1
|
Gonçalves JM, Benedetti M, d'Errico G, Regoli F, Bebianno MJ. Gender effects of nanoplastics and emerging contaminants mixtures in Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107219. [PMID: 39827535 DOI: 10.1016/j.aquatox.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
The reproduction of mussels occurs within the water column, and if gametogenesis is successful, gametes are exposed to the surrounding contaminants. Nanoplastics and other emerging contaminants have been gaining vast attention; however, their effects on the reproductive tissues of mussels with sex differentiation are scarce. Here, the effects of polystyrene nanoparticles (50 nm; 10 µg/L), the cytotoxic drug 5-fluorouracil (10 ng/L), and a mixture of the two were evaluated in the gonads of Mytilus galloprovincialis after a 21-day exposure for a multi-biomarker assessment, and after 28 days for the accumulation of nanoplastics. The effects on the activity of superoxide dismutase, catalase, glutathione-S-transferase, and lipid peroxidation were evaluated. Moreover, synergistic and antagonistic interactions in the mixture were calculated. A weight of evidence model was also used to elaborate on the hazardous level of biomarker results relative to polystyrene nanoparticles alone and in the mixture. The accumulation of nanoplastics appeared gender and time-specific, with females mostly compromised. According to the data set, a synergistic interaction between the cytotoxic drug and the nanoplastics makes the combination far more dangerous than individual stressors. The Weight Of Evidence model also confirms that females are more compromised at chronic exposure times than males. This study shows that the uptake, fate, and impact of emerging contaminants of concern can be significantly influenced by sex.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| | - M Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - G d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| |
Collapse
|
2
|
Iuffrida L, Wathsala RHGR, Musella M, Palladino G, Candela M, Franzellitti S. Stability and expression patterns of housekeeping genes in Mediterranean mussels (Mytilus galloprovincialis) under field investigations. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110047. [PMID: 39313016 DOI: 10.1016/j.cbpc.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The use of marine mussels as biological models encompasses a broad range of research fields, in which the application of RNA analyses disclosed novel biomarkers of environmental stress and investigated biochemical mechanisms of action. Quantitative real-time PCR (qPCR) is the gold standard for these studies, and despite its wide use and available protocols, it may be affected by technical flaws requiring reference gene data normalization. In this study, stability of housekeeping genes commonly employed as reference genes in qPCR analyses with Mytilus galloprovincialis was explored under field conditions. Mussels were collected from farms in the Northwestern Adriatic Sea. The sampling strategy considered latitudinal gradients of environmental parameters (proxied by location), gender, and their interactions with seasonality. Analyses of gene stability were performed using different algorithms. BestKeeper and geNorm agreed that combination of the ribosomal genes 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) was the best normalization strategy in the conditions tested, which agrees with available evidence. NormFinder provided different normalization strategies, involving combinations of tubulin (TUB)/28S (Gender/Season effect) or TUB/helicase (HEL) (Location/Season effect). Since NormFinder considers data grouping and computes both intra- and inter-group stability variations, it should work better with complex experimental designs and dataset structuring. Under the selected normalization strategies, expressions of the variable housekeeping genes actin (ACT) and elongation factor-1α (EF1) correlated with seasonal and latitudinal changes of abiotic environmental factors and mussel physiological status. Results point to consider ACT and EF1 expressions as molecular biomarkers of mussel general physiological status in field studies.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | | | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy.
| |
Collapse
|
3
|
Benito D, Briand M, Herlory O, Izagirre U, Bouchoucha M, Briaudeau T. Active mussel biomonitoring for the health status assessment of the Western Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 207:116898. [PMID: 39217868 DOI: 10.1016/j.marpolbul.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The Western Mediterranean coast is under the influence of anthropogenic pressures, including land use, increasing amounts of dangerous waste and habitat destruction. In 2021, the French RINBIO network (http://www.ifremer.fr/envlit/) originally dedicated to assess chemical contamination in the region, focused on biological effects produced by contaminants and the interaction with natural variability in mussels using an active caging strategy. Cell and tissue level biomarkers were applied for 17 sampling sites divided in three sub-regions categorized by different environmental conditions. Results provide critical information for ecosystem health assessment using mussels as sentinel species in the Western Mediterranean Sea. The influence of natural and confounding factors (trophic condition, reproductive cycle, caging strategy), on biological responses to mild chemical contamination, was discussed and discriminated for health status assessment. Results provide valuable data available as reference values for the assessment of biomarkers and histopathological alterations for large-scale active biomonitoring campaigns in the Western Mediterranean Sea.
Collapse
Affiliation(s)
- Denis Benito
- CBET+ Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| | - Marine Briand
- Ifremer, Lab Environ Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| | - Olivier Herlory
- Ifremer, Lab Environ Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| | - Urtzi Izagirre
- CBET+ Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain.
| | - Marc Bouchoucha
- Ifremer, Lab Environ Ressources Provence Azur Corse, CS 20330, F-83507 La Seyne Sur Mer, France
| | - Tifanie Briaudeau
- CBET+ Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| |
Collapse
|
4
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
5
|
Li Z, Qi R, Li Y, Miao J, Li Y, He Z, Zhang N, Pan L. Source-specific ecological and health risks of polycyclic aromatic hydrocarbons in the adjacent coastal area of the Yellow River Estuary, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:146-160. [PMID: 38009362 DOI: 10.1039/d3em00419h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Industrialization and urbanization have led to increasing levels of PAH pollution in highly urbanized estuaries and their adjacent coastal areas globally. This study focused on the adjacent coastal area of the Yellow River Estuary (YRE) and collected surface seawater, surface sediment, and clams Ruditapes philippinarum and Mactra veneriformis at four sites (S1 to S4) in May, August, and October 2021 to analyze the source-specific ecological and health risks and bioeffects. The findings revealed that the main sources of PAHs were traffic emission (25.2% to 28.5%), petroleum sources (23.3% to 29.5%), coal combustion (24.7% to 27.5%), and biomass combustion (19.8% to 20.7%). Further, the PMF-RQ and PMF-ILCR analyses indicated that traffic emission was the primary contributor to ecological risks in seawater and health risks in both clam species, while coal combustion was the major contributor in sediment. Taken together, it is recommended to implement control strategies for PAH pollution following the priority order: traffic > coal > petroleum > biomass, to reduce the content and risk of PAHs in the YRE.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, China.
| |
Collapse
|
6
|
Pizzurro F, Nerone E, Ancora M, Di Domenico M, Mincarelli LF, Cammà C, Salini R, Di Renzo L, Di Giacinto F, Corbau C, Bokan I, Ferri N, Recchi S. Exposure of Mytilus galloprovincialis to Microplastics: Accumulation, Depuration and Evaluation of the Expression Levels of a Selection of Molecular Biomarkers. Animals (Basel) 2023; 14:4. [PMID: 38200735 PMCID: PMC10778302 DOI: 10.3390/ani14010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastic contamination is a growing marine environmental issue with possible consequences for seafood safety. Filter feeders are the target species for microplastic (MPs) pollution because they filter large quantities of seawater to feed. In the present study, an experimental contamination of Mytilus galloprovincialis was conducted using a mixture of the main types of MPs usually present in the seawater column (53% filaments, 30% fragments, 3% granules) in order to test the purification process as a potential method for removing these contaminants from bivalves intended for human consumption. A set of molecular biomarkers was also evaluated in order to detect any variations in the expression levels of some genes associated with biotransformation and detoxification, DNA repair, cellular response, and the immune system. Our results demonstrate that: (a) the purification process can significantly reduce MP contamination in M. galloprovincialis; (b) a differential expression level has been observed between mussels tested and in particular most of the differences were found in the gills, thus defining it as the target organ for the use of these biomarkers. Therefore, this study further suggests the potential use of molecular biomarkers as an innovative method, encouraging their use in next-generation marine monitoring programs.
Collapse
Affiliation(s)
- Federica Pizzurro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Eliana Nerone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Luana Fiorella Mincarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Federica Di Giacinto
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Corinne Corbau
- Dipartimento di Scienze dell’Ambiente e della Prevenzione, Università di Ferrara, 44122 Ferrara, Italy;
| | - Itana Bokan
- Teaching Institute of Public Health (TIPH), 51000 Rijeka, Croatia;
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| | - Sara Recchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (F.P.); (M.A.); (M.D.D.); (C.C.); (R.S.); (L.D.R.); (F.D.G.); (N.F.); (S.R.)
| |
Collapse
|
7
|
Li Z, Qi R, Li Y, Miao J, Li Y, Zhang M, He Z, Zhang N, Pan L. The ban on the sale of new petrol and diesel cars: Can it help control prospective marine pollution of polycyclic aromatic hydrocarbons (PAHs) in Shandong Province, China? JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132451. [PMID: 37669606 DOI: 10.1016/j.jhazmat.2023.132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The constantly increasing amount of road vehicles causes massive exhaust emissions of pollutants, including polycyclic aromatic hydrocarbons (PAHs), necessitating a global responsibility to implement the policy of the ban on the sale of new petrol and diesel cars. Here, we assessed the policy control efficiency on marine pollution of PAHs in China through scenario modeling and prediction models, based on pollution monitoring, risk assessment, and source apportionment of PAHs in typical bays of Shandong Province. The results showed that in 2021, the pollution risk levels were relatively low (HI: 0.008-0.068, M-ERM-Q: 0.001-0.016, IBR: 1.23-2.69, ILCR: 8.11 ×10-6-1.99 ×10-5), and PAHs were mainly derived from traffic emissions (24.9%-35.2%), coal combustion (25.2%-32.9%), petroleum (17.2%-28.9%), and biomass combustion (17.6%-22.8%). In 2050, the predicted decrease of pollution risk values after the implementation of the policy was significant (12%-26%), and the gap between 2021 and 2050 was also significantly huge (18%-85%) without considering possible substitution of conventional energy. Collectively, this study built systematic approaches for assessing prospective marine pollution of PAHs. However, due to the particularity of Shandong Province, i.e., its national predominance of conventional energy consumption, the policy may be more effective when it comes to other coastal areas worldwide, calling for a larger scale research.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Interino N, Comito R, Simoni P, Franzellitti S, Palladino G, Rampelli S, Mosendz A, Gotti R, Roda A, Candela M, Porru E, Fiori J. Extraction method for the multiresidue analysis of legacy and emerging pollutants in marine mussels from the Adriatic Sea. Food Chem 2023:136453. [PMID: 37271683 DOI: 10.1016/j.foodchem.2023.136453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
The release of hazardous chemicals into aquatic environments has long been a known problem, but its full impact has only recently been realized. This study presents a validated liquid chromatography-mass spectrometry (HPLC-MS/MS) method for detecting pharmaceutical and pesticide residues in mussels (Mytilus galloprovincialis). An innovative MS-compatible extraction method was developed and validated, demonstrating successful recovery rates for analytes at three different concentration levels (25-95%). The method detected the target analytes at ng/g concentrations with high accuracy (-7% to 11%) and low relative standard deviation (<10%) for both intra-day and inter-day analyses. After validation, the method was applied to mussel samples collected from a commercial farm near Senigallia, Adriatic Sea, detecting different contaminants in the range of 2-40 ng/g (dry weight). The study provides a valuable tool for investigating the potential threats posed by diverse contaminant classes with high annual tonnage, including analytes with known persistence and/or illegal status.
Collapse
Affiliation(s)
- Nicolò Interino
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Rossana Comito
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anastasiia Mosendz
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; INBB, National Institute of Biostructure and Biosystems, Viale delle Medaglie d'Oro, Rome, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Emanuele Porru
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Jessica Fiori
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Ferreira NM, Coutinho R, de Oliveira LS. Emerging studies on oil pollution biomonitoring: A systematic review. MARINE POLLUTION BULLETIN 2023; 192:115081. [PMID: 37236096 DOI: 10.1016/j.marpolbul.2023.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
In the last decade, several methods were applied to monitor the impact of oil pollution on marine organisms. Recent studies showed an eminent need to standardize these methods to produce comparable results. Here we present the first thorough systematic review of the literature on oil pollution monitoring methods in the last decade. The literature search resulted on 390 selected original articles, categorized according to the analytical method employed. Except for Ecosystem-level analyses, most methods are used on short-term studies. The combination of Biomarker and Bioaccumulation analysis is the most frequently adopted strategy for oil pollution biomonitoring, followed by Omic analyses. This systematic review describes the principles of the most frequently used monitoring tools, presents their advantages, limitations, and main findings and, as such, could be used as a guideline for future researches on the field.
Collapse
Affiliation(s)
- Nícollas Menezes Ferreira
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira-IEAPM, Arraial do Cabo, RJ 28930000, Brazil; Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia-IEAPM and Universidade Federal Fluminense-UFF, Niterói, RJ 24220900, Brazil
| | - Ricardo Coutinho
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira-IEAPM, Arraial do Cabo, RJ 28930000, Brazil; Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia-IEAPM and Universidade Federal Fluminense-UFF, Niterói, RJ 24220900, Brazil
| | - Louisi Souza de Oliveira
- Department of Marine Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira-IEAPM, Arraial do Cabo, RJ 28930000, Brazil; Marine Biotecnology Graduate Program, Instituto de Estudos do Mar Almirante Paulo Moreia-IEAPM and Universidade Federal Fluminense-UFF, Niterói, RJ 24220900, Brazil.
| |
Collapse
|
10
|
Mincarelli LF, Chapman EC, Rotchell JM, Turner AP, Wollenberg Valero KC. Sex and gametogenesis stage are strong drivers of gene expression in Mytilus edulis exposed to environmentally relevant plasticiser levels and pH 7.7. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23437-23449. [PMID: 36322353 PMCID: PMC9938808 DOI: 10.1007/s11356-022-23801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution and changes in oceanic pH are both pressing environmental issues. Little emphasis, however, has been placed on the influence of sex and gametogenesis stage when investigating the effects of such stressors. Here, we examined histology and molecular biomarkers of blue mussels Mytilus edulis exposed for 7 days to a pH 7.7 scenario (- 0.4 units) in combination with environmentally relevant concentrations (0, 0.5 and 50 µg/L) of the endocrine disrupting plasticiser di-2-ethylhexyl phthalate (DEHP). Through a factorial design, we investigated the gametogenesis cycle and sex-related expression of genes involved in pH homeostasis, stress response and oestrogen receptor-like pathways after the exposure to the two environmental stressors. As expected, we found sex-related differences in the proportion of developing, mature and spawning gonads in histological sections. Male gonads also showed higher levels of the acid-base regulator CA2, but females had a higher expression of stress response-related genes (i.e. sod, cat, hsp70). We found a significant effect of DEHP on stress response-related gene expression that was dependent on the gametogenesis stage, but there was only a trend towards downregulation of CA2 in response to pH 7.7. In addition, differences in gene expression between males and females were most pronounced in experimental conditions containing DEHP and/or acidified pH but never the control, indicating that it is important to consider sex and gametogenesis stage when studying the response of mussels to diverse stressors.
Collapse
Affiliation(s)
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
| | | |
Collapse
|
11
|
Fraga N, Benito D, Briaudeau T, Izagirre U, Ruiz P. Toxicopathic effects of lithium in mussels. CHEMOSPHERE 2022; 307:136022. [PMID: 36002063 DOI: 10.1016/j.chemosphere.2022.136022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The rising use of lithium (Li) in industrial processes, modern technology and medicine has generated concerns in the scientific community, in particular its potential impact on the environment. Unfortunately, there is only scarce information concerning the toxicity of lithium in marine organisms. The objective of this study is to determine the toxicity of Li using Mytilus galloprovincialis as model organism, based on acute and sublethal toxicity tests. In the first experiment, mussels were exposed for 9 days to a range of acute concentrations of Li (0, 2, 5, 13, 34, 89, 233 and 610 mg/L Li) in order to find the median lethal concentration. In the sublethal experiment, mussels were exposed to environmentally relevant concentrations of Li (0, 0.1, 1, 10 mg/L Li) for 21 days. Digestive gland and gonad samples were taken at day 0, 1, 7 and 21 for histopathological analysis. Samples of the whole mussels were taken for chemical analysis at day 0 and after 21 days. Results showed that M. galloprovincialis had a LC50 value of 153 mg/L Li after 9 days of exposure. Lower concentrations (environmentally relevant), led to Li bioaccumulation in a dose-dependent manner and histopathological effects in a time-dependent manner. Atrophy of the digestive alveoli epithelium and degeneration of the digestive gland were observed after 21 days of exposure. These findings open new perspectives for the understanding of the toxic effects of Li on marine organisms and evidence the need for further long-term research at different levels of biological organizations.
Collapse
Affiliation(s)
- Nadezhna Fraga
- CBET+ Research Group, Department of Zoology and Animal Cell Biology + One Health, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena Auzoa z/g, E-48940, Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620, Plentzia-Bizkaia, Basque Country, Spain
| | - Denis Benito
- CBET+ Research Group, Department of Zoology and Animal Cell Biology + One Health, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena Auzoa z/g, E-48940, Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620, Plentzia-Bizkaia, Basque Country, Spain
| | - Tifanie Briaudeau
- CBET+ Research Group, Department of Zoology and Animal Cell Biology + One Health, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena Auzoa z/g, E-48940, Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620, Plentzia-Bizkaia, Basque Country, Spain
| | - Urtzi Izagirre
- CBET+ Research Group, Department of Zoology and Animal Cell Biology + One Health, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena Auzoa z/g, E-48940, Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620, Plentzia-Bizkaia, Basque Country, Spain
| | - Pamela Ruiz
- CBET+ Research Group, Department of Zoology and Animal Cell Biology + One Health, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena Auzoa z/g, E-48940, Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620, Plentzia-Bizkaia, Basque Country, Spain.
| |
Collapse
|
12
|
Benito D, Paleček D, Lekube X, Izagirre U, Marigómez I, Zaldibar B, Soto M. Variability and distribution of parasites, pathologies and their effect on wild mussels (Mytilus sp) in different environments along a wide latitudinal span in the Northern Atlantic and Arctic Oceans. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105585. [PMID: 35276576 DOI: 10.1016/j.marenvres.2022.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Histopathological examination in mussels can provide useful information for the diagnosis of ecosystem health status. The distribution of parasites in mussels can be conditioned by several environmental factors, including mussels collecting sites or the presence/absence of other species necessary to complete the complex life cycle of certain parasites. Thus, these variables could not only govern the parasitic burden of mussels but also the presence of pathologies associated to parasitism. The aim of this study was to identify the histopathological alterations which could be indicative of a health status distress along a wide latitudinal span in the Northern Atlantic and Arctic Oceans in mussels of two size-classes sampled in clean and impacted sites. A latitudinal gradient is clearly observed in gamete developmental stages as northern and southern mussels presented different conditions at the same period. Furthermore, mussels of the same size in different latitudes presented differences in the reproductive cycle and the appearance of related pathologies, which probably meant the age of individuals was different. In addition, specific parasitic profiles ruled by latitudinal conditions and the settlement of mussels in the shore (horizontal/vertical) have been demonstrated to be significantly influential in the health condition of mussels. Furthermore, the present work provides the first histological description of Gymnophallus cf. bursicola parasite causing a considerable host response in Tromsø and Iceland plus the report of grave histopathological status that included high prevalence of granulocytomas in Scotland and Germany.
Collapse
Affiliation(s)
- Denis Benito
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Dragana Paleček
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum Università di Bologna Via Selmi 2, Bologna, Italy
| | - Xabier Lekube
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Ionan Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Beñat Zaldibar
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Manu Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain.
| |
Collapse
|
13
|
Lavergne C, Celis-Plá PSM, Chenu A, Rodríguez-Rojas F, Moenne F, Díaz MJ, Abello-Flores MJ, Díaz P, Garrido I, Bruning P, Verdugo M, Lobos MG, Sáez CA. Macroalgae metal-biomonitoring in Antarctica: Addressing the consequences of human presence in the white continent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118365. [PMID: 34656678 DOI: 10.1016/j.envpol.2021.118365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.
Collapse
Affiliation(s)
- Céline Lavergne
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Audran Chenu
- LIENSs, UMR 7266, Université de La Rochelle - CNRS, 2 rue Olympe de Gouges, La Rochelle, France
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - María José Díaz
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso, Chile; Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany; Alfred Wegener Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - María Jesús Abello-Flores
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricia Díaz
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Garrido
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Laval University, Québec, QC, Canada
| | - Paulina Bruning
- Department of Biology and Quebec-Ocean Institute, Laval University, Québec, QC, Canada
| | - Marcelo Verdugo
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - M Gabriela Lobos
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, HUB AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso, Chile; Departamento de Ciencias del Mar y Biología Aplicada, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
14
|
Wathsala RHGR, Musella M, Valbonesi P, Candela M, Franzellitti S. Variability of metabolic, protective, antioxidant, and lysosomal gene transcriptional profiles and microbiota composition of Mytilus galloprovincialis farmed in the North Adriatic Sea (Italy). MARINE POLLUTION BULLETIN 2021; 172:112847. [PMID: 34399278 DOI: 10.1016/j.marpolbul.2021.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates the transcriptional profiles of genes related to physiological responses in digestive glands (DG) of Mytilus galloprovincialis under the influence of seasonal changes of environmental variables, gender bias, and gonadal development. Composition of the DG microbiome was also explored. Mussels were collected across 7 months encompassing 3 seasons from a farm in the Northwestern Adriatic Sea. All gene products showed complex transcriptional patterns across seasons. Salinity, surface oxygen and transparency significantly correlate with transcriptional profiles of males, whereas in females temperature and gonadal maturation mostly explained the observed transcriptional changes. Seasonal variations and gender-specific differences were observed in DG microbiome composition, with variations resembling metabolic accommodations likely facing season progression and reproductive cycle. Results provide baseline information to improve actual monitoring strategies of mussel farming conditions and forecast potential detrimental impacts of climatological/environmental changes in the study area.
Collapse
Affiliation(s)
| | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Paola Valbonesi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
| |
Collapse
|
15
|
Vital SA, Cardoso C, Avio C, Pittura L, Regoli F, Bebianno MJ. Do microplastic contaminated seafood consumption pose a potential risk to human health? MARINE POLLUTION BULLETIN 2021; 171:112769. [PMID: 34358788 DOI: 10.1016/j.marpolbul.2021.112769] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 05/07/2023]
Abstract
Microplastics are present in all parts of the ocean and can have deleterious effects on marine resources. The aim of this work was to map the presence of microplastics in commercial marine species such as bivalves (mussels Mytilus galloprovincialis and clams Scrobicularia plana), crabs (Carcinus maenas) as well as fish (Mullus surmuletus) to relate microplastics levels to pollution sources, assess possible impact on marine food chains and on human health. These species were collected from several sites of the Ria Formosa lagoon and along the south coast of Portugal. A quantitative assessment (number, size and color) and typology of microplastics were made in these species. Only one green fragment of polypropylene was detected in the gills of the crabs, while a blue polyethylene fragment was detected in the hepatopancreas of the mullets. Moreover, no microplastics were present in S. plana nor in the crabs whole soft tissues. Among mussels, 86% of microplastics were present from all sites and the number, size and color were site specific. Mussels from the west side of the coast (Sites 1-3) had the highest levels of MPs per mussel and per weight compared to the other sites, probably related to the impact of touristic activity, fishing gears, fresh water and sewage effluents along with the hydrodynamics of the area.
Collapse
Affiliation(s)
- S A Vital
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - C Cardoso
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - C Avio
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - L Pittura
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M J Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
16
|
Mincarelli LF, Rotchell JM, Chapman EC, Turner AP, Wollenberg Valero KC. Consequences of combined exposure to thermal stress and the plasticiser DEHP in Mytilus spp. differ by sex. MARINE POLLUTION BULLETIN 2021; 170:112624. [PMID: 34146859 DOI: 10.1016/j.marpolbul.2021.112624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.
Collapse
Affiliation(s)
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, NG8 1BB, United Kingdom
| | | |
Collapse
|
17
|
Noor MN, Wu F, Sokolov EP, Falfushynska H, Timm S, Haider F, Sokolova IM. Salinity-dependent effects of ZnO nanoparticles on bioenergetics and intermediate metabolite homeostasis in a euryhaline marine bivalve, Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145195. [PMID: 33609850 DOI: 10.1016/j.scitotenv.2021.145195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Engineered nanoparticles including ZnO nanoparticles (nZnO) are important emerging pollutants in aquatic ecosystems creating potential risks to coastal ecosystems and associated biota. The toxicity of nanoparticles and its interaction with the important environmental stressors (such as salinity variation) are not well understood in coastal organisms and require further investigation. Here, we examined the interactive effects of 100 μg l-1 nZnO or dissolved Zn (as a positive control for Zn2+ release) and salinity (normal 15, low 5, and fluctuating 5-15) on bioenergetics and intermediate metabolite homeostasis of a keystone marine bivalve, the blue mussel Mytilus edulis from the Baltic Sea. nZnO exposures did not lead to strong disturbances in energy or intermediate metabolite homeostasis regardless of the salinity regime. Dissolved Zn exposures suppressed the mitochondrial ATP synthesis capacity and coupling as well as anaerobic metabolism and modified the free amino acid profiles in the mussels indicating that dissolved Zn is metabolically more damaging than nZnO. The environmental salinity regime strongly affected metabolic homeostasis and altered physiological and biochemical responses to nZnO or dissolved Zn in the mussels. Exposure to low (5) or fluctuating (5-15) salinity affected the physiological condition, energy metabolism and homeostasis, as well as amino acid metabolism in M. edulis. Generally, fluctuating salinity (5-15) appeared bioenergetically less stressful than constantly hypoosmotic stress (salinity 5) in M. edulis indicating that even short (24 h) periods of recovery might be sufficient to restore the metabolic homeostasis in this euryhaline species. Notably, the biological effects of nZnO and dissolved Zn became progressively less detectable as the salinity stress increased. These findings demonstrate that habitat salinity must be considered in the biomarker-based assessment of the toxic effects of nanopollutants on coastal organisms.
Collapse
Affiliation(s)
- Mirza Nusrat Noor
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Human Health, Physical Rehabilitation and Vital Activity, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|