1
|
Borowiec BG, Robichaud KB, Craig PM. Interactive effects of elevated temperature and venlafaxine on mitochondrial respiration and enzymatic capacity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:737-750. [PMID: 39903854 PMCID: PMC12117019 DOI: 10.1093/etojnl/vgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Warming events are becoming more frequent and extreme in aquatic environments worldwide. Concurrently, many environments are polluted with biologically active compounds such as pharmaceuticals. Understanding how these challenges interact is critical for understanding the climate crisis, as contaminants may modulate how ectotherms respond to heat stress or vice versa. One potential site for these heat × contaminant interactions is the mitochondrion, which is central to metabolism, implicated in thermal tolerance, and evolutionarily conserved. Using high-resolution respirometry, we investigated how acute warming (to 35 °C, 40 °C, or 45 °C from 25 °C) impacted the respiration, coupling, and metabolic capacity of liver mitochondria isolated from Nile tilapia, and how exposure to environmentally relevant levels of the ubiquitous antidepressant venlafaxine modulated those effects. Mitochondria exposed to hotter temperatures had higher respiration rates and decreased respiratory control ratio compared to mitochondria exposed to cooler temperatures. The depressive effects of venlafaxine on respiration rates through complex I and II or complex II only (State 3 and State 4), as well as complex IV-linked respiration, were mild except in mitochondria exposed to high temperatures, suggesting an interactive effect of warming and contaminant exposure. Finally, we found that the maximal enzyme activity of intact mitochondria (represented by mitochondrial respiration) showed a different pattern of response to warming and venlafaxine compared to its underlying components (as reflected by the activity of succinate dehydrogenase [complex II] and cytochrome c oxidase [complex IV]), demonstrating the value of incorporating both interactive and reductive approaches in understanding how mitochondria cope with anthropogenic changes in the environment.
Collapse
Affiliation(s)
| | - Karyn B Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Saaristo M, Sharp S, McKenzie R, Hinwood A. Pharmaceuticals in biota: The impact of wastewater treatment plant effluents on fish in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124695. [PMID: 39122170 DOI: 10.1016/j.envpol.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Globally, pharmaceuticals and personal care products (PPCPs) are detected in surface waters receiving wastewater, yet their presence in biota, remain largely understudied. To address this, we conducted a study that measured 46 PPCPs in spot water samples and fish caught up- and downstream from wastewater treatment plants (WWTPs) in Victoria, Australia. We sampled 15 sites located along four waterways following a 3-site design: WWTP-discharge('hotspot'), 'upstream'(∼2 km) and 'downstream'(∼2 km). Spot water and fish were also sampled at reference sites >100 km from WWTP discharge (n = 3). Additionally, spot water samples were taken from WWTP effluent outflows (n = 3). From each locality, we analysed 3-12 fish (n = 131 total). In waterways, passive samplers (POCIS; ∼28d, n = 19 PPCPs) were also deployed. Individual fish (axial muscle) and water were analysed with LC-MS-MS. We found that PPCP concentrations in environmental surface water ranged from<0.02-0.97 μg/L. In WWTP effluent, the range was <0.02-1.4 μg/L. Of the 46 PPCPs analysed, 12 were detected in spot water samples and five in fish. In water, the highest concentration detected was for antidepressant venlafaxine (3 μg/L). The most frequently detected PPCPs: venlafaxine (54.9%), metoprolol (41.2%), propranolol (29.4%), carbamazepine (29.4%), caffeine (17.6%) and sulfamethoxazole (17.6%). Out of 131 fish analysed, 35 fish had detectable levels of PPCPs in the muscle tissue. The highest muscle concentrations were: venlafaxine (150 μg/kg, redfin perch), and sertraline (100 μg/kg, eel). Bioaccumulation factors ranged from 104 to 341L/kg for venlafaxine in redfins, 21-1,260L/kg for carbamazepine in redfins and eels, and 367-3,333L/kg for sertraline in eels. Based on our human health risk calculations for venlafaxine, carbamazepine, sertraline, triclosan, and caffeine, consumption of fish does not pose a significant risk to human health. Despite this, most of the detected PPCPs in surface waters exceeded 10 ng/L trigger value, which has led to further investigations by EPA. Our study highlights the need for using multiple lines of evidence for estimating risks of PPCPs.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority, EPA Science, Victoria, Australia.
| | - Simon Sharp
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Robert McKenzie
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority, EPA Science, Victoria, Australia
| |
Collapse
|
3
|
Santos LHMLM, Maulvault AL, Jaén-Gil A, Marques A, Barceló D, Rodríguez-Mozaz S. Linking chemical exposure and fish metabolome: Discovering new biomarkers of environmental exposure of Argyrosomus regius to the antidepressant venlafaxine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104063. [PMID: 36623700 DOI: 10.1016/j.etap.2023.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In this study, a non-target metabolomic approach was used to investigate changes in the metabolome of juvenile meagre (Argyrosomus regius) exposed to venlafaxine (20 µg/L). A total of 24, 22 and 8 endogenous metabolites tentatively identified in liver, brain and plasma, respectively, were significantly changed in venlafaxine exposed meagre, showing tissue-dependent variations in the metabolic profile. The amino acids tryptophan, tyrosine and phenylalanine, which are related to the synthesis, availability, and expression of neurotransmitters (e.g., serotonin, dopamine, epinephrine), showed to be dysregulated by venlafaxine exposure. A high impact was observed in fish brain metabolome that showed a trend of up-regulation for most of the tentatively identified metabolites. In conclusion, the identification of possible biomarkers of exposure in fish metabolome to environmental stressors such as venlafaxine is crucial to assess early signal changes at molecular level, enabling the prevention of deleterious effects at the organism and population levels.
Collapse
Affiliation(s)
- Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Adrián Jaén-Gil
- NORCE Norwegian Research Centre, Climate & Environment Division, Mekjarvik 12, 4072 Randaberg, Norway
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| |
Collapse
|
4
|
Paszkiewicz M, Godlewska K, Lis H, Caban M, Białk-Bielińska A, Stepnowski P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Duarte IA, Fick J, Cabral HN, Fonseca VF. Bioconcentration of neuroactive pharmaceuticals in fish: Relation to lipophilicity, experimental design and toxicity in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152543. [PMID: 34953825 DOI: 10.1016/j.scitotenv.2021.152543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Uptake of contaminants is linked to their toxicity and is usually estimated through their lipophilicity (logKow). Here, we review current literature regarding bioconcentration, i.e. uptake of contaminants from the external environment only, and the effects of exposure to neuroactive pharmaceuticals in fish. We aim to determine if lipophilicity is a suitable predictor of bioconcentration of these compounds in fish, to identify major drivers of bioconcentration and explore the link between bioconcentration potential and toxicity, focusing on survival, growth, condition, behaviour and reproduction endpoints. Additionally, we compare concentrations known to elicit significant effects in fish with current environmental concentrations, identifying exposure risk in ecosystems. The majority of studies have focused on antidepressants, mainly fluoxetine, and encompasses mostly freshwater species. Few studies determined pharmaceuticals bioconcentration, and even a smaller portion combined bioconcentration with other toxicity endpoints. Results show that lipophilicity isn't a good predictor of neuroactive pharmaceuticals' bioconcentration in fish, which in turn is highly influenced by experimental parameters, including abiotic conditions, species and life-stage. The need for increased standardization of experimental settings is key towards improving accuracy of environmental risk assessments and application in future regulatory schemes. Still, increased fish lethality was linked to increased bioconcentration, yet no other correlations were observed when considering effects on growth, condition, behaviour or reproduction, likely as a result of insufficient and variable data. In the context of current environmental concentrations, several neuroactive pharmaceuticals were found to be potentially threatening, while data on occurrence is lacking for some compounds, particularly in brackish/marine systems. Specifically, nine compounds (fluoxetine, citalopram, sertraline, amitriptyline, venlafaxine, clozapine, carbamazepine, metamfetamine and oxazepam) were found at concentrations either above or critically close to minimum response concentrations, thus likely to affect fish in freshwater and brackish or marine environments, which supports further exploration in risk management strategies and monitoring programs in aquatic environments.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Hajeb P, Zhu L, Bossi R, Vorkamp K. Sample preparation techniques for suspect and non-target screening of emerging contaminants. CHEMOSPHERE 2022; 287:132306. [PMID: 34826946 DOI: 10.1016/j.chemosphere.2021.132306] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The progress in sensitivity and resolution in mass spectrometers in recent years provides the possibility to detect a broad range of organic compounds in a single procedure. For this reason, suspect and non-target screening techniques are gaining attention since they enable the detection of hundreds of known and unknown emerging contaminants in various matrices of environmental, food and human sources. Sample preparation is a critical step before analysis as it can significantly affect selectivity, sensitivity and reproducibility. The lack of generic sample preparation protocols is obvious in this fast-growing analytical field, and most studies use those of traditional targeted analysis methods. Among them, solvent extraction and solid phase extraction (SPE) are widely used to extract emerging contaminants from solid and liquid sample types, respectively. Sequential solvent extraction and a combination of different SPE sorbents can cover a broad range of chemicals in the samples. Gel permeation chromatography (GPC) and adsorption chromatography, including acidification, are typically used to remove matrix components such as lipids from complex matrices, but usually at the expense of compound losses. Ideally, the purification of samples intended for non-target analysis should be selective of matrix interferences. Recent studies have suggested quality assurance/quality control measures for suspect and non-target screening, based on expansion and extrapolation of target compound lists, but method validations remain challenging in the absence of analytical standards and harmonized sample preparation approaches.
Collapse
Affiliation(s)
- Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| |
Collapse
|
7
|
Gomez E, Boillot C, Martinez Bueno MJ, Munaron D, Mathieu O, Courant F, Fenet H. In vivo exposure of marine mussels to venlafaxine: bioconcentration and metabolization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68862-68870. [PMID: 34278554 DOI: 10.1007/s11356-021-14893-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are present in natural waters, thus contributing to the general exposure of aquatic organisms, but few data are available on the accumulation of these substances in marine organisms. The present study evaluated the in vivo bioconcentration of an antidepressant-venlafaxine (VLF)-in marine mussels (Mytilus galloprovincialis) during 7 days of exposure at nominal 10 μg/L concentration, followed by a 7-day depuration period. The bioconcentration factor (BCF) was 265 mL/g dry weight (dw). VLF accumulation reached an average tissue concentration of 2146 ± 156 ng/g dw within 7 days, showing a first-order kinetics process. N-desmethylvenlafaxine (N-VLF) and O-desmethylvenlafaxine (O-VLF) metabolites were quantified in mussel tissues, whereas N,N-didesmethylvenlafaxine (NN-VLF) was only recorded as being detected. These three metabolites were also quantified in water, indicating an active metabolism and VLF excretion in Mediterranean mussels. Complementary experiments conducted at nominal concentrations of 1, 10, and 100 μg/L for 7 days confirmed the VLF bioconcentration and metabolism and allowed us to quantify a supplementary metabolite, i.e., N,O-didesmethylvenlafaxine (NO-VLF), in mussel tissues. These results encourage further research on a more complete characterization of metabolism and on any disturbances linked to bioconcentration of VLF on bivalves.
Collapse
Affiliation(s)
- Elena Gomez
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France.
| | - Clothilde Boillot
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | - Maria Jesus Martinez Bueno
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
- Residuos De Plaguicidas, Departamento de Fisica y Quimica, Almeria University, Almería, Spain
| | - Dominique Munaron
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Sète, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | - Frédérique Courant
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | - Hélène Fenet
- HydroSciences Montpellier, Université Montpellier, IRD, CNRS, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| |
Collapse
|
8
|
Kalogeropoulou AG, Kosma CI, Albanis TA. Simultaneous determination of pharmaceuticals and metabolites in fish tissue by QuEChERS extraction and UHPLC Q/Orbitrap MS analysis. Anal Bioanal Chem 2021; 413:7129-7140. [PMID: 34599396 DOI: 10.1007/s00216-021-03684-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the occurrence, fate, and adverse effects of pharmaceutically active compounds (PhACs) in aquatic organisms have become a noteworthy issue. In the present study, a rapid and sensitive multiresidue analytical method was developed for the determination of 18 parent PhACs and 5 metabolites in sea bream (Sparus aurata), by combining a modified QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure with ultra-high performance liquid chromatography-Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS). The method development involved optimization of extraction solvent, extraction salts, clean-up sorbents, and amount of sample evaluation, while identification on Orbitrap MS was based on accurate mass and further confirmation with MS/MS fragmentation. The developed method was validated, and linearity was higher than 0.99. Recoveries in all cases ranged between 62 and 107% (at 10, 50, and 100 ng g-1), while intra-day and inter-day precision, expressed as relative standard deviation, RSD, was lower than 4% and 7%, respectively. In addition, limits of quantification (LOQs) ranged between 0.5 and 19 ng g-1. The compounds presented a low matrix effect, between - 13 and 4%, while the expanded uncertainty U% estimated at the three spiking levels 10, 50, and 100 ng g-1 was found below 49% in all cases. Finally, the validated method was applied to sea bream samples from an aquaculture farm located in the Mediterranean Sea, with one positive finding for the antibiotic trimethoprim at a concentration of 26 ng g-1, presenting negligible human health risk.
Collapse
Affiliation(s)
| | - Christina I Kosma
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| | - Triantafyllos A Albanis
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.,University Research Center of Ioannina (URCI), Institute of Environment and Sustainable Development, 45110, Ioannina, Greece
| |
Collapse
|
9
|
Baesu A, Ballash G, Mollenkopf D, Wittum T, Sulliván SMP, Bayen S. Suspect screening of pharmaceuticals in fish livers based on QuEChERS extraction coupled with high resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146902. [PMID: 33872907 DOI: 10.1016/j.scitotenv.2021.146902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in aquatic environments is of increasing concern due to the presence of residues in fish and aquatic organisms, and emerging antibiotic resistance. Wastewater release is an important contributor to the presence of these compounds in aquatic ecosystems, where they may accumulate in food webs. The traditional environmental surveillance approach relies on the targeted analysis of specific compounds, but more suspect screening methods have been developed recently to allow for the identification of a variety of contaminants. In this study, a method based on QuEChERS extraction - using acetonitrile/water mixture as solvent and PSA/C18 for sample clean-up - was applied to identify pharmaceuticals and their metabolites in fish livers. Both target and suspect screening workflows were used and fish were sampled upstream and downstream of wastewater treatment plants from the Scioto River, Ohio (USA). The method performed well in terms of extraction of some target PPCPs, with recoveries generally above 90%, good repeatability (<20%), and linearity. Based on target analysis, lincomycin and sulfamethoxazole were two antibiotics identified in fish livers at average concentrations of 30.3 and 25.6 ng g-1 fresh weight, respectively. Using suspect screening, another antibiotic, azithromycin and an antidepressant metabolite, erythrohydrobupropion were identified (average concentrations: 27.8 and 13.8 ng g-1, respectively). The latter, reported, to the best of our knowledge, for the first time in fish livers, was also found at higher concentrations in fish livers sampled downstream vs. upstream. The higher frequency of detection for azithromycin in benthic feeding fish species (63%) as well as clusters identified between different foraging groups suggest that foraging behavior may be an important mechanism in the bioaccumulation of PPCPs. This study shows how suspect screening is effective in identifying new contaminants in fish livers, notably using differential analysis among different spatially distributed samples.
Collapse
Affiliation(s)
- Anca Baesu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Gregory Ballash
- Departments of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, United States of America
| | - Dixie Mollenkopf
- Departments of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, United States of America
| | - Thomas Wittum
- Departments of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, United States of America
| | - S Mažeika Patricio Sulliván
- Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
10
|
Ariza-Castro N, Courant F, Dumas T, Marion B, Fenet H, Gomez E. Elucidating venlafaxine metabolism in the Mediterranean mussel (Mytilus galloprovincialis) through combined targeted and non-targeted approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146387. [PMID: 34030260 DOI: 10.1016/j.scitotenv.2021.146387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Exposure of aquatic organisms to antidepressants is currently well documented, while little information is available on how wild organisms cope with exposure to these pharmaceutical products. Studies on antidepressant metabolism in exposed organisms could generate information on their detoxification pathways and pharmacokinetics. The goal of this study was to enhance knowledge on the metabolism of venlafaxine (VEN)-an antidepressant frequently found in aquatic ecosystems-in Mytilus galloprovincialis, a bivalve that is present worldwide. An original tissue extraction technique based on the cationic properties of VEN was developed for further analysis of VEN and its metabolites using targeted and non-targeted approaches. This extraction method was assessed in terms of recovery and matrix effects for VEN metabolites. Commercial analytical standards were applied to characterize metabolites found in mussels exposed to 10 μg/L VEN for 3 and 7 days. Targeted and non-targeted approaches using liquid chromatography (LC) combined with high-resolution mass spectrometry (HRMS) were implemented to screen for expected metabolites based on the literature on aquatic species, and for metabolites not previously documented. Four venlafaxine metabolites were identified, namely N-desmethylvenlafaxine and O-desmethylvenlafaxine, which were clearly identified using analytical standards, and two other metabolites revealed by non-target analysis. According to the signal intensity, hydroxy-venlafaxine (OH-VEN) was the predominant metabolite detected in mussels exposed for 3 and 7 days.
Collapse
Affiliation(s)
- N Ariza-Castro
- HydroSciences, IRD, CNRS, Université de Montpellier, Montpellier, France; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica.
| | - F Courant
- HydroSciences, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - T Dumas
- HydroSciences, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - B Marion
- Institut des Biomolecules Max Mousseron, ENSCM, CNRS, Université de Montpellier, Montpellier, France
| | - H Fenet
- HydroSciences, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - E Gomez
- HydroSciences, IRD, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
12
|
Luu I, Ikert H, Craig PM. Chronic exposure to anthropogenic and climate related stressors alters transcriptional responses in the liver of zebrafish (Danio rerio) across multiple generations. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108918. [PMID: 33141083 DOI: 10.1016/j.cbpc.2020.108918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 01/04/2023]
Abstract
The antidepressant, venlafaxine (VFX), and climate change stressors, such as increased water temperature and decreased dissolved oxygen, are current threats to aquatic environments. This study aimed to determine how microRNAs (miRNAs) and predicted targeted transcripts were altered in livers of zebrafish exposed to these stressors, and livers of their un-exposed F1 and F2 offspring. Following a 21 day exposure to multiple stressors (1 μg/L VFX, +5 °C ambient, 50% O2), then a subsequent 21 day recovery, relative abundances of cyp3a65, hsp70, hsp90, and ppargc1a and miRNAs predicted to target them (miR-142a, miR-16c, miR-181c, and miR-129, respectively) were measured in the liver via quantitative PCR (RT-qPCR). There were significant decreases in miR-142a in the exposed F0 generation and the exposed F1 generation. While there were no changes detected in cyp3a65 relative abundance, there was a significant inverse relationship between cyp3a65 and miR-142a. Hsp70 expression significantly increased in the F1 generation, which persisted to the F2 generation and the relative abundance of hsp90 significantly increased in all generations. There was a significant reduction in miR-181c in the F1 generation, but there was no significant relationship between miR-181c and hsp90. Finally, there was a significant decrease in ppargc1a relative abundance in the F1 generation which was associated with an increase in miR-129. Combined, these results suggest that parental exposure to multiple, environmentally relevant stressors can confer transcriptional and epigenetic responses in the F1 and F2 generations, although identifying which stressor is a driving force becomes unclear.
Collapse
Affiliation(s)
- Ivy Luu
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada.
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|