1
|
Filatova TS, Kuzmin VS, Dzhumaniiazova I, Pustovit OB, Abramochkin DV, Shiels HA. 3-Methyl-phenanthrene (3-MP) disrupts the electrical and contractile activity of the heart of the polar fish, navaga cod (Eleginus nawaga). CHEMOSPHERE 2024; 357:142089. [PMID: 38643846 DOI: 10.1016/j.chemosphere.2024.142089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 μM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 μM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Oksana B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
2
|
Haverinen J, Badr A, Korajoki H, Hassinen M, Vornanen M. Dual effect of polyaromatic hydrocarbons on sarco(endo)plasmic reticulum calcium ATPase (SERCA) activity of a teleost fish (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109785. [PMID: 37977241 DOI: 10.1016/j.cbpc.2023.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are embryo- and cardiotoxic to fish that might be associated with improper intracellular Ca2+ management. Since sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a major regulator of intracellular Ca2+, the SERCA activity and the contractile properties of rainbow trout (Oncorhynchus mykiss) ventricle were measured in the presence of 3- and 4-cyclic PAHs. In unfractionated ventricular homogenates, acute exposure of SERCA to 0.1-1.0 μM phenanthrene (Phe), retene (Ret), fluoranthene (Flu), or pyrene (Pyr) resulted in concentration-dependent increase in SERCA activity, except for the Flu exposure, with maximal effects of 49.7-83 % at 1 μM. However, PAH mixture did not affect the contractile parameters of trout ventricular strips. Similarly, all PAHs, except Ret, increased the myotomal SERCA activity, but with lower effect (27.8-40.8 % at 1 μM). To investigate the putative chronic effects of PAHs on SERCA, the atp2a2a gene encoding trout cardiac SERCA was expressed in human embryonic kidney (HEK) cells. Culture of HEK cells in the presence of 0.3-1.0 μM Phe, Ret, Flu, and Pyr for 4 days suppressed SERCA expression in a concentration-dependent manner, with maximal inhibition of 49 %, 65 %, 39 % (P < 0.05), and 18 % (P > 0.05), respectively at 1 μM. Current findings indicate divergent effects of submicromolar PAH concentrations on SERCA: stimulation of SERCA activity in acute exposure and inhibition of SERCA expression in chronic exposure. The depressed expression of SERCA is likely to contribute to the embryo- and cardiotoxicity of PAHs by depressing muscle function and altering gene expression.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.
| | - Ahmed Badr
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland; Zoology Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Hanna Korajoki
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| | - Minna Hassinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
3
|
Sørhus E, Nakken CL, Donald CE, Ripley DM, Shiels HA, Meier S. Cardiac toxicity of phenanthrene depends on developmental stage in Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163484. [PMID: 37068678 DOI: 10.1016/j.scitotenv.2023.163484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Complex mixtures like crude oil, and single components such as Phenanthrene (Phe), induce cardiotoxicity by interfering with excitation-contraction coupling. However, recent work has demonstrated that the timing of pollutant exposure during embryogenesis greatly impacts the degree of cardiac dysfunction caused. Here, we aimed to clarify the temporal dependence of Phe toxicity and the downstream effects of cardiac dysfunction using Atlantic cod (Gadus morhua). Phe (nominal concentration, 1.12 μmol/L), or the L-type‑calcium channel blocker Nicardipine (Nic) (nominal concentration, 2 and 4 μmol/L), were individually applied to cod embryos either during cardiogenesis (early) or after the onset of cardiac function (late). Phe toxicity was highly dependent on the timing of exposure. Exposure after the onset of cardiac function (i.e. late) caused more severe cardiac and extracardiac abnormalities at 3 days post hatching (dph) than early exposure. Late Phe exposure resulted in a smaller ventricle, eliminated ventricular contraction, and reduced atrial contraction. In contrast, early Phe exposure did not have an effect on cardiac development and function. This temporal difference was not as evident in the Nic treatment. Early Nic exposure created similar morphological phenotypes to the late Phe exposure. The two treatments (early Nic and late Phe) also shared a cardiofunctional phenotype, comprised of eliminated ventricular, and reduced atrial, contraction. These data suggest that extracardiac abnormalities, such as the craniofacial deformities seen after late embryonic exposure to cardiotoxic oil components and mixtures, are mostly downstream effects of cardiac dysfunction.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway.
| | | | - Carey E Donald
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway
| | - Daniel M Ripley
- University of Manchester, Division of Cardiovascular Sciences, United Kingdom of Great Britain and Northern Ireland
| | - Holly A Shiels
- University of Manchester, Division of Cardiovascular Sciences, United Kingdom of Great Britain and Northern Ireland
| | - Sonnich Meier
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway
| |
Collapse
|
4
|
Scaramboni C, Campos MLAM, Dorta DJ, de Oliveira DP, de Medeiros SRB, de Oliveira Galvão MF, Dreij K. Reactive oxygen species-dependent transient induction of genotoxicity by retene in human liver HepG2 cells. Toxicol In Vitro 2023:105628. [PMID: 37302535 DOI: 10.1016/j.tiv.2023.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Retene is a polycyclic aromatic hydrocarbon (PAH) emitted mainly by biomass combustion, and despite its ubiquity in atmospheric particulate matter (PM), studies concerning its potential hazard to human health are still incipient. In this study, the cytotoxicity and genotoxicity of retene were investigated in human HepG2 liver cells. Our data showed that retene had minimal effect on cell viability, but induced DNA strand breaks, micronuclei formation, and reactive oxygen species (ROS) formation in a dose- and time-dependent manner. Stronger effects were observed at earlier time points than at longer, indicating transient genotoxicity. Retene activated phosphorylation of Checkpoint kinase 1 (Chk1), an indicator of replication stress and chromosomal instability, which was in accordance with increased formation of micronuclei. A protective effect of the antioxidant N-acetylcysteine (NAC) towards ROS generation and DNA damage signaling was observed, suggesting oxidative stress as a key mechanism of the observed genotoxic effects of retene in HepG2 cells. Altogether our results suggest that retene may contribute to the harmful effects caused by biomass burning PM and represent a potential hazard to human health.
Collapse
Affiliation(s)
- Caroline Scaramboni
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Maria Lucia Arruda Moura Campos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | | | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
5
|
Bérubé R, Garnier C, Lefebvre-Raine M, Gauthier C, Bergeron N, Triffault-Bouchet G, Langlois VS, Couture P. Early developmental toxicity of Atlantic salmon exposed to conventional and unconventional oils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114487. [PMID: 36587413 DOI: 10.1016/j.ecoenv.2022.114487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Atlantic salmon is an important species for Canadian culture and economy and its importance extends beyond Canada to Scandinavia and Western Europe. However, it is a vulnerable species facing decline due to habitat contamination and destruction. Existing and new Canadian pipeline projects pose a threat to salmonid habitat. The effects of diluted bitumen (dilbit), the main oil circulating in pipelines, are less studied than those of conventional oils, especially during the critical early embryonic developmental stage occurring in freshwater ecosystems. Therefore, this study aimed to compare the effects of water-accommodated fractions (WAF) of the Clearwater McMurray dilbit and the Lloydminster Heavy conventional oil on Atlantic salmon embryos exposed either from fertilization or from eyed stage. The dilbit contained the highest concentrations of low molecular weight (LMW) compounds (including BTEX and C6-C10), while the conventional oil contained the highest concentrations of PAHs. The Clearwater dilbit caused a higher percentage of mortality and malformations than the conventional oil at similar WAF concentrations. In addition, the embryos exposed from fertilization suffered a higher mortality rate, more developmental delays, and malformations than embryos exposed from the eyed stage, suggesting that early development is the most sensitive developmental stage to oil exposure. Gene expression and enzymatic activity of the detoxification phase I and II enzymes (CYP1A and GST) were measured. Data showed increases in both cyp1a expression and GST activity with increasing WAF concentrations, while gst expression was not affected by the exposures. Also, gene expression of proteins involved in the biotransformation of vitamin A and DNA damage repair were modified by the oil exposures. Overall, this study indicates that Atlantic salmon is mostly affected by oil exposure at the beginning of its development, during which embryos accumulate deformities that may impact their survival at later life stages.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Camille Garnier
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Molly Lefebvre-Raine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Charles Gauthier
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Normand Bergeron
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Gaëlle Triffault-Bouchet
- CEAEQ, Ministère de l'Environnement et de la Lutte contre les changements climatiques, 2700 rue Einstein, Québec, Canada
| | - Valérie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada.
| |
Collapse
|
6
|
Eriksson ANM, Rigaud C, Wincent E, Pakkanen H, Salonen P, Vehniäinen ER. Endogenous AhR agonist FICZ accumulates in rainbow trout (Oncorhynchus mykiss) alevins exposed to a mixture of two PAHs, retene and fluoranthene. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1382-1389. [PMID: 36219374 PMCID: PMC9652237 DOI: 10.1007/s10646-022-02593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Multiple studies have reported synergized toxicity of PAH mixtures in developing fish larvae relative to the additive effect of the components. From a toxicological perspective, multiple mechanisms are known to contribute to synergism, such as altered toxicodynamics and kinetics, as well as increased oxidative stress. An understudied contributor to synergism is the accumulation of endogenous metabolites, for example: the aryl hydrocarbon receptor 2 (AhR2) agonist and tryptophan metabolite 6-Formylindolo(3,2-b)carbazole (FICZ). Fish larvae exposed to FICZ, alongside knock-down of cytochrome p450 (cyp1a), has been reported to induced symptoms of toxicity similar to those observed following exposure to PAHs or the dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we explored if FICZ accumulates in newly hatched rainbow trout alevins (Oncorhynchus mykiss) exposed to two PAHs with different properties: retene (potent AhR2 agonist) and fluoranthene (weak AhR2 agonist and Cyp1a inhibitor), either alone or as a binary mixture for 3 and 7 days. We found that exposure to the mixture resulted in accumulation of endogenous FICZ, synergized the blue sac disease index (BSD), and altered the body burden profiles of the PAHs, when compared to the alevins exposed to the individual components. It is thus very plausible that accumulation of endogenously derived FICZ contributed to the synergized BSD index and toxicity in exposed alevins. Accumulation of endogenously derived FICZ is a novel finding that extends our general understanding on PAHs toxicity in developing fish larvae, while at the same time highlighting why environmental risk assessment of PAHs should not be based solely results from the assessment of individual compounds.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannu Pakkanen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Pihla Salonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
7
|
Folkerts EJ, Snihur KN, Zhang Y, Martin JW, Alessi DS, Goss GG. Embryonic cardio-respiratory impairments in rainbow trout (Oncorhynchus mykiss) following exposure to hydraulic fracturing flowback and produced water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119886. [PMID: 35934150 DOI: 10.1016/j.envpol.2022.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
During hydraulic fracturing, wastewaters - termed flowback and produced water (FPW) - are created as a by-product during hydrocarbon extraction. Given the large volumes of FPW that a single well can produce, and the history of FPW release to surface water bodies, it is imperative to understand the hazards that hydraulic fracturing and FPW pose to aquatic biota. Using rainbow trout embryos as model organisms, we investigated impacts to cardio-respiratory system development and function following acute (48 h) and sub-chronic (28-day) FPW exposure by examining occurrences of developmental deformities, rates of embryonic respiration (MO2), and changes in expression of critical cardiac-specific genes. FPW-exposed embryos had significantly increased rates of pericardial edema, yolk-sac edema, and tail/trunk curvatures at hatch. Furthermore, when exposed at three days post-fertilization (dpf), acute 5% FPW exposures significantly increased embryonic MO2 through development until 15 dpf, where a switch to significantly reduced MO2 rates was subsequently recorded. A similar trend was observed during sub-chronic 1% FPW exposures. Interestingly, at certain specific developmental timepoints, previous salinity exposure seemed to affect embryonic MO2; a result not previously observed. Following acute FPW exposures, embryonic genes for cardiac development and function were significantly altered, although at termination of sub-chronic exposures, significant changes to these same genes were not found. Together, our evidence of induced developmental deformities, modified embryonic MO2, and altered cardiac transcript expression suggest that cardio-respiratory tissues are toxicologically targeted following FPW exposure in developing rainbow trout. These results may be helpful to regulatory bodies when developing hazard identification and risk management protocols concerning hydraulic fracturing activities.
Collapse
Affiliation(s)
- Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Katherine N Snihur
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3, Alberta, Canada; Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; NRC- University of Alberta Nanotechnology Initiative, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
8
|
Liu M, Zhao L, Liu L, Guo W, Yang H, Yu J, Chen S, Li M, Fang Q, Lai X, Yang L, Zhu R, Zhang X. Associations of urinary polycyclic aromatic hydrocarbon metabolites and blood pressure with the mediating role of cytokines: A panel study among children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74921-74932. [PMID: 35648342 DOI: 10.1007/s11356-022-21062-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Little was known regarding the relations of polycyclic aromatic hydrocarbon (PAH) mixture with children's blood pressure (BP) and its potential mechanism. We conducted a panel study with up to 3 visits across 3 seasons in 2017-2018 among 103 children aged 4-13 years. Urinary PAH metabolites (OH-PAHs) were measured by gas chromatograph-tandem triple quadrupole mass spectrometer, and serum cytokines were detected by Bio-Rad 48-Plex Screening Panel. We employed linear mixed-effects models to assess the relations of each urinary OH-PAH with BP, least absolute shrinkage and selection operator (LASSO), and weighted quantile sum (WQS) regression to evaluate associations of OH-PAHs mixture with BP, and mediation analyses for the role of serum cytokines. We found the consistently positive associations of 1-hydroxynaphthalene and 9-hydroxyphenanthrene (9-OHPh) with systolic BP (SBP), 4-OHPh, and 9-OHPh with diastolic BP (DBP) and mean arterial pressure (MAP) in a dose-responsive manner. For instance, each 1-fold increment of 9-OHPh was related with increase of 0.92% (95% confidence interval (CI): 0.25%, 1.60%) in SBP, 1.32% (95%CI: 0.25%, 2.39%) in DBP, and 1.15% (95%CI: 0.40%, 1.88%) in MAP. Meanwhile, based on LASSO and WQS regression, OH-PAHs mixture was linked with increased DBP and MAP, to which 9-OHPh and 4-OHPh were the major contributors. Such relationships were modified by passive smoking status and 3-4 times stronger in passive smokers than non-passive smokers. A 1-fold increase in 9-OHPh was associated with an elevation of 3.51% in SBP among passive smokers while that of 0.55% in SBP among non-passive smokers. Furthermore, 4-OHPh and 9-OHPh were related to multiple cytokines elevation, of which platelet-derived growth factor (PDGF) mediated 9.99% and 12.57% in 4-OHPh-related DBP and MAP elevation, respectively. Accordingly, urinary OH-PAHs dominated by 9-OHPh and 4-OHPh were dose-responsively associated with elevated BP whereby a mechanism partly involving PDGF among children.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Department of Public Health, Medical College of Qinghai University, Xining, Qinghai, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Medical Affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Eriksson ANM, Rigaud C, Rokka A, Skaugen M, Lihavainen JH, Vehniäinen ER. Changes in cardiac proteome and metabolome following exposure to the PAHs retene and fluoranthene and their mixture in developing rainbow trout alevins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154846. [PMID: 35351515 DOI: 10.1016/j.scitotenv.2022.154846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is known to affect developing organisms. Utilization of different omics-based technologies and approaches could therefore provide a base for the discovery of novel mechanisms of PAH induced development of toxicity. To this aim, we investigated how exposure towards two PAHs with different toxicity mechanisms: retene (an aryl hydrocarbon receptor 2 (Ahr2) agonist), and fluoranthene (a weak Ahr2 agonist and cytochrome P450 inhibitor (Cyp1a)), either alone or as a mixture, affected the cardiac proteome and metabolome in newly hatched rainbow trout alevins (Oncorhynchus mykiss). In total, we identified 65 and 82 differently expressed proteins (DEPs) across all treatments compared to control (DMSO) after 7 and 14 days of exposure. Exposure to fluoranthene altered the expression of 11 and 19 proteins, retene 29 and 23, while the mixture affected 44 and 82 DEPs by Days 7 and 14, respectively. In contrast, only 5 significantly affected metabolites were identified. Pathway over-representation analysis identified exposure-specific activation of phase II metabolic processes, which were accompanied with exposure-specific body burden profiles. The proteomic data highlights that exposure to the mixture increased oxidative stress, altered iron metabolism and impaired coagulation capacity. Additionally, depletion of several mini-chromosome maintenance components, in combination with depletion of several intermediate filaments and microtubules, among alevins exposed to the mixture, suggests compromised cellular integrity and reduced rate of mitosis, whereby affecting heart growth and development. Furthermore, the combination of proteomic and metabolomic data indicates altered energy metabolism, as per amino acid catabolism among mixture exposed alevins; plausibly compensatory mechanisms as to counteract reduced absorption and consumption of yolk. When considered as a whole, proteomic and metabolomic data, in relation to apical effects on the whole organism, provides additional insight into PAH toxicity and the effects of exposure on heart structure and molecular processes.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | - Anne Rokka
- Turku Proteomics Facility, Turku University, Tykistökatu 6, 20520 Turku, Finland.
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Campus Ås, Universitetstunet 3, 1430 Ås, Norway.
| | - Jenna H Lihavainen
- Umeå Plant Science Centre, Umeå University, KB. K3 (Fys. Bot.), Artedigränd 7, Fysiologisk botanik, UPSC, KB. K3 (B3.44.45) Umeå universitet, 901 87 Umeå, Sweden.
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| |
Collapse
|
10
|
Luo Y, Zhang B, Geng N, Sun S, Song X, Chen J, Zhang H. Insights into the hepatotoxicity of pyrene and 1-chloropyrene using an integrated approach of metabolomics and transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154637. [PMID: 35307418 DOI: 10.1016/j.scitotenv.2022.154637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of pyrene (Pyr) and its chlorinated species have not be comprehensively and clearly elucidated. In this study, an integrated approach of metabolomics and transcriptomics were applied to evaluate the hepatotoxicity of Pyr and 1-chloropyrene (1-Cl-Pyr) at human exposure level, using human L02 hepatocytes. After 24 h exposure to Pyr and 1-Cl-Pyr at 5-500 nM, cell viability was not significantly changed. Transcriptomics results showed that exposure to Pyr and 1-Cl-Pyr at 5 and 50 nM obviously altered the gene expression profiles, but did not significantly induce the expression of genes strongly related to the activation of aryl hydrocarbon receptor (AhR), such as CYP1A1, CYP1B1, AHR, ARNT. Pyr and 1-Cl-Pyr both induced a notable metabolic perturbation to L02 cells. Glycerophospholipid metabolism was found to be the most significantly perturbed pathway after exposure to Pyr and 1-Cl-Pyr, indicating their potential damage to the cell membrane. The other significantly perturbed pathways were identified to be oxidative phosphorylation (OXPHOS), glycolysis, and fatty acid β oxidation, all of which are related to energy production. Exposure to Pyr at 5 and 50 nM induced the up-regulation of fatty acid β oxidation and OXPHOS. The similar result was observed after exposure to 5 nM 1-Cl-Pyr. In contrast, exposure to 50 nM 1-Cl-Pyr induced the down-regulation of OXPHOS by inhibiting the activity of complex I. The obtained results suggested that the modes of action of Pyr and 1-Cl-Pyr on energy production remarkably varied not only with molecular structure change but also with exposure concentration.
Collapse
Affiliation(s)
- Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Zolotarenko AD, Shitova MV. Transcriptome Studies of Salmonid Fishes of the Genius Oncorhynchus. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542207016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Eriksson ANM, Rigaud C, Krasnov A, Wincent E, Vehniäinen ER. Exposure to retene, fluoranthene, and their binary mixture causes distinct transcriptomic and apical outcomes in rainbow trout (Oncorhynchus mykiss) yolk sac alevins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106083. [PMID: 35085954 DOI: 10.1016/j.aquatox.2022.106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely spread environmental contaminants which affect developing organisms. It is known that improper activation of the aryl hydrocarbon receptor (AhR) by some PAHs contributes to toxicity, while other PAHs can disrupt cellular membrane function. The exact downstream mechanisms of AhR activation remain unresolved, especially with regard to cardiotoxicity. By exposing newly hatched rainbow trout alevins (Oncorhynchus mykiss) semi-statically to retene (32 µg l-1; AhR agonist), fluoranthene (50 µg l-1; weak AhR agonist and CYP1a inhibitor) and their binary mixture for 1, 3, 7 and 14 days, we aimed to uncover novel mechanisms of cardiotoxicity using a targeted microarray approach. At the end of the exposure, standard length, yolk area, blue sac disease (BSD) index and PAH body burden were measured, while the hearts were prepared for microarray analysis. Each exposure produced a unique toxicity profile. We observed that retene and the mixture, but not fluoranthene, significantly reduced growth by Day 14 compared to the control, while exposure to the mixture increased the BSD-index significantly from Day 3 onward. Body burden profiles were PAH-specific and correlated well with the exposure-specific upregulations of genes encoding for phase I and II enzymes. Exposure to the mixture over-represented pathways related to growth, amino acid and xenobiotic metabolism and oxidative stress responses. Alevins exposed to the individual PAHs displayed over-represented pathways involved in receptor signaling: retene downregulated genes with a role in G-protein signaling, while fluoranthene upregulated those involved in GABA signaling. Furthermore, exposure to retene and fluoranthene altered the expression of genes encoding for proteins involved in calcium- and potassium ion channels, which suggests affected heart structure and function. This study provides deeper understanding of the complexity of PAH toxicity and the necessity of investigating PAHs as mixtures and not as individual components.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland.
| | - Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Aleksei Krasnov
- Fisheries and Aquaculture Research, Norwegian Institute of Food, Ås, Norway
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| |
Collapse
|
13
|
Rigaud C, Härme J, Vehniäinen ER. Salmo trutta is more sensitive than Oncorhynchus mykiss to early-life stage exposure to retene. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109219. [PMID: 34744005 DOI: 10.1016/j.cbpc.2021.109219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023]
Abstract
Salmonids are known to be among the most sensitive fish to dioxin-like compounds (DLCs), but very little is known about the sensitivity of the brown trout (Salmo trutta), which has declined and is endangered in several countries of Europe and Western Asia. We investigated the sensitivity of brown trout larvae to a widespread dioxin-like PAH, retene (3.2 to 320 μg.L-1), compared to the larvae of a salmonid commonly used in toxicology studies, the rainbow trout (Oncorhynchus mykiss). Mortality, growth, cyp1a induction and the occurrence of deformities were measured after 15 days of exposure. Brown trout larvae showed a significantly higher mortality at 320 μg.L-1 compared to rainbow trout larvae. While the occurrence of deformities was only significantly increased at 320 μg.L-1 for the rainbow trout, brown trout larvae displayed pericardial edemas and hemorrhages already at 10 or 100 μg.L-1. cyp1a induction was increased significantly already at ≥3.2 μg.L-1 for the brown trout, versus ≥32 μg.L-1 for the rainbow trout. Least square regression analysis of the concentration-response relationships suggested that S. trutta larvae were at least 2 times more sensitive than O. mykiss larvae for cyp1a induction. The present study suggests that S. trutta larvae are more sensitive than O. mykiss larvae to a potent DLC, retene. As it is possible that S. trutta populations have declined partly because of pollution by DLCs, we recommend generating more data regarding the sensitivity of threatened fish populations, in order to ensure better risk assessment.
Collapse
Affiliation(s)
- Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Julia Härme
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
14
|
He X, Yuan T, Jiang X, Yang H, Zheng CL. Effects of contaminated surface water and groundwater from a rare earth mining area on the biology and the physiology of Sprague-Dawley rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144123. [PMID: 33360126 DOI: 10.1016/j.scitotenv.2020.144123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Previous studies have shown that an effective damage detection method for model rats from macro individual to micro cellular, was applied to assess the groundwater quality from rare earth metals tailings seepage. To determine whether it is universal method for measuring the toxicological damage caused by contaminated water around other mining areas to organisms at the organ-tissue-cell-chromosome-gene level. In this study, a rare earth mining area in North China was used as research base. Firstly, the core pollution factors in surface water and groundwater from five different sites were analyzed. Then, the degree of toxicological damage to Sprague-Dawley (SD) rats caused by contaminated water were systematically assessed using biological methods. Finally, the possible molecular mechanism of toxicological damage was further discussed. The synthesis results showed that the main pollution factors were some metal elements (Mn, Zn, Co, Ni) and rare earth elements (Sc, Nb, La, Ce, Pr, Dy and Y), which might cause significant DNA genetic damage to SD rats. Further, differential gene expression profile showed that DNA damage-inducible genes (Gadd45g and Ddit4), immunity-related genes (Mpo, Slpi and Elane) and two cancer-related genes (Mmp8 and Ltf) were used as a new prognostic and predictive biomarker for biosafety assessment. Therefore, this study provides a possible molecular mechanism for the toxicological damage, and also it provides a universal method to scientifically and effectively evaluate the water pollution risk for other mining areas.
Collapse
Affiliation(s)
- Xiaoying He
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Ting Yuan
- School of Energy and Environment, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Xinying Jiang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Hui Yang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Chun Li Zheng
- School of Energy and Environment, Inner Mongolia University of Science & Technology, Baotou 014010, China.
| |
Collapse
|
15
|
Rigaud C, Eriksson A, Rokka A, Skaugen M, Lihavainen J, Keinänen M, Lehtivuori H, Vehniäinen ER. Retene, pyrene and phenanthrene cause distinct molecular-level changes in the cardiac tissue of rainbow trout (Oncorhynchus mykiss) larvae, part 2 - Proteomics and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141161. [PMID: 32750582 DOI: 10.1016/j.scitotenv.2020.141161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are global contaminants of concern. Despite several decades of research, their mechanisms of toxicity are not very well understood. Early life stages of fish are particularly sensitive with the developing cardiac tissue being a main target of PAHs toxicity. The mechanisms of cardiotoxicity of the three widespread model polycyclic aromatic hydrocarbons (PAHs) retene, pyrene and phenanthrene were explored in rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to sublethal doses of each individual PAH causing no detectable morphometric alterations. Changes in the cardiac proteome and metabolome were assessed after 7 or 14 days of exposure to each PAH. Phase I and II enzymes regulated by the aryl hydrocarbon receptor were significantly induced by all PAHs, with retene being the most potent compound. Retene significantly altered the level of several proteins involved in key cardiac functions such as muscle contraction, cellular tight junctions or calcium homeostasis. Those findings were quite consistent with previous reports regarding the effects of retene on the cardiac transcriptome. Significant changes in proteins linked to iron and heme metabolism were observed following exposure to pyrene. While phenanthrene also altered the levels of several proteins in the cardiac tissue, no clear mechanisms or pathways could be highlighted. Due to high variability between samples, very few significant changes were detected in the cardiac metabolome overall. Slight but significant changes were still observed for pyrene and phenanthrene, suggesting possible effects on several energetic or signaling pathways. This study shows that early exposure to different PAHs can alter the expression of key proteins involved in the cardiac function, which could potentially affect negatively the fitness of the larvae and later of the juvenile fish.
Collapse
Affiliation(s)
- Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Andreas Eriksson
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Morten Skaugen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jenna Lihavainen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Heli Lehtivuori
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|