1
|
Zhou X, He T, Yin Y, Jiang T, Wu P, Liu J, Wang Y, Yin D, Liu E, Ma S, Xie Q. Elevated methylmercury production in seasonally inundated sediments: Insights from DOM molecular composition. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137095. [PMID: 39787935 DOI: 10.1016/j.jhazmat.2025.137095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Seasonally inundated areas (SIA) within aquatic systems are characterized by elevated methylmercury (MeHg) production. Nevertheless, the response characteristics of dissolved organic matter (DOM) quality in SIA sediments, including its molecular compositions and structure, and their impacts on the MeHg production are not yet fully understood. This research gap has been addressed through field investigations and microcosm experiments conducted in a metal-polluted plateau wetland. The results revealed that DOMSIA had lower levels of chromophoric DOM concentrations, protein-like fractions, molecular complexity, and debris size while exhibiting higher humic-like fractions, molecular weight, COO- groups, and bioavailability than DOM in permanently inundated areas (PIA). Compared with DOMPIA, DOMSIA was more easily biodegraded, and exhibited a higher adsorption capacity while lower binding affinity for Hg(Ⅱ). Moreover, MeHg synthesis by Desulfomicrobium escambiense was 29.6-fold higher in DOMSIA than that in DOMPIA, and DOMSIA amendment also resulted in a higher MeHg production in the sediment. The PLS-PM model demonstrated that DOM compositions positively showed high contributions to MeHg levels in sediment porewater (0.51), while binding affinity had a negative pattern (-0.83), but adsorption capacity had a lower contribution (0.09). These findings provide an updated explanation for the elevated MeHg level in the SIA of aquatic systems, which are closely related to the adaptive response of DOM molecular composition and structure in the sediment.
Collapse
Affiliation(s)
- Xian Zhou
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Jiang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Enxin Liu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Siyi Ma
- Guizhou Caohai Wetland Ecosystem National Positioning Observation and Research Station, Weining 551713, China
| | - Qing Xie
- Chongqing Vocational Institute of Engineering, Chongqing 402260, China
| |
Collapse
|
2
|
Yang D, An N, Yang X, Zheng J, Yan L, Yu L. Health risks of potentially toxic elements in Cyprinus carpio in the karst plateau lake, China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3139-3145. [PMID: 39530279 DOI: 10.1002/jsfa.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Elevated potentially toxic elements (PTEs) in aquatic products could threaten the health of ordinary consumers. Levels of chromium (Cr), arsenic (As), lead (Pb), and mercury (Hg) in Cyprinus carpio in karst plateau freshwater Lake, Caohai Lake, China were quantified using inductively coupled plasma mass spectrometry (ICP-MS) and evaluated using a risk method with Monte Carlo simulation. RESULT Levels of Cr, As, Pb, and Hg in muscle tissue were substantially lower than those in viscera. The maximum concentration of muscle-bound Cr, As, Pb, and Hg were less than the standard references set by Chinese Food Codex (GB 2762-2022). The levels of Cr, As, Pb, and Hg in muscle tissue were independent of fish weight and length. The hazard index of all investigated elements in muscle tissue were less than one for adults and children, whereas the target hazard quotients of muscle-bound PTEs for children were higher than those for adults. Results indicated that exposure duration was the largest contributor to the hazard quotient of Cr, As, and Hg, whereas the concentration of Pb in muscle was the most sensitive factor affecting the variation in hazard quotient of Pb. CONCLUSION There is no risk related to the normal intake of muscle-bound Cr, Pb, As and Hg with the consumption of Cyprinus carpio. A better definition of the probability distribution for exposure duration and PTEs concentration could result in a more accurate hazard quotient. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
- National Positioning Observation and Research Station of Caohai Wetland Ecosystem, Guizhou Academy of Forestry, Weining, China
| | - Na An
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Xin Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Jiao Zheng
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Lingbin Yan
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Lifei Yu
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Yang X, An N, Luo H, Zheng J, Wu J, Yang D. Phragmites australis elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China. Heliyon 2025; 11:e41528. [PMID: 39866504 PMCID: PMC11758123 DOI: 10.1016/j.heliyon.2024.e41528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species Phragmites australis (P. australis), native species Juncus effuses and Schoenoplectus tabernaemontan in a typical urban plateau Lake wetland, Caohai lake, China. Low-frequency mass magnetic susceptibility (χLF), anhysteretic remanent susceptibility (χARM), isothermal remanent magnetization, Cd, Cr, Cu, Sb, Ni and Zn were determined. Compared with Juncus effuses and Schoenoplectus tabernaemontani, P. australis habitat had the higher values of HMs, χLF, χARM, and isothermal remanent magnetization in top-soils. Frequency-dependent magnetic susceptibility ranged from 4.84 % to 10.87 % in top-soils and 6.82 %-9.95 % in sub-soils, lithogenic/pedogenic factors mainly masked the contribution of anthropogenic factors to magnetic signal enhancement. The correlation between variations of Cu and Sb with χARM and isothermal remanent magnetization was found to be significant in top-soils, but not in sub-soils. P. australis tended to promote the enrichment of HMs and enhancement of magnetic signal, the impact of P. australis expansion on the distribution of soil HMs and magnetic particles in Caohai riparian wetland should be not disregarded.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Na An
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Huipeng Luo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Building Material Product Quality Inspection and Testing Institute, Guiyang, 550014, China
| | - Jiao Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Jianlan Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Dan Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Lian J, Li J, Gao X. Source apportionment of Cd in karst soil based on the delayed geochemical hazard model. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:463. [PMID: 39361192 DOI: 10.1007/s10653-024-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024]
Abstract
Soil Cd contamination has become increasingly prominent in karst regions. Studies have generally elucidated the natural sources of Cd in high-background areas and analyzed their migration and enrichment mechanisms. This study comprehensively analyzed the total content and speciation of Cd in high-background areas using the delayed geochemical hazard (DGH) model to identify the sources of Cd in the region. The results indicated that Cd in the research area followed a pattern of gradual geochemical disasters. In Quaternary soil, brick-red soil, and submergenic paddy soil with hydromorphic characteristics, 32%, 7.69%, and 30% of soil Cd samples exceeded the critical threshold of the releasable total amount, respectively. Based on the DGH model, it was concluded that Cd in this region was mainly influenced by human activities. Field investigations corroborated this conclusion and aligned with the findings. Compared with the traditional source apportionment receptor models (mainly PCA and PMF), the DGH model not only saved considerable time and cost, but also avoided uncertainty associated with the results and complex and varied data processing and computational analysis processes. Moreover, the DGH model was able to identify the factors having the greatest impact on the ecological risk of Cd in the research area, thus facilitating targeted prevention and management planning based on the characteristics or chemical properties of their elements.
Collapse
Affiliation(s)
- Jingjing Lian
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, People's Republic of China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, People's Republic of China
| | - Jie Li
- Geological Survey of Guangxi Zhuang Autonomous Region, Nanning, 530023, People's Republic of China
| | - Xiaohong Gao
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, People's Republic of China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
6
|
Wang C, Zhang H, Xin X, Li J, Jia H, Wen L, Yin W. Water level-driven agricultural nonpoint source pollution dominated the ammonia variation in China's second largest reservoir. ENVIRONMENTAL RESEARCH 2022; 215:114367. [PMID: 36165872 DOI: 10.1016/j.envres.2022.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rainfall-runoff and water flooding are the driving mechanisms of agricultural nonpoint source pollution (ANPSP), but existing research has hardly focused on water level-driven ANPSP. Danjiangkou Reservoir was the second largest reservoir in China, and its water quality was dominated by ANPSP. This study explored the effect of water level on water quality of Danjiangkou Reservoir and aimed to provide basis for water quality management of large reservoirs. The effect of water level-driven ANPSP on the concentration of reservoir ammonia was studied employing the methods of factor decomposition and multiple regression on a extensive time series data of reservoir ammonia, water level, rainfall, fertilizer usage, and inflow river ammonia. The long-term trend revealed the reservoir ammonia peaked in 2011 and the inflow river ammonia peaked in 2012 (Han River) and 2013 (Dan River), which indicated the success of point source control in the past 15 years and the dominant role of ANPSP in the reservoir ammonia in recent years. With the long-term trend series, the multiple regression results showed that 56% of the variation of the reservoir ammonia concentration was due to the water level (standardized regression coefficient 0.422), fertilizer usage (standardized regression coefficient 0.522), and inflow river ammonia (standardized regression coefficient 0.219). However, the rainfall was insignificant. The predominance of water level and fertilizer usage in explanation of the reservoir ammonia variation indicated that water level-driven ANPSP was the primary factor influencing the reservoir ammonia. The effect of water level was primarily reflected in the long-term variation of ammonia concentration rather than the seasonal variation within the year. This study showed that when compared with rainfall-driven ANPSP, water level-driven ANPSP had a greater impact on the reservoir ammonia. Water quality protection should center on the management of the water level-fluctuation zone.
Collapse
Affiliation(s)
- Chao Wang
- Changjiang Water Resources Protection Institute, Wuhan, 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan, 430051, PR China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Science, Beijing, 100049, PR China
| | - Xiaokang Xin
- Changjiang Water Resources Protection Institute, Wuhan, 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan, 430051, PR China
| | - Jian Li
- Changjiang Water Resources Protection Institute, Wuhan, 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan, 430051, PR China
| | - Haiyan Jia
- Changjiang Water Resources Protection Institute, Wuhan, 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan, 430051, PR China
| | - Liqun Wen
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Changsha, 410205, PR China
| | - Wei Yin
- Changjiang Water Resources Protection Institute, Wuhan, 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan, 430051, PR China.
| |
Collapse
|
7
|
Yang Y, Sun F, Liu K, Chen J, Zheng T, Tang M. Influence of heavy metals on Saunders's Gull (Saundersilarus saundersi) reproduction in the Yellow River Estuary: risk assessment and bioaccumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82379-82389. [PMID: 35752667 DOI: 10.1007/s11356-022-21139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The heavy metal migration in the food chain exerted significant influence on the survival and reproduction of wetland birds and then disturbed and threatened the balance and health of the estuary ecosystem. In this study, the concentration of heavy metals (Cu, Cr, Fe, Mn, Cd, Ni, and Pb) in surface sediment of the Yellow River Estuary (YRE), the food sources of Saunders's Gull (Saundersilarus saundersi) nestlings, and the egg structure of birds were analyzed to determine the bioaccumulation and reproductive influence on wetland bird. The results indicated higher mean concentrations of sediment heavy metals than their corresponding background values in 2019, with the exception of Fe. Notably, the metal Cd exceeded geochemical background value by 1561.5% in 2018 and 1353.9% in 2019, resulting in severe contamination associated with Cd in the YRE (with geo-accumulation indexes of 3.44 and 3.23). Biomagnification factor (BMF) of heavy metals demonstrated that the concentrations of Cr, Ni, and Cu decreased with the trophic level rising while Cd, Mn, Pb, and Fe denoted bio-amplification in the food chain. The residual indexes showed that the food resources of Saunders's Gull were polluted by Cr, Pb, and Cu. Additionally, a higher enrichment of heavy metals was observed in the eggshell membrane. Metal concentrations had significant influences on the reproduction of Saunders's Gull, except for Cd, among which Ni, Pb, Cu, and Fe may have contributed to the reproductive success of birds, whereas the hatching failure of birds may be caused by Cr and Mn. It is of great importance to monitor the contamination of the wetland ecosystem and provide effective management and protection of the wildlife in the YRE.
Collapse
Affiliation(s)
- Yuewei Yang
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China.
| | - Fengfei Sun
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Kai Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Tong Zheng
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Meizhen Tang
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
8
|
An N, Yu L, Yan L, Yang D. Assessment of some trace elements accumulation in Karst lake sediment and Procambarus clarkii, in Guizhou province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113536. [PMID: 35453026 DOI: 10.1016/j.ecoenv.2022.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Lake wetland quality has decreased with the elevated concentrations of some trace elements. The consumption of crayfish in the trace elements concentrated lake wetland can be a hazard for the waterbirds and human health. Thus, the bioaccumulations of Cd, Ni, Pb and Zn in sediments and abdominal muscles of Procambarus clarkii in Caohai lake wetland, China were quantified. Sediment-bound Cd, Ni, Pb and Zn were remarkably elevated compared to the parent rock, while 64.71-94.12% of adverse effect index in sediment-bound Cd, Ni, Pb and Zn were > 1. Abdominal muscle-bound Cd, Pb and Zn in several samples were all above the maximum permissible limits. Pb, Zn and Ni in abdominal muscles were significantly linked with those in sediments (R2 =0.60-0.89, p < 0.01) and lake sediment might be the important feed sources of P. clarkii. Target hazard quotients of Cd, Ni, Pb and Zn at the 95th percentile was all below the benchmark, normal consumption of the abdominal muscle of P. clarkii posed low or no probabilistic health risk to the Grus nigricollis and local inhabitants.
Collapse
Affiliation(s)
- Na An
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lifei Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lingbin Yan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Dan Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Jiang Y, Wei X, He H, She J, Liu J, Fang F, Zhang W, Liu Y, Wang J, Xiao T, Tsang DCW. Transformation and fate of thallium and accompanying metal(loid)s in paddy soils and rice: A case study from a large-scale industrial area in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126997. [PMID: 34474370 DOI: 10.1016/j.jhazmat.2021.126997] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is an extremely toxic metal, while its occurrence and fate in paddy soil environment remain understudied. Herein, the enrichment and migration mechanisms and potential health risks of Tl and metal(loid)s were evaluated in paddy soils surrounding an industrial park utilizing Tl-bearing minerals. The results showed that Tl contamination was evident (0.63-3.16 mg/kg) in the paddy soils and Tl was generally enriched in root of rice (Oryza sativa L.) with a mean content of 1.27 mg/kg. A remarkably high level of Tl(III) (30-50%) was observed in the paddy soils. Further analyses by STEM-EDS and XPS indicated that Tl(I) in the paddy soils was jointly controlled by adsorption, oxidation, and precipitation of Fe/Mn(hydr)oxide (e.g. hematite and birnessite), which might act as important stabilization mechanisms for inhibiting potential Tl uptake by rice grains. The health quotient (HQ) values indicated a potentially high Tl risk for inhabitants via consumption of the rice grains. Therefore, it is critical to establish effective measures for controlling the discharge of Tl-containing waste and wastewater from different industrial activities to ensure food safety in the rice paddy soils.
Collapse
Affiliation(s)
- Yanjun Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenhui Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Parween M, Ramanathan AL, Raju NJ. Assessment of toxicity and potential health risk from persistent pesticides and heavy metals along the Delhi stretch of river Yamuna. ENVIRONMENTAL RESEARCH 2021; 202:111780. [PMID: 34329638 DOI: 10.1016/j.envres.2021.111780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The present study aims at the assessment of environmental quality of the most polluted stretch of river Yamuna along the megacity of Delhi. The study was conducted in order to examine toxicity and health hazards associated with persistent pollutants present in the fluvial ecosystem. Eighty four sediment and 56 vegetable samples from same locations were collected from the Delhi segment of river Yamuna flood plain in order to examine 20 organochlorine pesticides (OCPs) and 9 heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Both the organic and inorganic groups of persistent toxic substances were monitored and analysed for the extent of eco-toxicological as well as dietary health risks posed to the local population. Eco-toxicological assessment was done based on sediment quality guidelines, enrichment factor, geo-accumulation index, degree of contamination and Pollution Load Index. The dietary-risk was assessed with the help of translocation factors (TF) of these pollutants in vegetables. Carcinogenic and non-carcinogenic health risks from consumption of vegetables were also investigated. The level of concern for heavy metals was greater than that of OCPs as per the sediment quality guidelines. DDT, Cd, Pb and Zn had maximum concentrations corresponding to level 3 of concern, while Cr and Ni reached up to the highest i.e., 4th level of concern. Sediment samples were found to be enriched and contaminated significantly with Cd and moderately with Pb, as represented respectively by enrichment factors and contamination factors (CF). CF for metals lied in order Zn > Cd > CrNi > PbCu. Pollution load index was highest at the location lying on the exit point of Yamuna in Delhi. TF values greater than 1 were observed in majority of samples analysed for Ni, Cr, Cu and Zn. Spinach topped among vegetables in terms of metal contamination. Cd, Ni and Pb accumulated more in the roots, as against Mn, Zn, Cu and Cr which had higher accumulation in the shoots. Translocation factors were substantially high in vegetables for most of the OCPs, clearly indicating bioaccumulation and potential health risk to the consumers. Health risk to humans was assessed for non-carcinogenic and carcinogenic potentials from ingestion of vegetables. Hazard Quotient (HQ) > 1 due to radish (roots and leaves) and cauliflower consumption in children indicated non-carcinogenic risk. Hazard Index (HI) beyond 1 for all the vegetables (except onion leaves) confirmed substantial cumulative risk. Lifetime cancer risk (LCR) revealed moderate (spinach, radish, beet root and cauliflower) to low (all the others) levels of carcinogenic risk to humans. Cancer risks from γ-HCH, β- HCH, Hept, Hept Ep, Ald, p,p'-DDT, and Cr exposure through the food chain could be well established.
Collapse
Affiliation(s)
- Musarrat Parween
- National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, Karnataka, 560012, India.
| | - A L Ramanathan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
11
|
Xu Y, He T, Wu P, Yin D, Ran S. Fulvic acid: A key factor governing mercury bioavailability in a polluted plateau wetland. WATER RESEARCH 2021; 205:117652. [PMID: 34583206 DOI: 10.1016/j.watres.2021.117652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Fulvic acids (FAs) are known to regulate the fate of mercury (Hg) in sediments, but the key effects of their properties are still unclear. In this study, field investigations and simulation experiments were conducted in a heavy metal-polluted wetland to identify FA characteristics and their association with the production and bioaccumulation of methylmercury (MeHg). Compared to permanently inundated areas (PIA), seasonally inundated areas (SIAs) had lower total Hg levels in sediments, whereas higher MeHg levels in sediments (0.20 ± 0.09 ng g-1 vs. 0.55 ± 0.31 ng g-1) and benthos (0.25 ± 0.22 ng g-1 vs. 1.62 ± 1.78 ng g-1). Meanwhile, the THg and MeHg concentrations in the same macrophyte species between PIA and SIA also followed a similar rule with benthos. FA-bound Hg in the sediment was significantly correlated with MeHg in the sediment (p < 0.01), as well as THg and MeHg in benthos (p < 0.05), indicating that FAs have the capacity to promote MeHg production and bioaccumulation. Moreover, the FAs in the sediments of the SIA had lower fractions and alkyl C/O-alkyl C ratios, but higher molecular weights and THg/MeHg concentrations than those in the PIA, indicating that FAs in SIA have increased bioavailability and enhanced competition for Hg, favoring significantly elevated FA-bound Hg levels. Biological exposure testing further demonstrated that FAs extracted from SIA had a greater ability to increase the production and bioaccumulation of MeHg than those extracted from PIA. Overall, these results highlight that the molecular composition and sources of FAs, excluding their concentrations, are one of important factors responsible for the obvious spatial heterogeneity of MeHg in sediments and aquatic organisms in the wetland.
Collapse
Affiliation(s)
- Yiyuan Xu
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Genome-Wide Identification, Structure Characterization, Expression Pattern Profiling, and Substrate Specificity of the Metal Tolerance Protein Family in Canavalia rosea (Sw.) DC. PLANTS 2021; 10:plants10071340. [PMID: 34209283 PMCID: PMC8309081 DOI: 10.3390/plants10071340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Plant metal tolerance proteins (MTPs) play key roles in heavy metal absorption and homeostasis in plants. By using genome-wide and phylogenetic approaches, the origin and diversification of MTPs from Canavalia rosea (Sw.) DC. was explored. Canavalia rosea (bay bean) is an extremophile halophyte with strong adaptability to seawater and drought and thereby shows specific metal tolerance with a potential phytoremediation ability. However, MTP genes in leguminous plants remain poorly understood. In our study, a total of 12 MTP genes were identified in C. rosea. Multiple sequence alignments showed that all CrMTP proteins possessed the conserved transmembrane domains (TM1 to TM6) and could be classified into three subfamilies: Zn-CDFs (five members), Fe/Zn-CDFs (five members), and Mn-CDFs (two members). Promoter cis-acting element analyses revealed that a distinct number and composition of heavy metal regulated elements and other stress-responsive elements existed in different promoter regions of CrMTPs. Analysis of transcriptome data revealed organ-specific expression of CrMTP genes and the involvement of this family in heavy metal stress responses and adaptation of C. rosea to extreme coral reef environments. Furthermore, the metal-specific activity of several functionally unknown CrMTPs was investigated in yeast. These results will contribute to uncovering the potential functions and molecular mechanisms of heavy metal absorption, translocation, and accumulation in C. rosea plants.
Collapse
|
13
|
Zhong Q, Yin M, Zhang Q, Beiyuan J, Liu J, Yang X, Wang J, Wang L, Jiang Y, Xiao T, Zhang Z. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125015. [PMID: 33445048 DOI: 10.1016/j.jhazmat.2020.125015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal pollutant. Various industrial activities, especially metal smelting, are the main sources of Cd pollution. Cd isotopes have exhibited the ability to be excellent source tracers and can be used to assess the pollution contributions from different sources. Herein, in a typical lead-zinc smelter, Shaoguan, China, significant Cd isotopic fractionation was found during the high temperature smelting process and followed a Rayleigh distillation model. The heavier Cd isotopes were concentrated in the slag, while the lighter Cd isotopes were concentrated in the dust. In the downstream sediment profile of the smelter, sediments have extremely high Cd concentrations that far exceed the Chinese background sediment, indicating severe pollution levels. The ε114/110Cd of the sediment core, ranged from - 0.62 ± 0.5-1.73 ± 0.5, are found between slag (ε114/110Cd=10.42) and dust (ε114/110Cd=-5.68). The binary mixture model suggests that 88-93% of the Cd in sediment profile was derived from the slag, and 7-12% from the deposition of dust. The findings demonstrate the great potential to apply Cd isotopes as a new geochemical tool to distinguish anthropogenic sources and quantify the contribution from various sources in the environment.
Collapse
Affiliation(s)
- Qiaohui Zhong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510405, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Department of Earth Sciences, University of Oxford, Oxford, UK.
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yanjun Jiang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhaofeng Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510405, China
| |
Collapse
|
14
|
Zhang Z, Furman A. Soil redox dynamics under dynamic hydrologic regimes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143026. [PMID: 33143917 DOI: 10.1016/j.scitotenv.2020.143026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Electron transfer (redox) reactions, mediated by soil microbiota, modulate elemental cycling and, in part, establish the redox poise of soil systems. Understanding soil redox processes significantly improves our ability to characterize coupled biogeochemical cycling in soils and aids in soil health management. Redox-sensitive species exhibit different reactivity, mobility, and toxicity subjected to their redox state. Thus, it is crucial to quantify the redox potential (Eh) in soils and to characterize the dominant redox couples therein. Several, often coupled, external drivers, can influence Eh. Among these factors, soil hydrology dominates. It controls soil physical properties that in turn further regulates Eh. Soil spatial heterogeneity and temporally dynamic hydrologic regimes yield complex distributions of Eh. Soil redox processes have been studied under various environmental conditions, including relatively static and dynamic hydrologic regimes. Our focus here is on dynamic, variably water-saturated environments. Herein, we review previous studies on soil redox dynamics, with a specific focus on dynamic hydrologic regimes, provide recommendations on knowledge gaps, and targeted future research needs and directions. We review (1) the role of soil redox conditions on the soil chemical-species cycling of organic carbon, nitrogen, phosphorus, redox-active metals, and organic contaminants; (2) interactions between microbial activity and redox state in the near-surface and deep subsurface soil, and biomolecular methods to reveal the role of microbes in the redox processes; (3) the effects of dynamic hydrologic regimes on chemical-species cycling and microbial dynamics; (4) the experimental setups for mimicking different hydrologic regimes at both laboratory and field scales. Finally, we identify the current knowledge gaps related to the study of soil redox dynamics under different hydrologic regimes: (1) fluctuating conditions in the deep subsurface; (2) the use of biomolecular tools to understand soil biogeochemical processes beyond nitrogen; (3) limited current field measurements and potential alternative experimental setups.
Collapse
Affiliation(s)
- Zengyu Zhang
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Furman
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
15
|
Yao X, Cao Y, Zheng G, Devlin AT, Li X, Li M, Tang S, Xu L. Ecological adaptability and population growth tolerance characteristics of Carex cinerascens in response to water level changes in Poyang Lake, China. Sci Rep 2021; 11:4887. [PMID: 33649457 PMCID: PMC7921597 DOI: 10.1038/s41598-021-84282-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/04/2021] [Indexed: 01/31/2023] Open
Abstract
Water level conditions are the key factors that affect the growth and distribution of wetland plants. Using Carex cinerascens (C. cinerascens) as the study species, we employ indoor simulations and field surveys. Our results show that C. cinerascens can adapt to rhythmic changes in the water level through different adaptation strategies. Compared to that of the control group, plant growth was better with a 0-0.4 cm/d water level rate, and plant growth was in the 42-56 cm range to that a 1.0-1.4 cm/d water level rate. Furthermore, it was observed that 0-0.4 cm/d was the most suitable growth rate, with 0.6-1.0 cm/d and 0-32 cm being the ideal plant tolerance ranges, and increasing to 1.0-1.4 cm/d and 32-56 cm exceeds the plant tolerance threshold. In the middle and late period of the experiment (25-45 d), the ecological characteristics of the plants changed significantly. For example, the root-to-shoot ratio of the plant in the stable water level reached 26.1. In our field observations, plant biomass can be influenced by a variety of environmental factors. The frequency of the species was the largest at an elevation of 15 m, and the growth status of the dominant and companion species of C. cinerascens was weakened with an increase in soil moisture content. The suitable water content for C. cinerascens growth was 27.6-57.3%, the distribution elevation was 12.54-16.59 m, and the optimum elevation was 13.56-15.54 m. The study is expected to provide a reference for wetland ecology research and wetland protection and restoration, a theoretical reference for the coordination of water resource development and utilization of Poyang Lake and ecological protection of important lakes and wetlands, and an important scientific basis for wetland hydrologic regulation, ecological restoration and biodiversity conservation.
Collapse
Affiliation(s)
- Xiaochen Yao
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Cao
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Adam T Devlin
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiao Li
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Menghan Li
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Siwen Tang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Lingming Xu
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
16
|
Zhang G, Yin D, He T, Xu Y, Ran S, Zhou X, Tian X, Wang Y. Mercury Bioaccumulation in Freshwater Snails as Influenced by Soil Composition. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:153-159. [PMID: 33392685 DOI: 10.1007/s00128-020-03071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Soil properties largely control the fate of mercury (Hg), including the synthesis of neurovirulent methylmercury (MeHg). Here, the freshwater snail (Cipangopaludina cahayensis), a snail species commonly bred in flooded farmland, was used in a test of biotoxicity exposure to explore the effects of soil components on Hg bioavailability. The results show that snails incubated on the surface of slightly Hg-polluted flooded soil (2.0 mg/kg) have MeHg concentrations of 7.9 ± 1.5 mg/kg, which greatly exceed the limit of contaminants in food in China (0.5 mg/kg). The addition of ferrous disulfide can significantly increase the MeHg concentrations in soils while reducing the concentrations of total Hg (THg) and MeHg levels in snails by 59.1% and 64.3%, respectively. Peat-derived fulvic acid has the capacity to reduce the MeHg concentrations in soils and snails by 23.8% and 33.2%, respectively, whereas it increases the dissolved Hg levels in overlying water by 104.3%. Moreover, Fe-Mn oxides and humic acid can consistently reduce THg and MeHg concentrations in snails. Overall, freshwater snails bred in Hg-polluted areas may suffer from a high risk of Hg exposure, and importantly, some soil components such as ferrous disulfide and humic acid have strong inhibitory effects on Hg bioaccumulation in snails.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Yiyuan Xu
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Shu Ran
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiang Tian
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yan Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
17
|
Wang J, Wang L, Wang Y, Tsang DCW, Yang X, Beiyuan J, Yin M, Xiao T, Jiang Y, Lin W, Zhou Y, Liu J, Wang L, Zhao M. Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. ENVIRONMENT INTERNATIONAL 2021; 146:106207. [PMID: 33197789 DOI: 10.1016/j.envint.2020.106207] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/15/2023]
Abstract
Industrial activities tend to deteriorate adjacent agricultural lands due to accumulation of potentially toxic elements in soils and crops. However, better understanding of their distinctive source partitions and transfer process remains insufficient in steel-making area. The paper focuses on the pollution levels, health risks, and provenance identification of Tl, As, Pb, Cu, Ni, Co, Sb, Cd, Zn, Be, Cr, Fe, Mn, Mo, Sn, and V in common vegetables from different farmlands near a steel-making plant. The results showed that the Tl, As, Pb, Cd, Cr, Cu and Mn were of high-level contamination in soils and generally above the maximum permissible level (MPL). Calculation using hazard quotients (HQ) exhibited that consumption of the studied vegetables may entail significant health risks to residents, especially for children, resulting from the elevated contents of Tl, As and associated toxic elements. Calculation by binary mixing model using Pb isotopic compositions suggested that steel-making activities contributed to 35-80% of the contamination of Pb and As in vegetables. It is necessary to adopt appropriate remediation measures to mitigate the farmland contamination and ensure the food safety of the agricultural products.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Lulu Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Yuxuan Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Meiling Yin
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Yanjun Jiang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Wenli Lin
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Yuchen Zhou
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Liang Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Min Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| |
Collapse
|