1
|
Lima E Silva MA, Lorca da Silva R, Teixeira TP, Rocha TL, Marcon M. Glucocorticoids as emerging pollutants in surface water: A systematic review on their global occurrence and distribution. ENVIRONMENTAL RESEARCH 2025; 273:121280. [PMID: 40032243 DOI: 10.1016/j.envres.2025.121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/05/2025]
Abstract
Glucocorticoids (GCs) are synthetic drugs widely used for treating several diseases with inflammatory pathophysiology. In general, 1-20% of the concentration of GCs initially administered is eliminated unchanged in the urine while still in its active form, and therefore, fractions of GCs are constantly released in effluents. Currently, water treatment plants do not have sufficiently effective technologies to remove these substances completely, favoring the presence of these emerging pollutants in the effluents of wastewater treatment plants. In this context, we conduct a systematic review to identify studies that found GCs in surface water. The general data of the included studies, the GCs found and their concentration, the water body where the GCs were found, and the place and date of sampling were summarized. GCs have already been found in the surface water of 24 countries, mainly China, Malaysia, and the United States. Countries with the highest concentrations of GCs found in surface water were Mexico, India, and Brazil. Betamethasone, budesonide, corticosterone, cortisol, cortisone, dexamethasone, fludrocortisone, fluticasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, and triamcinolone were reported at concentrations ranging from 0.00098 to 24760 ng/L, including in water for human consumption. Revised data showed that the real presence of these substances worldwide is still underestimated, requiring further studies to determine their real distribution. Furthermore, we believe that some strategies can be adopted to mitigate surface water contamination by GCs, such as the intensification of public programs about educational activities related to the rational use of medicines, and the urgent need to improve and expand the water treatment methods.
Collapse
Affiliation(s)
- Marco Antonio Lima E Silva
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Rhitor Lorca da Silva
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Tiago Porfírio Teixeira
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Thiago Lopes Rocha
- Laboratório de Biotecnologia Ambiental e Ecotoxicologia (LaBAE), Instituto de Patologia Tropical e Saúde Publica, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Matheus Marcon
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil; Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil; Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil; Programa de Pós-graduação em Ciências da Saúde (PGCS), Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
2
|
Roveri V, Lopes Guimarães L, Correia AT. Computational modeling ( in silico) methods combined with ecotoxicological experiments ( in vivo) to predict the environmental risks of an antihistamine drug (loratadine). Drug Chem Toxicol 2024; 47:544-555. [PMID: 37434408 DOI: 10.1080/01480545.2023.2232563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
This study employed computational modeling (in silico) methods, combined with ecotoxicological experiments (in vivo) to predict the persistence/biodegradability, bioaccumulation, mobility, and ecological risks of an antihistamine drug (Loratadine: LOR) in the aquatic compartment. To achieve these goals, four endpoints of the LOR were obtained from different open-source computational tools, namely: (i) "STP total removal"; (ii) Predicted ready biodegradability; (iii) Octanol-water partition coefficient (KOW); and (iv) Soil organic adsorption coefficient (KOC). Moreover, acute and chronic, ecotoxicological assays using non-target freshwater organisms of different trophic levels (namely, algae Pseudokirchneriella subcapitata; microcrustaceans Daphnia similis and Ceriodaphnia dubia; and fish Danio rerio), were used to predict the ecological risks of LOR. The main results showed that LOR: (i) is considered persistent (after a weight-of-evidence assessment) and highly resistant to biodegradation; (ii) is hydrophobic (LOG KOW = 5.20), immobile (LOG KOC = 5.63), and thus, it can potentially bioaccumulate and/or can cause numerous deleterious effects in aquatic species; and (iii) after ecotoxicological evaluation is considered "toxic" and/or "highly toxic" to the three trophic levels tested. Moreover, both the ecotoxicological assays and risk assessment (RQ), showed that LOR is more harmful for the crustaceans (RQcrustaceans = moderate to high risks) than for algae and fish. Ultimately, this study reinforces the ecological concern due to the indiscriminate disposal of this antihistamine drug in worldwide aquatic ecosystems.
Collapse
Affiliation(s)
- Vinicius Roveri
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, São Paulo, Brasil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, Matosinhos, Portugal
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, Brasil
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, Brasil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, Matosinhos, Portugal
- Escola das Ciências da Vida e do Ambinete da Universidade de Trás-os-Montes e Alto Douro (UTAD-ECVA), Vila Real, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, Porto, Portugal
| |
Collapse
|
3
|
da Silva MP, de Souza ACA, Ferreira ÁRD, do Nascimento PLA, Fraga TJM, Cavalcanti JVFL, Ghislandi MG, da Motta Sobrinho MA. Synthesis of superparamagnetic Fe 3O 4-graphene oxide-based material for the photodegradation of clonazepam. Sci Rep 2024; 14:18916. [PMID: 39143177 PMCID: PMC11324737 DOI: 10.1038/s41598-024-67352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@Fe3O4) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite. A 23 factorial design was used for the optimization procedure to investigate the effect of [H2O2], GO@Fe3O4 dose and pH on clonazepam degradation. Adsorption experiments demonstrated that GO@Fe3O4 could not adsorb clonazepam. Photo-Fenton kinetics showed that total degradation of clonazepam was achieved within 5 min, and the experimental data were better fitted to the PFO model. A comparative study of clonazepam degradation by different processes highlighted that the heterogeneous photo-Fenton process was more efficient than homogeneous processes. The radical scavenging test showed that O 2 · - was the main active free radical in the degradation reaction, followed by hydroxyl radicals (•OH) and holes (h+) in the valence layer; accordingly, a mechanism of degradation was proposed to describe the process.
Collapse
Affiliation(s)
- Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Ana Caroline Alves de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Ágata Rodrigues Deodato Ferreira
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Pedro Lucas Araújo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE, 55292-270, Brazil
| | | | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Federal Rural University of Pernambuco (UFRPE), 300 Cento e Sessenta e Três Av., Cabo de Santo Agostinho, PE, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| |
Collapse
|
4
|
Su M, Zhong Y, Chen Y, Xiang J, Ye Z, Liao S, Ye S, Zhang J. Assessment of environmental exposure to betamethasone on the reproductive function of female Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116651. [PMID: 38959790 DOI: 10.1016/j.ecoenv.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhiyin Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shujia Liao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
6
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
7
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
8
|
Clímaco Cunha IL, Machado PG, de Oliveira Ribeiro C, Kulay L. Bibliometric analysis of Advanced Oxidation Processes studies with a focus on Life Cycle Assessment and Costs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22319-22338. [PMID: 38430439 DOI: 10.1007/s11356-024-32558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Advanced oxidation processes (AOPs) are wastewater treatment technologies that stand out for their ability to degrade Contaminants of Emerging Concern (CECs). The literature has extensively investigated these removal processes for different aqueous matrices. Once technically mature, some of these systems have become accredited to be applied on a large scale, and therefore, their systemic performances in the environmental and cost spheres have also become essential requirements. This study proposed corroborating this trend, analyzing the available literature on the subject to verify how experts in the AOP area investigated this integration during 2015-2023. For this purpose, a sample of publications was treated by applying the Systematic Review (SR) methodology. This resulted in an extract of 83 studies that adopted life-cycle logic to estimate environmental impacts and process costs or evaluated them as complementary to the technical dimension of each treatment technology. This analysis found that both dimensions can be used for selecting or sizing AOPs at the design scale. However, the appropriate choice of the impact categories for the environmental assessment and establishing a methodology for cost analysis can make the approach still more effective. In addition, a staggering number of processes would broaden the reality and applicability of the estimates, and adopting multicriteria analysis methodologies could address essential aspects of decision-making processes during the design of the arrangements. By meeting the original purposes, the study broadened the requirements for designing AOPs and disseminating their use in mitigating the discharge of CECs.
Collapse
Affiliation(s)
- Isadora Luiza Clímaco Cunha
- Research Group in Pollution Prevention (GP2), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, CEP 05508-010, Brazil.
| | - Pedro Gerber Machado
- Department of Production Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 1380, São Paulo, SP, CEP 05508-010, Brazil
| | - Celma de Oliveira Ribeiro
- Department of Production Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 1380, São Paulo, SP, CEP 05508-010, Brazil
| | - Luiz Kulay
- Research Group in Pollution Prevention (GP2), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 380, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
9
|
Wu G, Zhu F, Zhang X, Ren H, Wang Y, Geng J, Liu H. PBT assessment of chemicals detected in effluent of wastewater treatment plants by suspected screening analysis. ENVIRONMENTAL RESEARCH 2023; 237:116892. [PMID: 37598848 DOI: 10.1016/j.envres.2023.116892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Wastewater treatment plants (WWTPs) are the major sources of contaminants discharged into downstream water bodies. Profiling the contaminants in effluent of WWTPs is crucial to assess the potential eco-risks toward downstream organisms. To this end, this study investigated the contaminants in effluent of 10 WWTPs locating in 10 cities of Yangtze River delta region of China by suspected screening analysis. Further, the persistence, bioaccumulation, toxicity (PBT) and the characteristics sub-structures of PBT-like chemicals were analyzed. Totally, 704 chemicals including 155 chemical products, 31 food additives, 52 natural substances, 112 personal care products, 123 pesticides, 192 pharmaceuticals, 17 hormones and 22 others were found. The results of PBT analysis suggested that 42 chemicals (5.97% among the detected chemicals in WWTPs) were with PBT property. Among them, 31 contaminants were not reported previously. 9 characteristics sub-structures (N-methyleneisobutylamine, 1-naphthaldehyde, 2,3,3-trimethylcyclohexene, cyclohexanol, N-sec-butyl-n-propylamine, (5E)-2,6-dimethylocta-1,5-diene, 2-ethylphenol, pentadecane and 6-methoxyhexane) were found for PBT-like chemicals. The sub-structures of highly linear alkyl partially explained the significantly higher PBT score for personal care products. Present study provides fundamental information on PBT properties of contaminants in effluent of WWTPs, which will benefit to prioritize contaminants with high concerns in effluent of WWTPs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| | - Hualiang Liu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
10
|
Shafi M, Jan R, Gani KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. CHEMOSPHERE 2023; 341:139976. [PMID: 37657704 DOI: 10.1016/j.chemosphere.2023.139976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Mozim Shafi
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ruby Jan
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
| |
Collapse
|
11
|
Molnarova L, Halesova T, Vaclavikova M, Bosakova Z. Monitoring Pharmaceuticals and Personal Care Products in Drinking Water Samples by the LC-MS/MS Method to Estimate Their Potential Health Risk. Molecules 2023; 28:5899. [PMID: 37570870 PMCID: PMC10421426 DOI: 10.3390/molecules28155899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
(1) The occurrence and accumulation of pharmaceuticals and personal care products in the environment are recognized scientific concerns. Many of these compounds are disposed of in an unchanged or metabolized form through sewage systems and wastewater treatment plants (WWTP). WWTP processes do not completely eliminate all active substances or their metabolites. Therefore, they systematically leach into the water system and are increasingly contaminating ground, surface, and drinking water, representing a health risk largely ignored by legislative bodies. Especially during the COVID-19 pandemic, a significantly larger amount of medicines and protective products were consumed. It is therefore likely that contamination of water sources has increased, and in the case of groundwater with a delayed effect. As a result, it is necessary to develop an accurate, rapid, and easily available method applicable to routine screening analyses of potable water to monitor and estimate their potential health risk. (2) A multi-residue UHPLC-MS/MS analytical method designed for the identification of 52 pharmaceutical products was developed and used to monitor their presence in drinking water. (3) The optimized method achieved good validation parameters, with recovery of 70-120% of most analytes and repeatability achieving results within 20%. In real samples of drinking water, at least one analyte above the limit of determination was detected in each of the 15 tap water and groundwater samples analyzed. (4) These findings highlight the need for legislation to address pharmaceutical contamination in the environment.
Collapse
Affiliation(s)
- Lucia Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic;
| | - Tatana Halesova
- ALS Czech Republic, Na Harfe 223/9, 190 00 Prague, Czech Republic; (T.H.); (M.V.)
| | - Marta Vaclavikova
- ALS Czech Republic, Na Harfe 223/9, 190 00 Prague, Czech Republic; (T.H.); (M.V.)
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic;
| |
Collapse
|
12
|
Dos Santos IR, da Silva INM, de Oliveira Neto JR, de Oliveira NRL, de Sousa ARV, de Melo AM, de Paula JAM, do Amaral CL, Silveira-Lacerda EDP, da Cunha LC, Bailão EFLC. The presence of antibiotics and multidrug-resistant Staphylococcus aureus reservoir in a low-order stream spring in central Brazil. Braz J Microbiol 2023; 54:997-1007. [PMID: 37086357 PMCID: PMC10235331 DOI: 10.1007/s42770-023-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
The disposal of industrial effluents strongly influences low-order streams, which makes them fragile ecosystems that can be impacted by contamination. In central Brazil, the Extrema River spring targets the dumping of pharmaceutical products from the surrounding industries. So, this work aimed to investigate the presence of antibiotics in Extrema River spring samples and the isolation of Staphylococcus aureus, a potential multidrug-resistant bacteria, verifying the antimicrobial resistance profile of these isolates. Three campaigns were carried out in different locals (P1-P3) between October and December 2021, in the dry and rainy seasons. The high-performance liquid chromatography-tandem mass spectrometry (LCMS) approach indicated the presence of sulfamethoxazole (≥ 1 ng/L), metronidazole (< 0.5 ng/L), and chloramphenicol (< 5 ng/L) in the water samples in November (rainy season). S. aureus was isolated in P1 (n = 128), P2 (n = 168), and P3 (n = 36), with greater resistance to trimethoprim-sulfamethoxazole (90%), clindamycin (70%), and gentamicin (60%). The presence of antibiotics in the Extrema River spring may cause S. aureus antibiotic resistance development. The presence of antibiotics and the high percentage of isolated multidrug-resistant S. aureus in the Extrema River spring cause concern and indicate the clandestine dumping of effluents from nearby pharmaceutical industries. Since preserving the springs of low-order streams is important for the environment and public health, we encourage monitoring the wastewater from Extrema River's nearby pharmaceutical industries and preserving the spring of this river.
Collapse
Affiliation(s)
- Igor Romeiro Dos Santos
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | | | | | - Naiara Raica Lopes de Oliveira
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas (Nepet), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Adriano Roberto Vieira de Sousa
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, GO, Brazil
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Anielly Monteiro de Melo
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos para a Biodiversidade, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Joelma Abadia Marciano de Paula
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos para a Biodiversidade, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Cátia Lira do Amaral
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | | | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas (Nepet), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | |
Collapse
|
13
|
do Nascimento RF, de Carvalho Filho JAA, Napoleão DC, Ribeiro BG, da Silva Pereira Cabral JJ, de Paiva ALR. Presence Of Non-Steroidal Anti-Inflammatories In Brazilian Semiarid Waters. WATER, AIR, AND SOIL POLLUTION 2023; 234:225. [PMID: 37008655 PMCID: PMC10038380 DOI: 10.1007/s11270-023-06239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) act as antipyretics, analgesics and anti-inflammatories. Among them, diclofenac and ibuprofen are the most consumed drugs worldwide. During the COVID-19 pandemic, some NSAIDs, such as dipyrone and paracetamol, have been used to alleviate the symptoms of the disease, causing an increase in the concentrations of these drugs in water. However, due to the low concentration of these compounds in drinking water and groundwater, few studies have been carried out on the subject, especially in Brazil. Thus, this study aimed to evaluate the contamination of the surface water, groundwater, and water treated with diclofenac, dipyrone, ibuprofen, and paracetamol at 3 cities (Orocó, Santa Maria da Boa Vista and Petrolândia) in the Brazilian semiarid region, in addition to analyzing the removal of these drugs by conventional water treatment (coagulation, flocculation, sedimentation, filtration and disinfection) in stations to each city. All drugs analyzed were detected in surface and treated waters. In groundwater, only dipyrone was not found. Dipyrone was seen in surface water with a maximum concentration of 1858.02 μg.L-1, followed by ibuprofen (785.28 μg.L-1), diclofenac (759.06 μg.L-1) and paracetamol (533.64 μg.L-1). The high concentrations derive from the increased consumption of these substances during the COVID-19 pandemic. During the conventional water treatment, the maximum removal of diclofenac, dipyrone, ibuprofen and paracetamol was 22.42%; 3.00%; 32.74%; and 1.58%, respectively, which confirms the inefficiency of this treatment in removing drugs. The variation in removal rate of the analyzed drugs is due to the difference in the hydrophobicity of the compounds.
Collapse
Affiliation(s)
- Raquel Ferreira do Nascimento
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| | - José Adson Andrade de Carvalho Filho
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| | - Daniella Carla Napoleão
- Department of Chemical Engineering (DEQ), Federal University of Pernambuco (UFPE), Av. dos Economistas, s/n. Cidade Universitária, Recife, Pernambuco 50740-590 Brazil
| | - Beatriz Galdino Ribeiro
- Department of Chemical Engineering (DEQ), Federal University of Pernambuco (UFPE), Av. dos Economistas, s/n. Cidade Universitária, Recife, Pernambuco 50740-590 Brazil
| | - Jaime Joaquim da Silva Pereira Cabral
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| | - Anderson Luiz Ribeiro de Paiva
- Department of Civil and Environmental Engineering (DECIV), Federal University of Pernambuco (UFPE), Av. da Arquitetura, s/n. Cidade Universitária, Recife, Pernambuco 50740-550 Brazil
| |
Collapse
|
14
|
Warren-Vega WM, Campos-Rodríguez A, Zárate-Guzmán AI, Romero-Cano LA. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4499. [PMID: 36901509 PMCID: PMC10001968 DOI: 10.3390/ijerph20054499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.
Collapse
Affiliation(s)
| | | | - Ana I. Zárate-Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| | - Luis A. Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| |
Collapse
|
15
|
Duarte DJ, Oldenkamp R, Ragas AMJ. Human health risk assessment of pharmaceuticals in the European Vecht River. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1639-1654. [PMID: 35112470 PMCID: PMC9790459 DOI: 10.1002/ieam.4588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 05/23/2023]
Abstract
Active pharmaceutical ingredients (APIs) can reach surface waters used for drinking water extraction and recreational activities, such as swimming and fishing. The aim of the present study was to systematically assess the lifetime human health risks posed by 15 individual APIs and their mixtures occurring in the German-Dutch transboundary Vecht River. An exposure model was developed and used to assess the combined risks of oral and dermal exposure under a variety of exposure conditions. A total of 4500 API uptake values and 165 lifetime risk values were estimated for 15 and 11 APIs, respectively. Overall, the lifetime human health risks posed by the APIs and their mixtures based on modeling results were deemed acceptable under typical exposure conditions. Under very extreme environmental conditions and human behavior, API mixture risks were of potential concern while the risks of individual APIs were negligible, with a few exceptions. The antibiotic doxycycline and analgesic phenazone showed the highest and lowest risks, respectively. The study did not evaluate the potential risks caused by metabolite compounds. Recommendations for water managers are provided to help improve the accuracy and utility of human health risk assessments of pharmaceuticals. Integr Environ Assess Manag 2022;18:1639-1654. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Daniel J. Duarte
- Department of Environmental Science, Institute for Water & Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands
| | - Rik Oldenkamp
- Department of Global Health‐Amsterdam, Institute for Global Health and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ad M. J. Ragas
- Department of Environmental Science, Institute for Water & Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands
- Department of Environmental Sciences, Faculty of ScienceOpen UniversityHeerlenThe Netherlands
| |
Collapse
|
16
|
Oliveira CPMD, Moreira VR, Lebron YAR, Vasconcelos CKBD, Koch K, Viana MM, Drewes JE, Amaral MCS. Converting recycled membranes into photocatalytic membranes using greener TiO 2-GRAPHENE oxide nanomaterials. CHEMOSPHERE 2022; 306:135591. [PMID: 35798155 DOI: 10.1016/j.chemosphere.2022.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Despite the widespread use of membrane separation processes for water treatment, operation costs and fouling still restrict their application. Costs can be overcome by recycled membranes whereas fouling can be mitigated by membrane modification. In this work, the performance of recycled reverse osmosis membranes modified by greener titanium dioxide (TiO2) and graphene oxide (GO) in different modification routes were investigated and compared. The use of recycled membranes as a support acted more than a strategy for costs reduction, but also as an alternative for solid waste reduction. Low adhesion of nanoparticulate materials to the membrane surfaces were verified in depositions by self-assembly, whereas filtration and modification with dopamine generated membranes with well adhered and homogeneous layers. Considering the stability, permeability, and rejection efficiency of dyes as model substrates, the membranes modified with the aid of dopamine-TiO2-GO were the most promising. The nanomaterials increased the membrane hydrophilicity and formed a hydrated layer that repels the organic contaminants and reduces fouling. Besides membrane rejection, adsorption (contribution: ∼10%) and photocatalysis (contribution: ∼20%) were additional mechanisms for pollutants removal by the modified membranes. The photocatalytic membrane modified with dopamine-TiO2-GO was furthermore evaluated for the removal of six different pharmaceutical active compounds (PhACs), noticing gains in terms of removal efficiency (up to 95.7%) and fouling mitigation for the modified membrane compared to the original membranes. The photocatalytic activity still contributed to a simultaneous degradation of PhACs avoiding the generation of a concentrated stream for further disposal.
Collapse
Affiliation(s)
- Caique Prado Machado de Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | | | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Marcelo Machado Viana
- Department of Chemistry, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Spyrou A, Tzamaria A, Dormousoglou M, Skourti A, Vlastos D, Papadaki M, Antonopoulou M. The overall assessment of simultaneous photocatalytic degradation of Cimetidine and Amisulpride by using chemical and genotoxicological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156140. [PMID: 35605860 DOI: 10.1016/j.scitotenv.2022.156140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical Active Compounds (PhACs) are of particular interest among the emerging contaminants detected in the aquatic environment. Commonly, PhACs exist as complex mixtures in aquatic systems, causing potential adverse effects to the environment and human health than those of individual compounds. Based on the increasing interest in the contamination of water resources by PhACs, the photocatalytic degradation of Cimetidine and Amisulpride as a mixture in combination with their toxic and genotoxic effects before and after the treatment were evaluated for the first time. The toxic, genotoxic and cytotoxic effects were investigated using the Trypan Blue Exclusion Test and the Cytokinesis Block MicroNucleus (CBMN) assay in cultured human lymphocytes. The photocatalytic degradation of the PhACs was studied in ultrapure water and environmentally relevant matrices using UV-A and visible (Vis) irradiation and C-TiO2 (TiO2 Kronos vlp 7000) as photocatalyst. High removal percentages were observed for both compounds under UV-A and Vis irradiation in ultrapure water. In lake and drinking water a slower degradation rate was shown that could be attributed to the complex composition of these matrices. Scavenging experiments highlighted the significant role of h+ and O2●- in the degradation mechanisms under both irradiation sources. Oxidation, dealkylation and deamination were the main degradation pathways. Regarding the individual compounds, Amisulpride was found to be more cytotoxic than Cimetidine. No significant differences of the genotoxic effects during the treatment were observed. However, a slight increase in cytotoxicity was observed at the first stages of the process. At the end of the process under both UV-A and Vis light, non-significant cytotoxic/toxic effects were observed. Based on the results, heterogeneous photocatalysis can be considered as an effective process for the treatment of complex mixtures without the formation of harmful transformation products.
Collapse
Affiliation(s)
- Alexandra Spyrou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Anna Tzamaria
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | | | - Anastasia Skourti
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, GR-26500 Patras, Greece
| | - Maria Papadaki
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| |
Collapse
|
18
|
Huang J, Ding J, Jiang H, Wang Z, Zheng L, Song X, Zou H. Pharmaceuticals and Personal Care Products across Different Water Bodies in Taihu Lake Basin, China: Occurrence, Source, and Flux. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11135. [PMID: 36078849 PMCID: PMC9517866 DOI: 10.3390/ijerph191711135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Although pharmaceuticals and personal care products (PPCPs) have attracted great attentions, their occurrence characteristics across different water bodies at a basin scale remain poorly understood. To grasp a more comprehensive understanding of PPCP pollution from the perspective of the whole basin, the occurrence, spatial and seasonal variation, source, and flux of thirteen PPCPs across the different environmental compartments of the northern Taihu Lake Basin (TLB) were studied. The results showed that the non-therapeutic pharmaceuticals caffeine (CFI) and n, n-diethyl-m-toluamide (DEET) were the main components across the different environmental compartments. The total concentrations of detected PPCPs ranged from 0.2 to 2437.9 ng/L. Higher concentrations of PPCPs were observed in spring and autumn, which were mainly attributed to seasonal differences in PPCP consumption. Generally, pollution level was higher in industry and agriculture area and in the inner bay and southwest of Taihu Lake. Source apportionment indicated that untreated water was the main source of PPCPs in river waters of the northern TLB. Flux estimation showed that the mean annual flux of PPCPs from northern TLB to Taihu Lake in 2021 was 1.6 t/a, which was higher in comparison with other areas. Overall, the resulting data will be useful to enrich the research of PPCPs in freshwater for environmental investigations.
Collapse
Affiliation(s)
- Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
- Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Hang Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
- Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
19
|
Marson EO, Paniagua CES, Gomes Júnior O, Gonçalves BR, Silva VM, Ricardo IA, V M Starling MC, Amorim CC, Trovó AG. A review toward contaminants of emerging concern in Brazil: Occurrence, impact and their degradation by advanced oxidation process in aquatic matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155605. [PMID: 35504382 DOI: 10.1016/j.scitotenv.2022.155605] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This work presents data regarding the occurrence and treatment of Contaminants of Emerging Concern (CECs) in Brazil in the past decade. The literature review (2011-2021) revealed the detection of 87 pharmaceutical drugs and personal care products, 58 pesticides, 8 hormones, 2 illicit drugs, caffeine and bisphenol A in distinct matrices (i.e.: wastewater, groundwater, sea water, rainwater, surface water, drinking water and hospital effluent). Concentrations of CECs varied from ng-μg L-1 depending on the location, compound and matrix. The inefficiency of conventional wastewater treatment methods on the removal of CECs and lack of basic sanitation in some regions in the country aggravates contamination of Brazilian aquatic environments and poses potential environmental and health risks. Advanced oxidation processes (AOPs) are pointed out as viable and efficient alternatives to degrade CECs and prevent environmental contamination. A total of 375 studies involving the use of AOPs in Brazilian aqueous matrices were published in the last decade. Fenton and photo-Fenton processes, photo-peroxidation, ozonation, electrochemical advanced oxidation and heterogeneous photocatalysis are some of the AOPs applied by Brazilian research groups. Although many works discuss the importance of applying these technologies for CECs removal in real treatment plants, most of these studies assess the treatment of distilled water or simulated effluent. Therefore, the conduction of studies applying AOPs in real matrices are critical to drive the implementation of these processes coupled to conventional water and wastewater treatment in real plants in order to prevent the contamination of environmental matrices by CECs in Brazil.
Collapse
Affiliation(s)
- Eduardo O Marson
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Cleiseano E S Paniagua
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Oswaldo Gomes Júnior
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Bárbara R Gonçalves
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Valdislaine M Silva
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Ivo A Ricardo
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil; Faculty of Natural and Exact Sciences, Save University, 0301-01 Chongoene, Gaza, Mozambique
| | - Maria Clara V M Starling
- Research Group on Advanced Oxitation Processes, Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental, 31270-010 Belo Horizonte, MG, Brazil
| | - Camila C Amorim
- Research Group on Advanced Oxitation Processes, Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental, 31270-010 Belo Horizonte, MG, Brazil
| | - Alam G Trovó
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil.
| |
Collapse
|
20
|
Arcanjo GS, Dos Santos CR, Cavalcante BF, Moura GDA, Ricci BC, Mounteer AH, Santos LVS, Queiroz LM, Amaral MC. Improving biological removal of pharmaceutical active compounds and estrogenic activity in a mesophilic anaerobic osmotic membrane bioreactor treating municipal sewage. CHEMOSPHERE 2022; 301:134716. [PMID: 35487362 DOI: 10.1016/j.chemosphere.2022.134716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The contamination of water sources by pharmaceutically active compounds (PhACs) and their effect on aquatic communities and human health have become an environmental concern worldwide. Membrane bioreactors (MBRs) are an alternative to improve biological removal of recalcitrant organic compounds from municipal sewage. Their efficiency can be increased by using high retention membranes such as forward osmosis (FO) and membrane distillation (MD). Thus, this research aimed to evaluate the performance of an anaerobic osmotic MBR coupled with MD (OMBR-MD) in the treatment of municipal sewage containing PhACs and estrogenic activity. A submerged hybrid FO-MD module was integrated into the bioreactor. PhACs removal was higher than 96% due to biological degradation, biosorption and membrane retention. Biological removal of the PhACs was affected by the salinity build-up in the bioreactor, with reduction in biodegradation after 32 d. However, salinity increment had little or no effect on biosorption removal. The anaerobic OMBR-MD removed >99.9% of estrogenic activity, resulting in a distillate with 0.14 ng L-1 E2-eq, after 22 d, and 0.04 ng L-1 E2-eq, after 32 d. OMBR-MD treatment promoted reduction in environmental and human health risks from high to low, except for ketoprofen, which led to medium acute environmental and human health risks. Carcinogenic risks were reduced from unacceptable to negligible, regarding estrogenic activity. Thus, the hybrid anaerobic OMBR-MD demonstrated strong performance in reducing risks, even when human health is considered.
Collapse
Affiliation(s)
- Gemima S Arcanjo
- Department of Environmental Engineering - Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil; Department of Civil Engineering - Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Carolina R Dos Santos
- Department of Sanitary and Environmental Engineering - Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| | - Bárbara F Cavalcante
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela de A Moura
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara C Ricci
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ann H Mounteer
- Department of Civil Engineering - Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucilaine V S Santos
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano M Queiroz
- Department of Environmental Engineering - Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil
| | - Míriam Cs Amaral
- Department of Sanitary and Environmental Engineering - Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
22
|
Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered 2022; 13:10412-10453. [PMID: 35441582 PMCID: PMC9161886 DOI: 10.1080/21655979.2022.2056823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
Collapse
Affiliation(s)
- Raj Kumar Oruganti
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| | - Keerthi Katam
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Malaysia
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid, South Dakota, USA
| | | | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| |
Collapse
|
23
|
de Souza Santos LV, Lebron YAR, Moreira VR, Jacob RS, Martins DCDS, Lange LC. Norfloxacin and gentamicin degradation catalyzed by manganese porphyrins under mild conditions: the importance of toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16203-16212. [PMID: 34647211 DOI: 10.1007/s11356-021-16850-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The current work assessed the degradation degree and the degradation products derived from norfloxacin (NOR) and gentamicin (GEN) using iodosylbenzene and iodobenzene diacetate, in the presence of manganese porphyrin as catalysts. Better results for NOR degradation (> 80%) were obtained when more hydrophobic porphyrins were employed. β-brominated manganese porphyrins showed a lower GEN degradation (~ 25%) than the non-brominated ones (~ 35%), probably due to their steric hindrance. In any case, complete mineralization was achieved neither for NOR nor for GEN, and the assignment of the generated products, complemented by the study of their toxicity, was an important step performed. From the obtained results, no correlation was found between the number of identified products and the reported toxicity value (rSpearman,NOR = 0.006; p value = 0.986 and rSpearman,GEN = - 0,198; p value = 0.583), which reinforces the idea of synergism and antagonistic phenomena. The higher degradation degree could have led to products of lower steric hindrance and easier penetration into the A. fischeri cells, which subsequently led to an increase in toxicity for these experiments. In most cases, the products presented higher toxicity than the original compound, which raises a concern about their occurrence in environmental matrices.
Collapse
Affiliation(s)
- Lucilaine Valéria de Souza Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil.
- Department of Chemical Engineering, Pontifícia Universidade Católica de Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil.
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| | - Raquel Sampaio Jacob
- Department of Civil Engineering, Pontifícia Universidade Católica de Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
| | | | - Lisete Celina Lange
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| |
Collapse
|
24
|
Sengar A, Vijayanandan A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150677. [PMID: 34599960 DOI: 10.1016/j.scitotenv.2021.150677] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/20/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) in environmental waters has become an urgent issue due to their pseudo-persistent traits. The present study was undertaken to conduct a screening-level risk assessment of 98 PPCPs, detected in different water matrices (treated wastewater, surface water, and groundwater) of India, for evaluating ecological risk (risk to fish, daphnia, and algae), human health risk, and antimicrobial resistance (AMR) selection risk by following risk quotient (RQ) based methodology. In the present study, 47% of the detected PPCPs in Indian waters were found to exert a possible risk (RQ > 1) to either aquatic species and human health, or cause AMR selection risk. 17 out of 25 antibiotics detected in the environmental waters were found to pose a threat of AMR selection. 11 out of 49 pharmaceuticals were found to exert human health risk from ingesting contaminated surface water, whereas only 2 pharmaceuticals out of 25 were found to exert risk from the intake of groundwater. Very high RQs (>1000) for few pharmaceuticals were obtained, signifying a great potential of the detected PPCPs in causing severe health concern, aquatic toxicity, and AMR spread. Within India, special attention needs to be given to the pharmaceutical hubs, as the environmental waters in these regions were found to be severely contaminated with drug residues resulting in extremely high RQs. The present study will be helpful in prioritizing the detected PPCPs in the environmental waters of India, for which immediate attention and enforceable guidelines are required.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
25
|
|
26
|
Chaves MDJS, Barbosa SC, Primel EG. Emerging contaminants in Brazilian aquatic environment: identifying targets of potential concern based on occurrence and ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67528-67543. [PMID: 34258704 DOI: 10.1007/s11356-021-15245-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Although studies have shown the presence of Contaminants of Emerging Concern (CECs) in the Brazilian environment in recent decades, several biological effects on the aquatic ecosystem are unknown. Brazil is the fifth largest country in extension in the world, and its wide territory presents geographic regions with diverse demographic and economic characteristics. In order to identify targets of potential concern based on occurrence and ecological risk, available data from previous studies were examined to conduct environmental risk analysis and provide a ranking of CECs in Brazilian aquatic environment based on environmental concentration measured in the last 10 years. The results indicate that 17α-ethynylestradiol, 17ß-estradiol, acetaminophen, Bisphenol A, caffeine, diclofenac, ibuprofen, methylparaben, sulfamethoxazole and triclosan are the CECs that represent the greatest threats to the Brazilian environment. Therefore, these contaminants should be considered as a priority in future monitoring studies. Besides, identification of target monitoring compounds can facilitate the selection of pollutant candidates in future legislations.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS, 96201-900, Brazil
| | - Sergiane Caldas Barbosa
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS, 96201-900, Brazil
| | - Ednei Gilberto Primel
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS, 96201-900, Brazil.
| |
Collapse
|
27
|
Dos Santos CR, Arcanjo GS, de Souza Santos LV, Koch K, Amaral MCS. Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118049. [PMID: 34479163 DOI: 10.1016/j.envpol.2021.118049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds are increasingly detected in raw and treated wastewater, surface water, and drinking water worldwide. These compounds can cause adverse effects to the ecosystem even at low concentrations and, to assess these impacts, toxicity tests are essential. However, the toxicity data are scarce for many PhACs, and when available, they are dispersed in the literature. The values of pharmaceuticals concentration in the environment and toxicity data are essential for measuring their environmental and human health risks. Thus this review verified the concentrations of pharmaceuticals in the aquatic environment and the toxicity related to them. The risk assessment was also carried out. Diclofenac, naproxen, erythromycin, roxithromycin, and 17β-estradiol presented a high environment risk and 17α-ethinylestradiol presented a high human health risk. This shows the potential of these pharmaceuticals to cause adverse effects to the ecosystem and humans and establishes the necessity of their removal through advanced technologies.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| | - Gemima Santos Arcanjo
- Department of Environmental Engineering, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil; Department of Civil Engineering, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucilaine Valéria de Souza Santos
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30.535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 385748, Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
28
|
Reis EO, Santos LVS, Lange LC. Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117803. [PMID: 34329042 DOI: 10.1016/j.envpol.2021.117803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The present study provides an environmental risk assessment of the pharmaceutical mixtures detected in Brazilian surface waters, based on Toxic Units and Risk Quotients. Furthermore, the applicability of a previously proposed prioritization methodology was evaluated. The pharmaceuticals were classified according to their properties (occurrence, persistence, bioaccumulation, and toxicity) and the contribution of the prioritized compounds to the mixture risk was determined. The mixture risk quotients, based on acute and chronic toxicity data, often exceed 1, demonstrating a potential risk for the environment. While algae were most affected by acute effects, fish were the most sensitive organism to sublethal effects. The lipid regulator atorvastatin was the main driver for the mixture risk. Despite their lower occurrence, the antibiotics norfloxacin and enrofloxacin were critical compounds for the algae group. The prioritized pharmaceuticals contributed to more than 75% of the mixture risk in most of cases, indicating the applicability of prioritization approaches for risk management.
Collapse
Affiliation(s)
- Eduarda O Reis
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Federal Institute of Education, Science and Technology of South of Minas Gerais -IFSULDEMINAS, Inconfidentes, Minas, Gerais, Brazil.
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liséte C Lange
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
29
|
Perin M, Dallegrave A, Suchecki Barnet L, Zanchetti Meneghini L, de Araújo Gomes A, Pizzolato TM. Pharmaceuticals, pesticides and metals/metalloids in Lake Guaíba in Southern Brazil: Spatial and temporal evaluation and a chemometrics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148561. [PMID: 34175608 DOI: 10.1016/j.scitotenv.2021.148561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
Compiling and reporting data related to the presence of pharmaceuticals and pesticides are crucial means of assessing the risk those chemicals pose to human health and environment. Data sets from different sources were combined using a data fusion approach to produce a spatial and temporal variation of contaminants presents in water from Lake Guaíba (29°55'-30°24' S; 51°01'-51°20' W). Lake Guaíba is a 496 km2 water body situated in the geological depression of Rio Grande do Sul State, Brazil; that is fed by several rivers from the metropolitan area, the 5th largest metro area in Brazil, with approximately 5 million inhabitants. Analytical methodology to quantify pharmaceuticals and pesticides by LC-QTOF-MS and GC-MS/MS was validated for 41 pharmaceutical and 62 pesticides. Furthermore, 27 chemical elements were analyzed by ICP-MS, and physical chemical parameters were determined using established methodologies. All validation parameters were in accordance with the National Institute of Metrology, Standardization, and Industrial Quality. Thirty-five water samples were analyzed from January to August 2019, and 15 pharmaceuticals and 25 pesticides were present in concentrations ranging from 6.00 ng L-1 to 580.00 ng L-1. Twenty-seven elements were analyzed during the same period, and 18 were present in concentrations ranging from 0.2 μg L-1 to 7060 μg L-1. Samples were tagged according to the points and months of collection to identify temporal and spatial patterns. The main findings show that the compounds are distributed throughout the studied area without an apparent regular pattern, suggesting that events in a specific point affect the entire ecosystem. Conversely, temporal variations were well defined, as samples were grouped according to the climatic conditions of the months of collection. Considering the calculated quotient risks, atrazine, cyproconazole, diuron, and simazine showed the highest risk levels for algae; acetaminophen, diclofenac, and ibuprofen showed the highest risk levels for aquatics invertebrates.
Collapse
Affiliation(s)
- Maurício Perin
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Alexsandro Dallegrave
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Lucas Suchecki Barnet
- Laboratório Federal de Defesa Agropecuária - LFDA, Ministério da Agricultura, Pecuária e Abastecimento do Brasil, Estrada da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Leonardo Zanchetti Meneghini
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Adriano de Araújo Gomes
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Tânia Mara Pizzolato
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Nava-Andrade K, Carbajal-Arízaga GG, Obregón S, Rodríguez-González V. Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112399. [PMID: 33774560 DOI: 10.1016/j.jenvman.2021.112399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and their by-products are recalcitrant contaminants in water. Moreover, the high consumption of these drugs has many detrimental effects on body waters and ecosystems. In this timely review, the advances in molecular engineering of layered double hydroxides (LDH) that have been used for the removal of pharmaceutical pollutants are discussed. The approach starts from the strategies to obtain homogeneous synthesis of LDH that allow the doping and/or surface functionalization of different metals and oxides, producing heterojunction systems as well as composites with carbon and silica-based materials with high surface area. Adsorption is considered as a traditional removal of pharmaceutical pollutants, so the kinetic and mechanism of this phenomenon are analyzed based on pH, temperature, ionic strength, in order to obtain new insights for the formation of multifunctional LDH. Advanced oxidation methodologies, mainly heterogeneous photocatalysis and Fenton-like processes, stand out as the more efficient even to obtain the mineralization of the drugs. The LDH have the advantage of structural memory that favors regeneration processes. The reconstruction of calcined LDH can be used to improve drug removal, through a combination of adsorption capacity/catalytic activity. A meticulous analysis of the persistence, toxicity and bioaccumulation of the most common pharmaceuticals has allowed us to highlight the ability of the LDH to remove recalcitrant drugs at relatively low concentrations (ppm, ppb), in contrast to other mixed oxide nanostructures and homogeneous oxidation processes. In this sense, the mechanism of drug removal by LDH is discussed based on the importance of the use of composites, scavenger agents, Fenton and electro-Fenton processes, membranes, thin films and coatings, among others. In addition, the ecotoxicity of LDH is also reviewed to indicate that these layered structures can exhibit biocompatibility or high toxicity depending on the adsorbed drug and ions/metals that compose them. Undoubtedly, the LDH have a unique flexible structure with adsorption capacity and catalytic activity, facts that explain the important reasons for their extensive use in the environmental remediation of pharmaceutical pollutants from water.
Collapse
Affiliation(s)
- K Nava-Andrade
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - G G Carbajal-Arízaga
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - S Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - V Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4ta, Sección, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
31
|
Freitas LDAA, Radis-Baptista G. Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. J Xenobiot 2021; 11:61-76. [PMID: 34069823 PMCID: PMC8162542 DOI: 10.3390/jox11020005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
The occurrence of pharmaceuticals in the environment is an everyday recognized concern worldwide, and drugs as environmental contaminants have been detected in water and soil systems, posing risks to humans and wildlife. The presence of drugs in wastewater, groundwater, and even drinking water occurs in several countries, including Brazil, where the pharmaceutical market is expanding over the years. The adverse, harmful effects of pharmaceuticals in the environment range from the spreading of antimicrobial resistance and species survival to the interference with reproduction and increased cancer incidence in humans. Therefore, it is demanding to count on proper legislation to prevent these pollutants from entering the distinct environment compartments. In some developed countries, laws, directives, programs, and initiatives regarding drug disposal reach a mature status. In Brazil, federal laws dealing with drug residues' management are recent, with flaws that might facilitate non-compliance with drug pollution issues. Besides, pharmacies and drugstores are not obligated to collect unneeded household medicines, while particular State laws aim to ordinate the disposal of drug residues regionally. In this review, we consider the current knowledge about pharmaceutical (drug) pollution, the recommendation and regulations on the disposal of useless medicines in some countries, and in the context of the expanding pharmaceutical market in Brazil. The awareness of emerging contaminants in the environment, besides the joint effort of authorities, consumers, and the general public nationwide, will be required to avoid pharmaceutical/drug pollution and achieve an eco-friendly environment and a sustainable society.
Collapse
Affiliation(s)
- Letícia de Araújo Almeida Freitas
- Post-Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE 60416-030, Brazil;
| | - Gandhi Radis-Baptista
- Post-Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE 60416-030, Brazil;
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, CE 60165-081, Brazil
| |
Collapse
|
32
|
Zhu W, Jin P, Cheng M, Yang H, Du M, Li T, Zhu G, Fan J. Novel recyclable acidic hydrophobic deep eutectic solvents for highly efficient extraction of calcium dobesilate in water and urine samples. Talanta 2021; 233:122523. [PMID: 34215026 DOI: 10.1016/j.talanta.2021.122523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Deep eutectic solvents (DESs) have been considered to be one of the most promising green alternatives of conventional volatile solvents for liquid-liquid separation. However, acidic hydrophobic DESs have been less studied although they are of great importance for the extraction of compounds which are unstable in alkaline conditions. In this study, a novel family of acidic hydrophobic deep eutectic solvents was designed and prepared from methyl trioctyl ammonium chloride and a series of haloacetic acids. For the first time, the obtained DESs were used for extraction and determination of calcium dobesilate, which is an extensively used medicine for treating vascular diseases, but it can be easily oxidized under alkaline and neutral conditions. The factors influencing extraction process including pH, temperature, extract time, inorganic salts and organic coexistence were systematically investigated. It is found that these DESs exhibited outstanding extraction performance towards calcium dobesilate. The extraction equilibrium time was only 3 min in a wide range of pH (1.2-9.2) at room temperature and the extraction capacity was up to 504 mg/g. The detection limit of calcium dobesilate extracting from water samples was 0.05 μg/L and the limit of quantification was 0.5 μg/L. A variety of inorganic salts with the concentration up to 1.0 mol/L and common coexisting organic compounds, such as glucose and starch, with the concentration more than 1000 times higher than the target analyte had no obvious impact on the extraction efficiency. The relative recovery for real samples ranged from 93.2% to 108.6%. Furthermore, the DESs could be recycled and regenerated through back extraction. After fifteen cycles, the extraction efficiency was still up to 99%. Finally, the extraction and back extraction mechanism was discussed in detail.
Collapse
Affiliation(s)
- Wenjuan Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China; School of Chemistry & Materials Engineering, Xinxiang University, Xinxiang, Henan, 453003, PR China
| | - Pingning Jin
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Meng Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Hongrui Yang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Mengmeng Du
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Tiemei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
33
|
Occurrence and Human Health Risk Assessment of Pharmaceuticals and Hormones in Drinking Water Sources in the Metropolitan Area of Turin in Italy. TOXICS 2021; 9:toxics9040088. [PMID: 33923920 PMCID: PMC8073697 DOI: 10.3390/toxics9040088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/03/2022]
Abstract
Pharmaceuticals and hormones (PhACs) enter the aquatic environment in multiple ways, posing potential adverse effects on non-target organisms. They have been widely detected in drinking water sources, challenging water companies to reassure good quality drinking water. The aim of this study was to evaluate the concentration of sixteen PhACs in both raw and treated drinking water sources in the Metropolitan Area of Turin—where Società Metropolitana Acque Torino (SMAT) is the company in charge of the water cycle management—and evaluate the potential human health risks associated to these compounds. Multivariate spatial statistical analysis techniques were used in order to characterize the areas at higher risk of pollution, taking into account the already existing SMAT sampling points’ network. Health risks were assessed considering average detected concentrations and provisional guideline values for individual compounds as well as their combined mixture. As reported in the just-issued Drinking Water Directive 2020/2184/UE, in order to establish priority substances, a risk assessment of contaminants present in raw drinking water sources is required for monitoring, identifying potential health risks and, if necessary, managing their removal. The results showed negligibly low human health risks in both raw water sources and treated water.
Collapse
|
34
|
Torres NH, Santos GDOS, Romanholo Ferreira LF, Américo-Pinheiro JHP, Eguiluz KIB, Salazar-Banda GR. Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. CHEMOSPHERE 2021; 267:128888. [PMID: 33190907 DOI: 10.1016/j.chemosphere.2020.128888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Hormones as a group of emerging contaminants have been increasingly used worldwide, which has increased their concern at the environmental level in various matrices, as they reach the water bodies through effluents due to the ineffectiveness of conventional treatments. Here we review the environmental scenario of hormones estriol (E3), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2), explicitly their origins, their characteristics, interactions, how they reach the environment, and, above all, the severe pathological and toxicological damage to animals and humans they produce. Furthermore, studies for the treatment of these endocrine disruptors (EDCs) are deepened using electrochemical processes as the remediation methods of the respective hormones. In the reported studies, these micropollutants were detected in samples of surface water, underground, soil, and sediment at concentrations that varied from ng L-1 to μg L-1 and are capable of causing changes in the endocrine system of various organisms. However, although there are studies on the ecotoxicological effects concerning E3, E2, and EE2 hormones, little is known about their environmental dispersion and damage in quantitative terms. Moreover, biodegradation becomes the primary mechanism of removal of steroid estrogens removal by sewage treatment plants, but it is still inefficient, which shows the importance of studying electrochemically-driven processes such as the Electrochemical Advanced Oxidation Processes (EAOP) and electrocoagulation for the removal of emerging micropollutants. Thus, this review covers information on the occurrence of these hormones in various environmental matrices, their respective treatment, and effects on exposed organisms for ecotoxicology purposes.
Collapse
Affiliation(s)
- Nádia Hortense Torres
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Géssica de Oliveira Santiago Santos
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | | | - Katlin Ivon Barrios Eguiluz
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| |
Collapse
|
35
|
Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. SEPARATIONS 2021. [DOI: 10.3390/separations8020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the environment, pharmaceutical residues are a field of particular interest due to the adverse effects to either human health or aquatic and soil environment. Because of the diversity of these compounds, at least 3000 substances were identified and categorized into 49 different therapeutic classes, and several actions are urgently required at multiple steps, the main ones: (i) occurrence studies of pharmaceutical active compounds (PhACs) in the water cycle; (ii) the analysis of the potential impact of their introduction into the aquatic environment; (iii) the removal/degradation of the pharmaceutical compounds; and, (iv) the development of more sensible and selective analytical methods to their monitorization. This review aims to present the current state-of-the-art sample preparation methods and chromatographic analysis applied to the study of PhACs in water matrices by pinpointing their advantages and drawbacks. Because it is almost impossible to be comprehensive in all PhACs, instruments, extraction techniques, and applications, this overview focuses on works that were published in the last ten years, mainly those applicable to water matrices.
Collapse
|
36
|
Lebron YAR, Moreira VR, Drumond GP, Gomes GCF, da Silva MM, Bernardes RDO, Jacob RS, Viana MM, de Vasconcelos CKB, Santos LVDS. Statistical physics modeling and optimization of norfloxacin adsorption onto graphene oxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|