence of arterial hypertension caused by the restrictive measures employed by the Peruvian authorities during the COVID-19 pandemic. The effects are more pronounced for women, older respondents, and urban residents. The effects are statistically significant and high in magnitude relative to the pre-pandemic incidence of disease in the Peruvian population. A main channel of disease propagation seems to be the changes in dietary habits and physical activity imposed by the COVID-19 lockdowns, which affected several anthropometric measurements that are common risk factors for hypertension.
Collapse
Affiliation(s)
- Raisa Sara
- Sam Houston State University, United States of America.
| | - Vlad Radoias
- Sam Houston State University, United States of America.
| | - Younoh Kim
- Sam Houston State University, United States of America.
| |
Collapse
|
20
|
Lorenz C, Libonati R, Belém LBC, Oliveira A, Chiaravalloti RM, Nunes AV, Batista EKL, Fernandes GW, Chiaravalloti-Neto F, Damasceno-Junior GA, Berlinck CN, Roque FO. Wildfire and smoke association with COVID-19 cases in the Pantanal wetland, Brazil. Public Health 2023; 225:311-319. [PMID: 37972494 DOI: 10.1016/j.puhe.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES In 2020, Brazil experienced two concurrent public health challenges related to respiratory disease: wildfires and increased mortality due to the coronavirus (COVID-19) pandemic. Smoke from these wildfires contributed to a variety of air pollutants, including fine particulate matter (PM2.5). The present study aims to investigate the effects of environmental and socio-economic factors on COVID-19 hospitalisation in the Pantanal. STUDY DESIGN Ecological retrospective study. METHODS We applied a multilevel negative binomial model to relate monthly hospitalisation data with environmental variables. RESULTS We showed that monthly PM2.5 concentration levels had the greatest influence on the increase in hospitalisations by COVID-19 in the elderly (23 % increase). The Gini index, a coefficient that reflects income inequalities, also had a positive association with COVID-19 hospitalisations (18 % increase). Higher temperatures and humidity were protective factors, showing a 15 % and 14 % decrease in hospitalisations, respectively. The results of the present study suggest that high PM2.5 exposure contributed to the increase in COVID-19 hospitalisations, as did the social inequalities of each municipality. CONCLUSIONS The present study highlights the importance of gathering evidence supported by multiple information sources to guide decision-making and identify populations needing better public health systems.
Collapse
Affiliation(s)
- C Lorenz
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513 - Butantã, São Paulo/SP, 05508-060, São Paulo, Brazil.
| | - R Libonati
- Departamento de Meteorologia, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, 21941-916, Rio de Janeiro, Brazil
| | - L B C Belém
- Departamento de Meteorologia, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, 21941-916, Rio de Janeiro, Brazil
| | - A Oliveira
- Departamento de Meteorologia, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, 21941-916, Rio de Janeiro, Brazil
| | - R M Chiaravalloti
- University College London, Anthropology Department, 14 Taviton Street, WC1H 0BW, London, United Kingdom
| | - A V Nunes
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, MS, 79070-900, Campo Grande, Brazil
| | - E K L Batista
- National Research Center for Carnivores Conservation, Chico Mendes Institute for the Conservation of Biodiversity, Estrada Municipal Hisaichi Takebayashi 8600, Atibaia, 12952-011, São Paulo, Brazil
| | - G W Fernandes
- Evolutionary Ecology & Biodiversity (DGEE ICB) Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - F Chiaravalloti-Neto
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo, Av. Dr. Arnaldo 715, 01246-904, São Paulo/SP, Brazil
| | - G A Damasceno-Junior
- Laboratório de Botânica/Laboratório de Ecologia Vegetal, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, MS, 79070-900, Campo Grande, Brazil
| | - C N Berlinck
- National Research Center for Carnivores Conservation, Chico Mendes Institute for the Conservation of Biodiversity, Estrada Municipal Hisaichi Takebayashi 8600, Atibaia, 12952-011, São Paulo, Brazil
| | - F O Roque
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, MS, 79070-900, Campo Grande, Brazil; Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, 1 James Cook Dr, Douglas, Cairns, 4811, Queensland, Australia
| |
Collapse
|
21
|
Mokarram M, Taripanah F, Pham TM. Using neural networks and remote sensing for spatio-temporal prediction of air pollution during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122886-122905. [PMID: 37979107 DOI: 10.1007/s11356-023-30859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
The study aims to monitor air pollution in Iranian metropolises using remote sensing, specifically focusing on pollutants such as O3, CH4, NO2, CO2, SO2, CO, and suspended particles (aerosols) in 2001 and 2019. Sentinel 5 satellite images are utilized to prepare maps of each pollutant. The relationship between these pollutants and land surface temperature (LST) is determined using linear regression analysis. Additionally, the study estimates air pollution levels in 2040 using Markov and Cellular Automata (CA)-Markov chains. Furthermore, three neural network models, namely multilayer perceptron (MLP), radial basis function (RBF), and long short-term memory (LSTM), are employed for predicting contamination levels. The results of the research indicate an increase in pollution levels from 2010 to 2019. It is observed that temperature has a strong correlation with contamination levels (R2 = 0.87). The neural network models, particularly RBF and LSTM, demonstrate higher accuracy in predicting pollution with an R2 value of 0.90. The findings highlight the significance of managing industrial towns to minimize pollution, as these areas exhibit both high pollution levels and temperatures. So, the study emphasizes the importance of monitoring air pollution and its correlation with temperature. Remote sensing techniques and advanced prediction models can provide valuable insights for effective pollution management and decision-making processes.
Collapse
Affiliation(s)
- Marzieh Mokarram
- Department of Geography, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
| | - Farideh Taripanah
- Department of Desert Control and Management, University of Kashan, Kashan, Iran
| | - Tam Minh Pham
- Research Group On "Fuzzy Set Theory and Optimal Decision-Making Model in Economics and Management", Vietnam National University, Hanoi, 144 Xuan Thuy Str., Hanoi, 100000, Vietnam.
- VNU School of Interdisciplinary Studies, Vietnam National University, Hanoi, 144 Xuan Thuy Str., Hanoi, 100000, Vietnam.
| |
Collapse
|
22
|
Lozano-Bilbao E, Delgado-Suárez I, Hardisson A, González-Weller D, Paz S, Gutiérrez ÁJ. Impact of the lockdown period during the COVID-19 pandemic on the metal content of the anemone Anemonia sulcata in the Canary Islands (CE Atlantic, Spain). CHEMOSPHERE 2023; 345:140499. [PMID: 37866492 DOI: 10.1016/j.chemosphere.2023.140499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Anemones, specifically the species Anemonia sulcata, are cnidarians that serve as bioindicators in marine ecosystems, indicating the health of the environment and changes in environmental conditions. Monitoring anemone populations and studying their well-being and distribution provide valuable insights into marine ecosystem conditions. This study aimed to investigate the impact of the SARS-CoV-2 pandemic on the metal content of Anemonia sulcata. Over a six-year period (2017-2022), twenty specimens of Anemonia sulcata were collected in Tenerife, Spain. The results showed that in 2020, during the two-month lockdown in Spain from March to May when tourism was halted, A. sulcata exhibited the lowest concentrations of various metals studied (Al, Cd, Cu, Fe, Pb, and Zn). This finding suggests that the reduced anthropogenic pressure on the coast due to the absence of tourism significantly decreased pollution levels. Therefore, the study emphasizes the importance of promoting sustainable tourism worldwide. The research highlights that minimizing human impact on coastal areas through responsible tourism practices can effectively reduce pollution in marine ecosystems.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Ambiental y Seguridad de los Alimentos y Medicamentos, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain; Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017, Las Palmas, Spain.
| | - Indira Delgado-Suárez
- Grupo Interuniversitario de Toxicología Ambiental y Seguridad de los Alimentos y Medicamentos, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Ambiental y Seguridad de los Alimentos y Medicamentos, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Ambiental y Seguridad de los Alimentos y Medicamentos, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain; Servicio Público Canario de Salud, Laboratorio Central, Santa Cruz de Tenerife, 38006, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Ambiental y Seguridad de los Alimentos y Medicamentos, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Ambiental y Seguridad de los Alimentos y Medicamentos, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna. Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| |
Collapse
|
23
|
Guan C, Tan J, Li Y, Cheng T, Yang J, Liu C, Keith M. How do density, employment and transit affect the prevalence of COVID-19 pandemic? A study of 3,141 counties across the United States. Health Place 2023; 84:103117. [PMID: 37769578 DOI: 10.1016/j.healthplace.2023.103117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Previous research has explored the effect of the built environment on the spread of the coronavirus disease (COVID-19) pandemic. This study extends the existing literature by examining the relationship between pandemic prevalence and density, employment, and transit factors at the county level. Using multilinear spatial-lag regressions and time series clustering analyses on the Smart Location Database encompassing 3141 counties in the United States, our findings reveal the following: (1) Density, employment, and transit variables yield heterogeneous effects to infection rate, death rate, and mortality rate. (2) Pedestrian-oriented road density is positively correlated to the prevalence of COVID-19, every 0.011 miles/acre increase is associated with 1% increase in the infection rate. (3) A consistent negative correlation is observed between jobs per household and infection rate, while a decrease in unemployment rate leads to an increase in the death rate. (4) The results from time series analysis suggest that areas characterized by low auto-oriented intersection density but high pedestrian-oriented road density are more susceptible to the impacts of pandemics. This highlights the need to prioritize pandemic prevention efforts in the suburban and rural areas with low population density, as emphasized in existing literature emphasized.
Collapse
Affiliation(s)
- ChengHe Guan
- Shanghai Key Laboratory of Urban Design and Urban Science, NYU Shanghai, Shanghai, China; Division of Arts and Sciences, NYU Shanghai, Shanghai, China.
| | - Junjie Tan
- Shanghai Key Laboratory of Urban Design and Urban Science, NYU Shanghai, Shanghai, China; PEAK Urban Programme, University of Oxford, Oxford, UK
| | - Ying Li
- Shanghai Key Laboratory of Urban Design and Urban Science, NYU Shanghai, Shanghai, China; Division of Arts and Sciences, NYU Shanghai, Shanghai, China.
| | - Tong Cheng
- Shanghai Key Laboratory of Urban Design and Urban Science, NYU Shanghai, Shanghai, China
| | - Junyan Yang
- School of Architecture and Planning, Southeast University, Nanjing, China
| | - Chao Liu
- Department of Urban Planning, College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - Michael Keith
- PEAK Urban Programme, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Bai BMY, Wang TT, Chen XA, Wu CC. Pathogen inhibition and indication by gelatin nonwoven mats with incorporation of polyphenol derivatives. RSC Adv 2023; 13:31602-31615. [PMID: 37908665 PMCID: PMC10613854 DOI: 10.1039/d3ra05905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
There is a need for non-pharmaceutical intervention methods that can prevent and indicate the risk of airborne disease spread. In this study, we developed a nonwoven mat based on the polyphenol gallic acid, which can inhibit pathogens growth and also indicate pathogen levels in the surrounding environment. Using nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography, we characterized this novel gelatin-based nonwoven mat and investigated the mechanism governing its ability to indicate pathogen levels. We demonstrated that the incorporation of gallic acid serves a vital role in indicating the presence of bacteria, causing the nonwoven mat to change in color from white to brown. We have proposed a plausible mechanism for this color change behavior based on a reaction of gallic acid with components excreted by bacteria, including glutamate, valine, and leucine. The concentrations of these components reflect the bacterial counts, enabling a real-time indication of pathogen levels in the surrounding air. In summary, the nonwoven mat presented herein can serve as an excellent antibacterial agent and as an indicator of nearby bacteria for fabricating personal protection equipment like filtration mask.
Collapse
Affiliation(s)
- By Meng-Yi Bai
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
- Adjunct Appointment to the National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Ting-Teng Wang
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology TR-917, AAEON Building, No. 43, Keelung Rd., Sec. 4, Da'an Dist. Taipei City 10607 Taiwan Republic of China
| | - Xin-An Chen
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| | - Chia-Chun Wu
- Institute of Prevention Medicine, National Defense Medical Center Taipei 11490 Taiwan Republic of China
| |
Collapse
|
25
|
Singh P, Vaishya A, Rastogi S. Investigating changes in atmospheric aerosols properties over the Indo-Gangetic Plain during different phases of COVID-19-induced lockdowns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100215-100232. [PMID: 37632617 DOI: 10.1007/s11356-023-29449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Impact of COrona VIrus Diseases 2019 (COVID-19) restrictive measures on aerosol optical depth (AOD) and black carbon (BC) concentration is investigated for the western, central, and eastern Indo-Gangetic Plain (IGP) using satellite-based observations. Due to COVID-19-induced lockdown measures, a noticeable decline in AOD and BC concentrations was observed across the IGP when compared to pre-lockdown period of 2020 and the lockdown concurrent period of 2015-2019. During the total lockdown period, a maximum drop in AOD and BC was observed in the central IGP (26.5 % and 10.1 %), followed by western IGP (24.9% and 5.2%) and eastern IGP (23.2 % and 4.9 %) with respect to the same period of 2015-2019. We have removed seasonal influences on aerosol properties during the COVID-19 lockdown, by taking average seasonal variations during the period of 2015-2019 as reference and projecting the hypothetical AOD and BC for the lockdown period under normal scenario. The difference between the hypothetical AOD and BC (under normal scenario) and the retrieved AOD and BC for the lockdown period is the absolute percentage change in AOD and BC concentration due to the lockdown alone. This elimination of seasonal influence is a novel approach. Central IGP showed an absolute decrease in AOD and BC of 38.5% and 18.2% during the lockdown period followed by western IGP (34.6% and 7.7%) and eastern IGP (25.9% and 11.5%). The observed absolute reduction in AOD, 26-39 %, is significantly higher than the global average reduction in AOD of 2-5%. CALIPSO-derived aerosol sub-types over major location of the western, central, and eastern IGP suggests prevalence of anthropogenic activities during pre- and post-lockdown periods. During the lockdown, IGP was influenced by aerosols from natural sources, with mineral dust and polluted dust in the western and central IGP, and aerosols from marine regions in the eastern IGP. Replenishment of aerosols within the boundary layer were far quicker when compared to total column during post-lockdown. Overall, the study reveals a reduction in anthropogenic emissions during the COVID-19-induced lockdowns, leading to temporary improvements in air quality over the IGP. Our study presents a comprehensive analysis of COVID-19 lockdown impact on aerosols properties over the IGP and highlights unprecedented reductions in AOD (~ 40 %) and BC (~ 20 %), due to imposition of lockdown and subsequent cessation of aerosol sources, by removing seasonal influences.
Collapse
Affiliation(s)
- Prayagraj Singh
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India
| | - Aditya Vaishya
- School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380 009, India.
- Global Centre for Environment and Energy, Ahmedabad University, Ahmedabad, 380 009, India.
| | - Shantanu Rastogi
- Department of Physics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India
| |
Collapse
|
26
|
Oduniyi OS, Riveros JM, Hassan SM, Çıtak F. Testing the theory of Kuznet curve on environmental pollution during pre- and post-Covid-19 era. Sci Rep 2023; 13:12851. [PMID: 37553418 PMCID: PMC10409723 DOI: 10.1038/s41598-023-38962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Covid-19 has brought about significant changes in people's daily lives, leading to a slowdown in economic activities and the implementation of restrictions and lockdowns. As a result, there have been noticeable effects on the environment. In this study, we examine the impact of Covid-19 total cases on the monthly average of carbon monoxide emissions in developed economies known for heavy pollution, covering the period from 2014 to 2023. We apply the Ambiental Kuznets curve approach to analyze the data. By employing different panel estimation techniques such as fixed effects and Driscoll-Kraay regressions, we observe a marked shift in environmental dynamics during the post-Covid era. This shift alters the statistical significance of the N-shaped Kuznets curve, rendering the relationship between economic activity and environmental impact non-significant. Interestingly, the Covid-related variables utilized in the various estimations are not statistically significant in explaining the long-term environmental effects.
Collapse
Affiliation(s)
| | - John M Riveros
- Estudios Y Evaluación de La Gestión Pública Colombian, Colombia, USA
| | | | | |
Collapse
|
27
|
Mihăilă D, Lazurca LG, Bistricean IP, Horodnic VD, Mihăilă EV, Emandi EM, Prisacariu A, Nistor A, Nistor B, Roșu C. Air quality changes in NE Romania during the first Covid 19 pandemic wave. Heliyon 2023; 9:e18918. [PMID: 37636459 PMCID: PMC10447937 DOI: 10.1016/j.heliyon.2023.e18918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
This study analyzes for the first time uniformly and causally the level of pollution and air quality for the NE-Romania Region, one of the poorest region in the European Union. Knowing the level of pollution and air quality in this region, which can be taken as a benchmark due to its positional and economic-geographical attributes, responds to current scientific and practical needs. The study uses an hourly database (for five pollutants and five climate elements), from 2009 to 2020, from 19 air quality monitoring stations in northeastern Romania. Pollutant levels were statistically and graphically/cartographically modeled for the entire 2009-2020 interval on the distributive-spatial and regime, temporal component. Inter-station differences and similarities were analyzed causally. Taking advantage of the emergency measures between March 16 and May 14, 2020, we observed the impact of the event on the regional air quality in northeastern Romania. During the emergency period, the metropolitan area of Suceava (with over 100,000 inhabitants) was quarantined, which allowed us to analyze the impact of the quarantine period on the local air quality. We found that, in this region, air quality falls into class I (for NO2, SO2 and CO), II for O3 and III for PM10. During the lockdown periods NO2 and SO2 decreased for the entire region by 8.6 and 14.3%, respectively, and in Suceava by 13.9 and 40.1%, respectively. The causes of the reduction were anthropogenic in nature.
Collapse
Affiliation(s)
- Dumitru Mihăilă
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | - Liliana Gina Lazurca
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | - Ionel-Petruț Bistricean
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | - Vasilică-Dănuț Horodnic
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | | | - Elena-Maria Emandi
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | - Alin Prisacariu
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | - Alina Nistor
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| | | | - Constantin Roșu
- Department of Geography, Stefan Cel Mare University, Suceava, Romania
- Applied Geography Research Center - GEA, Department of Geography, Stefan Cel Mare University, Suceava, Romania
| |
Collapse
|
28
|
Zhang Q, Mao X, Wang Z, Tan Y, Zhang Z, Wu Y, Gao Y. Impact of the emergency response to COVID-19 on air quality and its policy implications: Evidence from 290 cities in China. ENVIRONMENTAL SCIENCE & POLICY 2023; 145:50-59. [PMID: 37070073 PMCID: PMC10093300 DOI: 10.1016/j.envsci.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/11/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
The emergency response to the COVID-19 pandemic had an extreme exogenous impact on society and the economy. This paper aims to explore the impacts of the national emergency response and the subsequent emergency response termination on air quality and its policy implications through regression discontinuity design (RDD) estimation by employing panel data on daily air quality from January 1, 2019, to July 31, 2020, for 290 cities in China. The empirical results showed that the emergency response resulted in a significant decrease in most of the major pollutant concentrations within a short time frame, and the average air quality index (AQI) decreased by approximately 11.0%. The concentrations of PM2.5, PM10, SO2, NO2, and CO decreased by approximately 18.8%, 13.1%, 13.5%, 11.1% and 6.7%, respectively, while the O3 concentration did not change significantly. Further causal analysis found that mandatory traffic restrictions and the shutdown of industries were two important factors that contributed greatly to air quality improvement. Moreover, since the process of returning to normal daily activities and promoting the economy were gradual, the results showed that air pollution did not rebound immediately after the government called for the "resumption of production and work" and announced the "termination of the emergency response". Our findings suggest that to achieve a substantial and sustainable improvement in air quality, it is necessary to continuously implement strict emission control routines and take co-control measures for various VOCs precursors of ozone.
Collapse
Affiliation(s)
- Qingyong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xianqiang Mao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhengzao Wang
- School of Economics and Management, Beijing University of Technology, Beijing 100124, China
| | - Yutong Tan
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ziyin Zhang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Yanjie Wu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yubing Gao
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Meng H, Zhang J. Impact of COVID-19 lockdown on water quality in China during 2020 and 2022: two case surges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27962-7. [PMID: 37284955 DOI: 10.1007/s11356-023-27962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
The COVID-19 severely affected the world in 2020. Taking the two outbreaks in China in 2020 and 2022 as examples, the spatiotemporal changes in surface water quality levels and CODMn and NH3-N concentrations were analyzed, and the relationships between the variations in the two pollutants and environmental and social factors were evaluated. The results showed that during the two lockdowns, due to the total water consumption (including industrial, agricultural, and domestic water) decreased, the proportion of good water quality increased by 6.22% and 4.58%, and the proportion of polluted water decreased by 6.00% and 3.98%, the quality of water environment has been improved significantly. However, the proportion of excellent water quality decreased by 6.19% after entering the unlocking period. Before the second lockdown period, the average CODMn concentration exhibited a "falling, rising, and falling" trend, while the average NH3-N concentration changed in the opposite direction. The correlation analysis revealed that the increasing trend of pollutant concentrations was positively correlated with longitude and latitude, and weakly correlated with DEM and precipitation. A slight decrease trend in NH3-N concentration was negatively correlated with the population density variation and positively correlated with the temperature variation. The relationship between the change in the number of confirmed cases in provincial regions and the change in pollutant concentrations was uncertain, with positive and negative correlations. This study demonstrates the impact of lockdowns on water quality and the possibility of improving water quality through artificial regulation, which can provide a reference basis for water environmental management.
Collapse
Affiliation(s)
- Haobin Meng
- Beijing Key Laboratory of Resource Environment and Geographic Information System, Capital Normal University, Beijing, 100048, China
| | - Jing Zhang
- Key Laboratory of 3D Information Acquisition and Application of Ministry of Education, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
30
|
Gea M, Macrì M, Marangon D, Pitasi FA, Fontana M, Schilirò T, Bonetta S. Biological effects of particulate matter samples during the COVID-19 pandemic: a comparison with the pre-lockdown period in Northwest Italy. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1-16. [PMID: 37359393 PMCID: PMC10243887 DOI: 10.1007/s11869-023-01381-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
In 2020, during the COVID-19 pandemic, containment measures were applied inducing potential changes in air pollutant concentrations and thus in air toxicity. This study evaluates the role of restrictions on biological effects of particulate matter (PM) in different Northwest Italy sites: urban background, urban traffic, rural, and incinerator. Daily PM samples collected in 2020 were pooled according to restrictions: January/February (no restrictions), March and April (first lockdown), May/June and July/August/September (low restrictions), October/November/December (second lockdown). The 2019 samples (pre-pandemic period) were pooled as 2020 for comparison. Pools were extracted with organic solvents and extracts were tested to assess cytotoxicity (WST-1 assay) and genotoxicity (comet assay) on BEAS-2B cells, mutagenicity (Ames test) on TA98 and TA100 Salmonella typhimurium strains, and estrogenic activity (gene reporter assay) on MELN cells. Pollutant concentrations were also analyzed (PM10, PM2.5, polycyclic aromatic hydrocarbons). No difference was observed for PM and polycyclic aromatic hydrocarbon concentrations between 2020 and 2019. During lockdown months (2020), PM cytotoxicity/genotoxicity was significantly lower in some sites than during 2019, while considering PM mutagenicity/estrogenic activity some differences were detected but without statistical significance. PM extract effects decreased in some sites during 2020; this may be due to lockdowns that reduced/modified pollutant emissions and may be related also to complex PM origin/formation and to meteorological conditions. In conclusion, the study confirms that PM biological effects cannot be assessed considering only the PM concentration and suggests to include a battery of bioassay for air quality monitoring in order to protect human health from air pollution effects. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11869-023-01381-6.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Turin, Italy
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Daniele Marangon
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Francesco Antonio Pitasi
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Marco Fontana
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Turin, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Turin, Italy
| |
Collapse
|
31
|
Dehhaghi S, Hasankhani H, Taheri A. Spatiotemporal variations, photochemical characteristics, health risk assessment and mid pandemic changes of ambient BTEX in a west Asian metropolis. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2023; 37:1-17. [PMID: 37362845 PMCID: PMC10218775 DOI: 10.1007/s00477-023-02476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/28/2023]
Abstract
This study examined the concentration of BTEX in Tehran from 2018 to 2020 in five monitoring stations with different backgrounds, which has been accomplished using the combination of passive sampling and GC-FID method. The total concentration of BTEX was estimated to be 65.39 (µg/m3), with a higher average concentration in 2019-2020 (77.79 µg/m3) compared to 2018-2019 (53.48 µg/m3) due to the leaping concentration of Toluene in the pandemic era. Despite a Benzene concentration decline in recent years, the average annual concentration of Benzene (5.66 µg/m3) at five stations remained higher than the EU commission and India standards (5 µg/m3) as well as Japan and Iraq thresholds (3 µg/m3). Toluene dominated other species in terms of concentrations, mass distribution (~0.6%), followed by m,p-Xylene (~0.2%), Benzene (~0.05-0.1) and Ethylbenzene (< 0.05). The evidence regarding seasonal changes of BTEX in 2019 shows the maximum concentration of these compounds in autumn, which is probably due to heavier traffic compared to other seasons. In contrast, in the first half of 2020 (which encompasses the start of the pandemic period and urban lockdown), point sources seem to play a prominent role in concentration fluctuations, as confirmed by changes in interspecies relationships and lower traffic congestion. The highest mean concentrations were observed in high-traffic, residential and suburban sites, respectively. The study reveals that m,p-Xylene possess the highest Ozone formation potential (~109.46), followed by Toluene (~85.34), o-Xylene (~46.87), Ethylbenzene (~13.52) and Benzene (~2.61). Health risk assessment results indicated the high carcinogenic risk of Benzene (mean = 3.6 × 10-6) and the acceptable non-carcinogenic risk of BTEX (hazard index~0.03 < specified limit of 1). Finally, the estimated weighted exposures of BTEX emphasized that residents near the high-traffic districts are more exposed to BTEX. Supplementary Information The online version contains supplementary material available at 10.1007/s00477-023-02476-3.
Collapse
Affiliation(s)
- Sam Dehhaghi
- Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Ahmad Taheri
- Tehran Air Quality Control Company, Tehran Municipality, Tehran, Iran
| |
Collapse
|
32
|
Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological Effects of Fine Particulate Matter (PM 2.5): Health Risks and Associated Systemic Injuries-Systematic Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:346. [PMID: 37250231 PMCID: PMC10208206 DOI: 10.1007/s11270-023-06278-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023]
Abstract
Previous studies focused on investigating particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have shown the risk of disease development, and association with increased morbidity and mortality rates. The current review investigate epidemiological and experimental findings from 2016 to 2021, which enabled the systemic overview of PM2.5's toxic impacts on human health. The Web of Science database search used descriptive terms to investigate the interaction among PM2.5 exposure, systemic effects, and COVID-19 disease. Analyzed studies have indicated that cardiovascular and respiratory systems have been extensively investigated and indicated as the main air pollution targets. Nevertheless, PM2.5 reaches other organic systems and harms the renal, neurological, gastrointestinal, and reproductive systems. Pathologies onset and/or get worse due to toxicological effects associated with the exposure to this particle type, since it can trigger several reactions, such as inflammatory responses, oxidative stress generation and genotoxicity. These cellular dysfunctions lead to organ malfunctions, as shown in the current review. In addition, the correlation between COVID-19/Sars-CoV-2 and PM2.5 exposure was also assessed to help better understand the role of atmospheric pollution in the pathophysiology of this disease. Despite the significant number of studies about PM2.5's effects on organic functions, available in the literature, there are still gaps in knowledge about how this particulate matter can hinder human health. The current review aimed to approach the main findings about the effect of PM2.5 exposure on different systems, and demonstrate the likely interaction of COVID-19/Sars-CoV-2 and PM2.5.
Collapse
Affiliation(s)
- Amanda Garcia
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Eduarda Santa-Helena
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
33
|
Austin W, Carattini S, Gomez-Mahecha J, Pesko MF. The effects of contemporaneous air pollution on COVID-19 morbidity and mortality. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT 2023; 119:102815. [PMID: 37063946 PMCID: PMC10073864 DOI: 10.1016/j.jeem.2023.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Indexed: 05/03/2023]
Abstract
We examine the relationship between contemporaneous fine particulate matter exposure and COVID-19 morbidity and mortality using an instrumental variable approach. Harnessing daily changes in county-level wind direction, we show that arguably exogenous fluctuations in local air quality impact the incidence of confirmed COVID-19 cases and deaths. We find that a one μ g/m3 increase in PM 2.5, or 15% of the average PM 2.5 concentration in a county, increases the number of same-day confirmed cases by 1.8% from the mean case incidence in a county. A one μ g/m3 increase in PM 2.5 increases the same-day death rate by just over 4% from the mean. These effects tend to increase in magnitude over longer time horizons and are robust to a host of sensitivity tests. When analyzing potential mechanisms, we also demonstrate that an additional unit of PM 2.5 increases COVID-19-related hospitalizations by 0.8% and use of intensive care units by 0.5% on the same day. Using individual case records, we also show that higher PM 2.5 exposure at the time of case confirmation increases risk of later mechanical ventilation and mortality. These results suggest that air pollution plays an important role in mediating the severity of respiratory syndromes such as COVID-19.
Collapse
Affiliation(s)
- Wes Austin
- U.S. Environmental Protection Agency, United States
| | - Stefano Carattini
- Georgia State University, United States
- CESifo, Germany
- LSE, United Kingdom
- University of St. Gallen, Switzerland
| | | | - Michael F Pesko
- Georgia State University, United States
- Institute of Labor Economics (IZA), Germany
| |
Collapse
|
34
|
Rudke AP, Martins JA, Hallak R, Martins LD, de Almeida DS, Beal A, Freitas ED, Andrade MF, Koutrakis P, Albuquerque TTA. Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. REMOTE SENSING OF ENVIRONMENT 2023; 289:113514. [PMID: 36846486 PMCID: PMC9941323 DOI: 10.1016/j.rse.2023.113514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric pollutant data retrieved through satellite sensors are continually used to assess changes in air quality in the lower atmosphere. During the COVID-19 pandemic, several studies started to use satellite measurements to evaluate changes in air quality in many different regions worldwide. However, although satellite data is continuously validated, it is known that its accuracy may vary between monitored areas, requiring regionalized quality assessments. Thus, this study aimed to evaluate whether satellites could measure changes in the air quality of the state of São Paulo, Brazil, during the COVID-19 outbreak; and to verify the relationship between satellite-based data [Tropospheric NO2 column density and Aerosol Optical Depth (AOD)] and ground-based concentrations [NO2 and particulate material (PM; coarse: PM10 and fine: PM2.5)]. For this purpose, tropospheric NO2 obtained from the TROPOMI sensor and AOD retrieved from MODIS sensor data by using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm were compared with concentrations obtained from 50 automatic ground monitoring stations. The results showed low correlations between PM and AOD. For PM10, most stations showed correlations lower than 0.2, which were not significant. The results for PM2.5 were similar, but some stations showed good correlations for specific periods (before or during the COVID-19 outbreak). Satellite-based Tropospheric NO2 proved to be a good predictor for NO2 concentrations at ground level. Considering all stations with NO2 measurements, correlations >0.6 were observed, reaching 0.8 for specific stations and periods. In general, it was observed that regions with a more industrialized profile had the best correlations, in contrast with rural areas. In addition, it was observed about 57% reductions in tropospheric NO2 throughout the state of São Paulo during the COVID-19 outbreak. Variations in air pollutants were linked to the region economic vocation, since there were reductions in industrialized areas (at least 50% of the industrialized areas showed >20% decrease in NO2) and increases in areas with farming and livestock characteristics (about 70% of those areas showed increase in NO2). Our results demonstrate that Tropospheric NO2 column densities can serve as good predictors of NO2 concentrations at ground level. For MAIAC-AOD, a weak relationship was observed, requiring the evaluation of other possible predictors to describe the relationship with PM. Thus, it is concluded that regionalized assessment of satellite data accuracy is essential for assertive estimates on a regional/local level. Good quality information retrieved at specific polluted areas does not assure a worldwide use of remote sensor data.
Collapse
Affiliation(s)
- A P Rudke
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Brazil
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, 86036-370 Londrina, Brazil
| | - J A Martins
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, 86036-370 Londrina, Brazil
| | - R Hallak
- Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, Cidade Universitária, 05508-090, São Paulo, Brazil
| | - L D Martins
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, 86036-370 Londrina, Brazil
| | - D S de Almeida
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, 86036-370 Londrina, Brazil
- Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP310, 13565-905, São Carlos, Brazil
| | - A Beal
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, 86036-370 Londrina, Brazil
| | - E D Freitas
- Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, Cidade Universitária, 05508-090, São Paulo, Brazil
| | - M F Andrade
- Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, Cidade Universitária, 05508-090, São Paulo, Brazil
| | - P Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114, USA
| | - T T A Albuquerque
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Brazil
- Post Graduation Program on Environmental Engineering - Federal University of Espírito Santo, Av. Fernando Ferrari, 514, 29075-910 Vitória, Brazil
| |
Collapse
|
35
|
Priya S, Iqbal J. Assessment of NO 2 concentrations over industrial state Jharkhand, at the time frame of pre, concurrent, and post-COVID-19 lockdown along with the meteorological behaviour: an overview from satellite and ground approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68591-68608. [PMID: 37126175 PMCID: PMC10150349 DOI: 10.1007/s11356-023-27236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Burning of fossil fuels in the form of coal or gasoline in thermal power plants, industries, and automobiles is a prime source of nitrogen dioxide (NO2), a major air pollutant causing health problems. In this paper, spatio-temporal unevenness of NO2 concentrations via both spaceborne Sentinel-5P and ground-based in situ data have been studied for the period of 2017-2021. Annual and seasonal distribution of TROPOMI-NO2 depict consistency over the Jharkhand region, highlighting six hotspot regions. As compared to 2019, a notable dip of 11% in the spatial annual average TROPOMI-NO2 was achieved in 2020, which were elevated again by 22% in 2021 as the lockdown gradually goes out of the picture. Among eight ground-monitoring stations, Tata and Golmuri stations always displayed a higher level of TROPOMI-NO2 ranges up to 15.2 ×1015molecules.cm-2 and 16.9 ×1015molecules.cm-2 respectively, as being located in the highly industrialised district of Jamshedpur. A big percentage reduction of up to 30% in TROPOMI-NO2 has been reported in Jharia and Bastacola stations in Dhanbad in the lockdown phase of 2020 compared to 2019. Good agreement between TROPOMI-NO2 and surface-NO2 has been achieved with R = 0.8 and R = 0.71 during winter and post-monsoon respectively. Among four meteorological parameters, TROPOMI-NO2 was majorly found to be influenced by precipitation, having R = 0.6-0.8 for almost all stations. More advanced satellite algorithms and ground-based data may be used to estimate NO2 in places where monitoring facilities are limited and thus can help in air pollution control policy.
Collapse
Affiliation(s)
- Shalini Priya
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215 India
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
36
|
Orth S, Russell AG. Assessment of light-duty versus heavy-duty diesel on-road mobile source emissions using general additive models applied to traffic volume and air quality data and COVID-19 responses. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:374-393. [PMID: 37171913 DOI: 10.1080/10962247.2023.2185315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Following the outbreak of the COVID-19 pandemic, several papers have examined the effect of the pandemic response on urban air pollution worldwide. This study uses observed traffic volume and near-road air pollution data for black carbon (BC), oxides of nitrogen (NOx), and carbon monoxide (CO) to estimate the emissions contributions of light-duty and heavy-duty diesel vehicles in five cities in the continental United States. Analysis of mobile source impacts in the near-road environment has several health and environmental justice implications. Data from the initial COVID-19 response period, defined as March to May in 2020, were used with data from the same period over the previous two years to develop general additive models (GAMs) to quantify the emissions impact of each vehicle class. The model estimated that light-duty traffic contributes 4-69%, 14-65%, and 21-97% of BC, NOx, and CO near-road levels, respectively. Heavy-duty diesel traffic contributes an estimated 26-46%, 17-63%, and -7-18% of near-road levels of the three pollutants. The estimated mobile source impacts were used to calculate NOx to CO and BC to NOx emission ratios, which were between 0.21-0.32 μg m-3 NOx (μg m-3 CO)-1 and 0.013-0.018 μg m-3 BC (μg m-3 NOx)-1. These ratios can be used to assess existing emission inventories for use in determining air pollution standards. These results agree moderately well with recent National Emissions Inventory estimates and other empirically-derived estimates, showing similar trends among the pollutants. However, a limitation of this study was the recurring presence of an implausible air pollution impact estimate in 41% of the site-pollutant combinations, where a vehicle class was estimated to account for either a negative impact or an impact higher than the total estimated pollutant concentration. The variations seen in the GAM estimates are likely a result of location-specific factors, including fleet composition, external pollution sources, and traffic volumes.Implications: Drastic reductions in traffic and air pollution during the lockdowns of the COVID-19 pandemic present a unique opportunity to assess vehicle emissions. A General Additive Modeling approach is developed to relate traffic levels, observed air pollution, and meteorology to identify the amount vehicle types contribute to near-road levels of traffic-related air pollutants (TRAPs), which is important for future emission regulation and policy, given the significant health and environmental justice implications of vehicle-related pollution along major roadways. The model is used to evaluate emission inventories in the near-road environment, which can be used to refine existing estimates. By developing a locally data-driven method to readily characterize impacts and distinguish between heavy and light duty vehicle effects, local regulations can be used to target policies in major cities around the country, thus addressing local health disbenefits and disparities occurring as a result of exposure to near-road air pollution.
Collapse
Affiliation(s)
- Samuel Orth
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
37
|
Bian R, Murray-Tuite P, Wolshon B. Predicting Grocery Store Visits During the Early Outbreak of COVID-19 with Machine Learning. TRANSPORTATION RESEARCH RECORD 2023; 2677:79-91. [PMID: 37153205 PMCID: PMC10149515 DOI: 10.1177/03611981211043538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
While non-essential travel was canceled during the coronavirus infectious disease (COVID-19) pandemic, grocery shopping was essential. The objectives of this study were to: 1) examine how grocery store visits changed during the early outbreak of COVID-19, and 2) estimate a model to predict the change of grocery store visits in the future, within the same phase of the pandemic. The study period (February 15-May 31, 2020) covered the outbreak and phase-one re-opening. Six counties/states in the United States were examined. Grocery store visits (in-store or curbside pickup) increased over 20% when the national emergency was declared on March 13 and then decreased below the baseline within a week. Grocery store visits on weekends were affected more significantly than those on workdays before late April. Grocery store visits in some states (including California, Louisiana, New York, and Texas) started returning to normal by the end of May, but that was not the case for some of the counties (including those with the cities of Los Angeles and New Orleans). With data from Google Mobility Reports, this study used a long short-term memory network to predict the change of grocery store visits from the baseline in the future. The networks trained with the national data or the county data performed well in predicting the general trend of each county. The results from this study could help understand mobility patterns of grocery store visits during the pandemic and predict the process of returning to normal.
Collapse
Affiliation(s)
- Ruijie Bian
- Louisiana Transportation Research
Center, Louisiana State University, Baton Rouge, LA
| | | | - Brian Wolshon
- Department of Civil and Environmental
Engineering, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
38
|
Yin CX, Gu YF, Zhao GL. Effects of shared governance and cost redistribution on air pollution control: a study of game theory-based cooperation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49180-49196. [PMID: 36773258 PMCID: PMC9918827 DOI: 10.1007/s11356-023-25713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
This study seeks cost-effective strategies for PM2.5 reduction to generate insights into minimizing pollution abatement costs subject to different scenarios. This study theorizes that the cooperation of PM2.5 abatement has potential gains for participants and develop an empirical way to compare the costs and efficiency of PM2.5 abatement involving the variation of environmental conditions. This study revises the cooperative game model in the context of threshold effects using data obtained from the Beijing-Tianjin-Hebei metropolitan cluster in China. In general, the results support the key assertion that cooperation in the metropolitan cluster plays a vital role in optimizing the efficiency and costs of PM2.5 abatement. In addition to extending the application of the revised model, this study provides a way to estimate the costs and the mitigation benefits of meeting the pollution targets for each coparticipant and take the scenario of multiparty cooperation into account as well as the scenarios involving other types of pollutants. The empirical findings have important policy implications for regional shared governance, decentralization, and resource reallocation. Economic incentive-based shared governance and cost reallocation work better than traditional regulations.
Collapse
Affiliation(s)
- Chen-Xi Yin
- Chinese Academy of Finance and Development, Central University of Finance and Economics, Beijing, 100081, China
| | - Yi-Fan Gu
- Institute of Circular Economy, Beijing University of Technology, Beijing, 100124, China
| | - Guo-Long Zhao
- School of Labor and Human Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
39
|
Jana A, Kundu S, Shaw S, Chakraborty S, Chattopadhyay A. Spatial shifting of COVID-19 clusters and disease association with environmental parameters in India: A time series analysis. ENVIRONMENTAL RESEARCH 2023; 222:115288. [PMID: 36682443 PMCID: PMC9850905 DOI: 10.1016/j.envres.2023.115288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The viability and virulence of COVID-19 are complex in nature. Although the relationship between environmental parameters and COVID-19 is well studied across the globe, in India, such studies are limited. This research aims to explore long-term exposure to weather conditions and the role of air pollution on the infection spread and mortality due to COVID-19 in India. METHOD District-level COVID-19 data from April 26, 2020 to July 10, 2021 was used for the study. Environmental determinants such as land surface temperature, relative humidity (RH), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), Ozone (O3), and Aerosol Optical Depth (AOD) were considered for analysis. The bivariate spatial association was used to explore the spatial relationship between Case Fatality Rate (CFR) and these environmental factors. Further, the Bayesian multivariate linear regression model was applied to observe the association between environmental factors and the CFR of COVID-19. RESULTS Spatial shifting of COVID-19 cases from Western to Southern and then Eastern parts of India were well observed. The infection rate was highly concentrated in most of the Western and Southern regions of India, while the CFR shows more concentration in Northern India along with Maharashtra. Four main spatial clusters of infection were recognized during the study period. The time-series analysis indicates significantly more CFR with higher AOD, O3, and NO2 in India. CONCLUSIONS COVID-19 is highly associated with environmental parameters and air pollution in India. The study provides evidence to warrant consideration of environmental parameters in health models to mediate potential solutions. Cleaner air is a must to mitigate COVID-19.
Collapse
Affiliation(s)
- Arup Jana
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| | - Sampurna Kundu
- Center of Social Medicine and Community Health, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Subhojit Shaw
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| | - Sukanya Chakraborty
- IMPRS Neuroscience, Max Planck Institute of Multidisciplinary Sciences, University of Goettingen, Germany.
| | - Aparajita Chattopadhyay
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| |
Collapse
|
40
|
Usman M, Yuyan L, Husnain M, Akhtar MW. COVID-19, travel restrictions and environmental consequences. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-21. [PMID: 37363034 PMCID: PMC10024297 DOI: 10.1007/s10668-023-03146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/10/2023] [Indexed: 06/28/2023]
Abstract
The component of human life that has been most significantly altered by the COVID-19 epidemic is travel. Due to the upheaval produced by the pandemic breakout, countries are becoming increasingly avaricious and are scrambling to stockpile vaccines. The world has been locked down to reduce/control the pandemic outbreak, driving countries to shut their doors to other people from countries. The recent pandemic has had a short-term, positive effect on the environment, but travel restrictions have caused problems for the common person and are expected to deteriorate more soon, necessitating longer quarantines, vaccination requirements, vaccine passports, and immunization certificates required by countries for safe travel. Thus, this study has three objectives. First, we investigate the impact of COVID-19 on travel and the environment, as well as the role that tourists play in the transmission of the virus. Second, we examine how countries are handling COVID-19 vaccines. Finally, we pinpoint differences in vaccination coverage.
Collapse
Affiliation(s)
- Muhammad Usman
- UE Business School, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| | - Li Yuyan
- Zhengzhou Shengda University, Zhengzhou, People’s Republic of China
| | - Mudassir Husnain
- UE Business School, Division of Management and Administrative Sciences, University of Education Lahore, Lahore, Pakistan
| | | |
Collapse
|
41
|
Gu B, Liu J. COVID-19 pandemic, port congestion, and air quality: Evidence from China. OCEAN & COASTAL MANAGEMENT 2023; 235:106497. [PMID: 36687743 PMCID: PMC9847218 DOI: 10.1016/j.ocecoaman.2023.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/21/2022] [Accepted: 01/02/2023] [Indexed: 06/11/2023]
Abstract
The emergency of COVID-19 leads to almost all unnecessary activities being banned because of city lockdowns, which results in the economy and human mobility being strictly restricted. While affecting economic development, it has brought some environmental benefits. As a critical link to collection and distribution, ports have been deeply impacted by COVID-19, including quarantine time and operational efficiency, and even cause unexpected port congestion. This study empirically examines the relationship between the COVID-19 pandemic, port congestion and air quality in Chinese port cities using classical and system panel models. We find that the COVID-19 pandemic and port congestion significantly influence air quality in port cities. Managerial implications include the ensuring of port workers' shifts, the unblocking of port logistics, and the cooperation between transportation, customs, and quarantine departments, which can reduce the time of ships at berths and improve the air quality in port cities.
Collapse
Affiliation(s)
- Bingmei Gu
- School of Maritime Economics and Management, Dalian Maritime University, Dalian, China
| | - Jiaguo Liu
- School of Maritime Economics and Management, Dalian Maritime University, Dalian, China
| |
Collapse
|
42
|
Horton DB, Neikirk AL, Yang Y, Huang C, Panettieri RA, Crystal S, Strom BL, Parlett LE. Childhood asthma diagnoses declined during the COVID-19 pandemic in the United States. Respir Res 2023; 24:72. [PMID: 36899362 PMCID: PMC9999066 DOI: 10.1186/s12931-023-02377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Prior studies have documented declines in pediatric asthma exacerbations and asthma-related health care utilization during the COVID-19 pandemic, but less is known about the incidence of asthma during the pandemic. METHODS We conducted a retrospective cohort study of children under age 18 without a prior diagnosis of asthma within a large US commercial claims database. Incident asthma was defined using a combination of diagnosis codes, location of services, and medication dispensing. Crude quarterly rates of asthma diagnosis per 1000 children were calculated, and the incidence rate ratio and 95% confidence interval were estimated for newly diagnosed asthma during versus before the pandemic using negative binomial regression, adjusted for age, sex, region, and season. RESULTS Compared with 3 years prior to the pandemic, crude incident diagnosis rates of asthma decreased by 52% across the first four quarters of the US pandemic. The covariate-adjusted pandemic-associated incidence rate ratio was 0.47 (95% confidence interval 0.43, 0.51). CONCLUSIONS New diagnoses of childhood asthma in the US declined by half during the first year of the pandemic. These findings raise important questions whether pandemic-related changes in infectious or other triggers truly altered the incidence of childhood asthma beyond the well-described disruptions in healthcare access.
Collapse
Affiliation(s)
- Daniel B Horton
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA.
- Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
| | | | | | - Cecilia Huang
- Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Stephen Crystal
- Rutgers Center for Health Services Research, Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- School of Social Work, Rutgers University, New Brunswick, NJ, USA
| | - Brian L Strom
- Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
- Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | |
Collapse
|
43
|
Yildirim Y, Keshavarzi G, Arefi M. Noise complaints, the COVID-19 pandemic, and compact developments: evidence from five American cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40724-40736. [PMID: 36622602 PMCID: PMC9838491 DOI: 10.1007/s11356-023-25133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 continues to take its toll on human life. Even though to a less threatening extent, and insignificant to some, noise turns out to be one of its consequences without consensus. While individuals experience multiple restrictions and restrain from exuberant activities by spending most of their time at home, reducing public transportation and personal vehicles, overall, they end up reduce anthropogenic noise pressure. On another level, people continue reporting noise concerns at various degrees during the COVID-19 pandemic. To draw a bigger picture as to whether or not these complaints have increased during the COVID-19 compared to the same period last year, this research examines them in five major American cities: New York, Chicago, San Francisco, Phoenix, and Dallas. Furthermore, the study also assessed the complaint patterns, whether reported in compact or sprawled areas. The findings highlight that either the noise complaints increased or decreased during the COVID-19 crisis. Accordingly, four of the five selected cities, except San Francisco, showed a decrease in reported noise. As it turns out, compact developments correlate significantly and positively with noise complaints in all study areas, except in Phoenix. These findings call for regulating and prioritizing noise-related policies. Planners and urban designers can thus advise to sustain environmental planning and public health issues, especially in planning compact developments.
Collapse
Affiliation(s)
- Yalcin Yildirim
- Department of Landscape Architecture, Bursa Technical University, 16310, Bursa, Turkey.
| | - Golnaz Keshavarzi
- College of Architecture, Planning and Public Affairs, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Mahyar Arefi
- The National University of Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Paital B, Pati SG, Panda F, Jally SK, Agrawal PK. Changes in physicochemical, heavy metals and air quality linked to spot Aplocheilus panchax along Mahanadi industrial belt of India under COVID-19-induced lockdowns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:751-770. [PMID: 35306623 PMCID: PMC8934247 DOI: 10.1007/s10653-022-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/26/2022] [Indexed: 05/09/2023]
Abstract
Positive effects of COVID-19-induced lockdowns on environment are well documented although pre-planned experiments for such analyses and appearance of fish species are lacking. We hypothesize that spotting the fish Aplocheilus panchax along the industrial belt of Mahanadi River near Cuttack in a never seen manner could be due to the regenerated environment. Heavy metals, water and air qualities along with spotting A. panchax in up, mid and downstream of Mahanadi River near Jagatpur industrial basins were analysed during pre-(end of March 2020) and after 60 days of lockdowns (last week of May 2020). An overall 45, 61, 79, 100, 97 and 90% reduction of Fe, Cu, Ni, Cd, Pb and Zn was recorded in the studied area after lockdowns, respectively. Similarly, dissolved oxygen and pH were elevated by 26 and 7%, respectively. Water temperature, conductivity and total dissolved solute levels were reduced by 7, 46 and 15%, respectively, which were again elevated during post-lockdowns during 2021 as observed from the Landsat-8 OLI satellite data. Air NO2, SO2, NH3, PM2.5, PM10 and CO levels were alleviated by 58.75, 80.33, 72.22, 76.28, 77.33 and 80.15%, respectively. Finally, for the first time, about 12 A. panchax fish per 100 m shore line in the area were spotted. The observed lockdown-induced environmental healing at the studied area could contribute to the appearance of A. panchax in the study site and therefore a stringent environmental audit is suggested during post-COVID-19 periods to make the regenerated environmental status long lasting in such habitats.
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Sujit Kumar Jally
- School of Geography, Gangadhar Meher University, Sambalpur, Odisha, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| |
Collapse
|
45
|
Vaishya A, Raj SS, Singh A, Sivakumar S, Ojha N, Sharma SK, Ravikrishna R, Gunthe SS. Black carbon over tropical Indian coast during the COVID-19 lockdown: inconspicuous role of coastal meteorology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44773-44781. [PMID: 36701057 PMCID: PMC9878492 DOI: 10.1007/s11356-023-25370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) aerosols critically impact the climate and hydrological cycle. The impact of anthropogenic emissions and coastal meteorology on BC dynamics, however, remains unclear over tropical India, a globally identified hotspot. In this regard, we have performed in situ measurements of BC over a megacity (Chennai, 12° 59' 26.5″ N, 80° 13' 51.8″ E) on the eastern coast of India during January-June 2020, comprising the period of COVID-19-induced strict lockdown. Our measurements revealed an unprecedented reduction in BC concentration by an order of magnitude as reported by other studies for various other pollutants. This was despite having stronger precipitation during pre-lockdown and lesser precipitation washout during the lockdown. Our analyses, taking mesoscale dynamics into account, unravels stronger BC depletion in the continental air than marine air. Additionally, the BC source regime also shifted from a fossil-fuel dominance to a biomass burning dominance as a result of lockdown, indicating relative reduction in fossil fuel combustion. Considering the rarity of such a low concentration of BC in a tropical megacity environment, our observations and findings under near-natural or background levels of BC may be invaluable to validate model simulations dealing with BC dynamics and its climatic impacts in the Anthropocene.
Collapse
Affiliation(s)
- Aditya Vaishya
- School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
- Global Centre for Environment and Energy, Ahmedabad University, Ahmedabad, India
| | - Subha S Raj
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Aishwarya Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
- Center for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Swetha Sivakumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Narendra Ojha
- Physical Research Laboratory, Space and Atmospheric Sciences Division, Ahmedabad, India
| | - Som Kumar Sharma
- Physical Research Laboratory, Space and Atmospheric Sciences Division, Ahmedabad, India
| | - Raghunathan Ravikrishna
- Center for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sachin S Gunthe
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Center for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
46
|
Wang Y, Ge Q. The positive impact of the Omicron pandemic lockdown on air quality and human health in cities around Shanghai. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-26. [PMID: 37362999 PMCID: PMC9975847 DOI: 10.1007/s10668-023-03071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/21/2023] [Indexed: 06/28/2023]
Abstract
The Omicron pandemic broke out in Shanghai in March 2022, and some infected people spread to some cities in the Yangtze River Delta (YRD) region. To achieve the dynamic zero-COVID target as soon as possible, Shanghai and nine cities that were heavily affected by Shanghai implemented the lockdown measures. This paper aims to quantify the impact of the lockdown on air quality and human health. A difference-in-difference (DID) model was first used to measure the impact of the lockdown on air quality in these ten cities. Based on the results of the DID model, we estimated the PM2.5-related health and economic benefits using the concentration-response function and the value of statistical life method. Results showed that the lockdown has reduced the concentrations of PM2.5, PM10, SO2, NO2, and CO by 9.87 μg/m3, 17.31 μg/m3, 0.75 μg/m3, 9.03 μg/m3, and 0.07 mg/m3, respectively. The number of avoided premature deaths due to PM2.5 reduction was estimated to be 35,342. The resulting economic benefits totaled 18.86 billion US dollars. We investigated the reasons for the air quality improvement in these ten cities and found the "3 + 11" policy has had a great impact on air quality. Compared with the first COVID-19 lockdown in early 2020, the effect of the lockdown in 2022 was smaller. These findings demonstrated that reductions in anthropogenic emissions would achieve substantial air quality improvement and health benefits. This paper re-emphasized continuous efforts to improve air quality are essential to protect public health.
Collapse
Affiliation(s)
- Yu Wang
- Business School, University of Shanghai for Science and Technology, 334 Jungong Rd, Shanghai, 200093 People’s Republic of China
| | - Qingqing Ge
- College of Business, Yancheng Teachers University, 2 South Hope Avenue, Yancheng, 224051 People’s Republic of China
| |
Collapse
|
47
|
Volke MI, Abarca-Del-Rio R, Ulloa-Tesser C. Impact of mobility restrictions on NO 2 concentrations in key Latin American cities during the first wave of the COVID-19 pandemic. URBAN CLIMATE 2023; 48:101412. [PMID: 36627949 PMCID: PMC9816081 DOI: 10.1016/j.uclim.2023.101412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Between March and June 2020, activity in the major cities of Latin America declined due to containment efforts implemented by local governments to avoid the rapid spread of COVID-19. Our study compared 2020 with the previous year and demonstrated a considerable drop in tropospheric NO2 levels obtained by the SENTINEL 5P satellite in major Latin American cities. Lima (47.5%), Santiago (36.1%), São Paulo (27%), Rio de Janeiro (23%), Quito (18.6%), Bogota (17.5%), Buenos Aires (16.6%), Guayaquil (15.3%), Medellin (14.2%), La Paz (9.5%), Belo Horizonte (7.8%), Mexico (7.6%) and Brasilia (5.9%) registered statistically significant decreases in NO2 concentrations during the study period. In addition, we analyzed mobility data from Google and Apple reports as well as meteorological information from atmospheric reanalysis data along with satellite fields between 2011 and 2020, and performed a refined multivariate analysis (non-negative matrix approximation) to show that this decrease was associated with a reduction in population mobility rather than meteorological factors. Our findings corroborate the argument that confinement scenarios may indicate how air pollutant concentrations can be effectively reduced and managed.
Collapse
Affiliation(s)
- Matias I Volke
- Energy Doctoral Program, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Rodrigo Abarca-Del-Rio
- Department of Geophysics, Faculty of Physical and Mathematical Sciences, University of Concepcion, Concepcion, Chile
| | - Claudia Ulloa-Tesser
- Environmental Engineering Department, Faculty of Environmental Science and EULA Center, Universidad de Concepción, Chile
| |
Collapse
|
48
|
Ahmed G, Zan M. Impact of COVID-19 restrictions on air quality and surface urban heat island effect within the main urban area of Urumqi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16333-16345. [PMID: 36180804 PMCID: PMC9525227 DOI: 10.1007/s11356-022-23159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of coronavirus in 2019 (COVID-19) posed a serious global threat. However, the reduction in man-made pollutants during COVID-19 restrictions did improve the ecological environment of cities. Using multi-source remote sensing data, this study explored the spatiotemporal variations in air pollutant concentrations during the epidemic prevention and control period in Urumqi and quantitatively analyzed the impact of different air pollutants on the surface urban heat island intensity (SUHII) within the study area. Urumqi, located in the hinterland of the Eurasian continent, northwest of China, in the central and northern part of Xinjiang was selected as the study area. The results showed that during COVID-19 restrictions, concentrations of air pollutants decreased in the main urban area of Urumqi, and air quality improved. The most evident decrease in NO2 concentration, by 77 ± 1.05% and 15 ± 0.98%, occurred in the middle of the first (January 25 to March 20, 2020) and second (July 21 to September 1, 2020) COVID-19 restriction periods, respectively, compared with the corresponding period in 2019. Air pollutant concentrations and the SUHIIs were significantly and positively correlated, and NO2 exhibited the strongest correlation with the SUHIIs. We revealed that variations in the air quality characteristics and thermal environment were observed in the study area during the COVID-19 restrictions, and their quantitative relationship provides a theoretical basis and reference value for improving the air and ecological environment quality within the study area.
Collapse
Affiliation(s)
- Gulbakram Ahmed
- Department of Geography and Tourism, Xinjiang Normal University, Urumqi, 830054 China
- Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi, 830054 China
| | - Mei Zan
- Department of Geography and Tourism, Xinjiang Normal University, Urumqi, 830054 China
- Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi, 830054 China
| |
Collapse
|
49
|
Hasnain A, Sheng Y, Hashmi MZ, Bhatti UA, Ahmed Z, Zha Y. Assessing the ambient air quality patterns associated to the COVID-19 outbreak in the Yangtze River Delta: A random forest approach. CHEMOSPHERE 2023; 314:137638. [PMID: 36565760 PMCID: PMC9770002 DOI: 10.1016/j.chemosphere.2022.137638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The novel coronavirus (COVID-19), first identified at the end of December 2019, has significant impacts on all aspects of human society. In this study, we aimed to assess the ambient air quality patterns associated to the COVID-19 outbreak in the Yangtze River Delta (YRD) region using a random forest (RF) model. To estimate the accuracy of the model, the cross-validation (CV), determination coefficient R2, root mean squared error (RMSE) and mean absolute error (MAE) were used. The results demonstrate that the RF model achieved the best performance in the prediction of PM10 (R2 = 0.78, RMSE = 8.81 μg/m3), PM2.5 (R2 = 0.76, RMSE = 6.16 μg/m3), SO2 (R2 = 0.76, RMSE = 0.70 μg/m3), NO2 (R2 = 0.75, RMSE = 4.25 μg/m3), CO (R2 = 0.81, RMSE = 0.4 μg/m3) and O3 (R2 = 0.79, RMSE = 6.24 μg/m3) concentrations in the YRD region. Compared with the prior two years (2018-19), significant reductions were recorded in air pollutants, such as SO2 (-36.37%), followed by PM10 (-33.95%), PM2.5 (-32.86%), NO2 (-32.65%) and CO (-20.48%), while an increase in O3 was observed (6.70%) during the COVID-19 period (first phase). Moreover, the YRD experienced rising trends in the concentrations of PM10, PM2.5, NO2 and CO, while SO2 and O3 levels decreased in 2021-22 (second phase). These findings provide credible outcomes and encourage the efforts to mitigate air pollution problems in the future.
Collapse
Affiliation(s)
- Ahmad Hasnain
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information, Resource Development and Application, Nanjing 210023, China
| | - Yehua Sheng
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information, Resource Development and Application, Nanjing 210023, China.
| | | | - Uzair Aslam Bhatti
- School of Information and Communication Engineering, Hainan University, Haikou, China
| | - Zulkifl Ahmed
- Department of Civil Technology, Mir Chakar Khan Rind University of Technology, DG Khan 32200, Pakistan
| | - Yong Zha
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information, Resource Development and Application, Nanjing 210023, China
| |
Collapse
|
50
|
Margerison CE, Bruckner TA, MacCallum-Bridges C, Catalano R, Casey JA, Gemmill A. Exposure to the early COVID-19 pandemic and early, moderate and overall preterm births in the United States: A conception cohort approach. Paediatr Perinat Epidemiol 2023; 37:104-112. [PMID: 35830303 PMCID: PMC9350314 DOI: 10.1111/ppe.12894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND The United States (US) data suggest fewer-than-expected preterm births in 2020, but no study has examined the impact of exposure to the early COVID-19 pandemic at different points in gestation on preterm birth. OBJECTIVE Our objective was to determine-among cohorts exposed to the early COVID-19 pandemic-whether observed counts of overall, early and moderately preterm birth fell outside the expected range. METHODS We used de-identified, cross-sectional, national birth certificate data from 2014 to 2020. We used month and year of birth and gestational age to estimate month of conception for birth. We calculated the count of overall (<37 weeks gestation), early (<33 weeks gestation) and moderately (33 to <37 weeks gestation) preterm birth by month of conception. We employed time series methods to estimate expected counts of preterm birth for exposed conception cohorts and identified cohorts for whom the observed counts of preterm birth fell outside the 95% detection interval of the expected value. RESULTS Among the 23,731,146 births in our study, the mean prevalence of preterm birth among monthly conception cohorts was 9.7 per 100 live births. Gestations conceived in July, August or December of 2019-that is exposed to the early COVID-19 pandemic in the first or third trimester-yielded approximately 3245 fewer moderately preterm and 3627 fewer overall preterm births than the expected values for moderate and overall preterm. Gestations conceived in August and October of 2019-that is exposed to the early COVID-19 pandemic in the late second to third trimester-produced approximately 498 fewer early preterm births than the expected count for early preterm. CONCLUSIONS Exposure to the early COVID-19 pandemic may have promoted longer gestation among close-to-term pregnancies, reduced risk of later preterm delivery among gestations exposed in the first trimester or induced selective loss of gestations.
Collapse
Affiliation(s)
| | - Tim A. Bruckner
- Department of Health, Society, and Behavior, and the Center for Population, Inequality, and Policy, University of California, Irvine
| | | | - Ralph Catalano
- School of Public Health, University of California, Berkeley
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health
| | - Alison Gemmill
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|