1
|
Wang H, Ren W, Xu Y, Wang X, Ma J, Sun Y, Hu W, Chen S, Dai S, Song J, Jia J, Teng Y. Long-term herbicide residues affect soil multifunctionality and the soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116783. [PMID: 39067076 DOI: 10.1016/j.ecoenv.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Residues of herbicides with the extensive applications may impact the soil ecosystem and ultimately threaten agricultural sustainability. However, the effects of long-term herbicide residues on soil multifunctionality and the soil microbial community remain poorly understood. Here, we evaluated relationships between soil multifunctionality and soil microbial communities with residual herbicide concentrations by surveying and analyzing 62 black soil samples collected from an agricultural area in northeastern China. Total residual herbicide concentrations varied from 35 to 568 μg/kg in the soil samples. The response of soil multifunctionality to increasing residual herbicide concentrations exhibited an inverted U-shaped relationship with a peak at approximately 310 μg/kg, with net mineralized organic nitrogen (Nm) and total nitrogen (TN) exhibiting the same trend. Microbial community richness was significantly lower in soil samples with high residual herbicide concentrations (> 310 μg/kg, HG) compared to low residual herbicide concentrations (< 310 μg/kg, LG). In addition, the relative abundances of specific keystone microbial genera differed significantly between LG and HG: norank_f_Acetobacteraceae, norank_f_Caldilineaceae, Candidatus_Alysiosphaera, and Gonytrichum. The relative abundances of these genera were also significantly correlated with soil multifunctionality. Structural equation models (SEMs) further showed that herbicide residues influenced soil multifunctionality by affecting these specific keystone genera. Our study demonstrates that long-term herbicide residues significantly impact the multifunctionality of agricultural black soil, where low concentrations stimulate while high concentrations inhibit, underscoring the need for reasonable application of herbicides to maintain soil ecosystem health.
Collapse
Affiliation(s)
- Hongzhe Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sensen Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiayin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Lin C, Liang H, Yang X, Zhan J, Yang Q. Voltage recovery from frozen microbial fuel cells in the laboratory and outdoor field reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173751. [PMID: 38839000 DOI: 10.1016/j.scitotenv.2024.173751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Extreme temperature variations are a problem that must be faced in the practical application of microbial fuel cells (MFCs), but MFCs are not extensively described for low and even freezing temperatures. This study assessed the effect of low-temperature shock on the power generation performance and microbial community structure of MFCs. Two scales of MFCs, the small (mL-MFC) and the large (L-MFC), were constructed in the laboratory and their performance was evaluated before and after freezing at -18 °C. The experimental results demonstrate that both MFCs were capable of rapidly restoring their voltage to the previous level after thawing. For the mL-MFC (rGO/Ag), the power density recovered from 194.30 ± 10.84 mW/m2 to 195.57 ± 4.02 mW/m2 after thawing. For L-MFC (carbon felt electrodes), the power density increased significantly from the initial 1.79 mW/m2 to 173.90 mW/m2 after thawing, but the performance degradation problem after reactor amplification still needs to be solved. The sediment microbial fuel cell (SMFC) was successfully constructed and operated in a natural outdoor environment to maintain high voltage output after the period of frost. Microbial analysis indicated after the frost period, psychrotolerant microorganisms enriched on the anode, such as Flavobacterium and Psychrobacter, while the relative abundance of anaerobic methanogenic bacterium decreased. Overall, freeze-thaw operations had a non-negative impact on the performance of MFCs and provided some references for their practical applications.
Collapse
Affiliation(s)
- Chunyang Lin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Haoran Liang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jingjing Zhan
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Qiao Yang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
3
|
Moradi M, Gao Y, Narenkumar J, Fan Y, Gu T, Carmona-Martinez AA, Xu D, Wang F. Filamentous marine Gram-positive Nocardiopsis dassonvillei biofilm as biocathode and its electron transfer mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168347. [PMID: 37935264 DOI: 10.1016/j.scitotenv.2023.168347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
This study investigated electrochemical characteristics of Gram-positive, Nocardiopsis dassonvillei B17 facultative bacterium in bioelectrochemical systems. The results demonstrated that anodic and cathodic reaction rates were catalyzed by this bacterium, especially by utilization of aluminium alloy as a substrate. Cyclic voltammogram results depicted an increase of peak current and surface area through biofilm development, confirming its importance on catalysis of redox reactions. Phenazine derivatives were detected and their electron mediating behavior was evaluated exogenously. A symmetrical redox peak in the range of -59 to -159 mV/SHE was observed in cyclic voltammogram of bacterial solution supplemented with 12 μM phenazine, a result consistent with cyclic voltammogram of a 5-d biofilm, confirming its importance as an electron mediator in extracellular electron transfer. Furthermore, the dependency of bacterial catalysis and polarization potential were studied. These results suggested that B17 biofilm behaved as a biocathode and transferred electrons to bacterial cells through a mechanism associated with electron mediators.
Collapse
Affiliation(s)
- Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Yu Gao
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Jayaraman Narenkumar
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Yongqiang Fan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China; Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA
| | | | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Homyok P, Rongsayamanont C, Wongkiew S, Limpiyakorn T. Sludge floc characteristics and microbial community in high-rate activated sludge and high-rate membrane bioreactor for organic recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167387. [PMID: 37777134 DOI: 10.1016/j.scitotenv.2023.167387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
High-rate activated sludge (HRAS) and high-rate membrane bioreactor (HRMBR) are considered as potential processes for organic recovery through bioflocculation and biosorption of particulate COD and colloidal COD with sludge flocs. In this study, bioflocculation and biosorption, in terms of sludge floc characteristics and microbial community, in HRAS and HRMBR was investigated in relation to organic recovery performance for low strength wastewater treatment. HRAS and HRMBR were operated at two different solids retention times (SRTs) of 2 and 0.8 days. Reducing the SRT of HRAS from 2.0 to 0.8 days resulted in failure in total COD (tCOD) removal efficiency (from 79 ± 2 to 34 ± 13 %) and lowering organic recovery (from 40.8 to 15.7 %). This contrasted with HRMBR, which showed high tCOD removal efficiency (84 ± 2 and 84 ± 1 %) and organic recovery (43.4 and 46.3 %) at both SRTs of 2.0 and 0.8 days. Analysis of sludge floc characteristics showed that the lower organic recovery of the HRAS operated at an SRT of 0.8 days could be associated with poor bioflocculation and biosorption, as evidenced by relatively larger floc size, higher extracellular polymeric substance, higher protein/polysaccharide ratio, and higher zeta potential value of the sludge. These characteristics were in contrast to the HRMBR operated at an SRT of 0.8 days, that exhibited the highest organic recovery among the reactors studied. The microbial taxa Bdellovibrio, Clostridium sensu stricto 9, Hyphomicrobium, and Ideonella could play a role in the poor bioflocculation and biosorption in HRAS. Rhodanobacter, Enterobacter, Terrimonas, Nakamurella, and Mizugakiibacter may be associated with bioflocculation and biosorption and organic recovery in HRMBR. The results of this study enhanced our understanding on the relationships between the microbial community, sludge floc characteristics, and organic recovery performance of HRAS and HRMBR for future optimization of the systems.
Collapse
Affiliation(s)
- Pratamaporn Homyok
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiwat Rongsayamanont
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Zhou L, Wu Y, Jiang Q, Sun S, Wang J, Gao Y, Zhang W, Du Q, Song X. Pyrolyzed sediment accelerates electron transfer and regulates rhodamine B biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167126. [PMID: 37739087 DOI: 10.1016/j.scitotenv.2023.167126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Electron transfer efficiency is a key factor that determined the removal of environmental pollution through biodegradation. Electron shuttles exogenously addition is one of the measures to improve the electron transfer efficiency. In this study, the sediment was pyrolyzed at different temperature to investigate its properties of mediating electron transfer and removing of rhodamine B (RhB) in microbial electrochemical systems (MESs). Sediments pyrolyzed at 300 °C (PS300) and 600 °C (PS600) have promoted electron transfer which led to 16 % enhancement of power generation while the result is reversed at 900 °C (PS900). Although power output of PS300 and PS600 are similar, the removal efficiency of RhB is not consistent, which may be caused by the biofilm structure difference. Microbial community analysis revealed that the abundance of EAB and toxicity-degrading bacteria (TDB) in PS600 was 6 % higher than that in PS300. The differentiation of microbial community also affected the metabolic pathway, the amino synthesis and tricarboxylic acid cycle were primarily upregulated with PS600 addition, which enhanced the intracellular metabolism. However, a more active cellular anabolism occurred with PS300, which may have been triggered by RhB toxicity. This study showed that pyrolytic sediment exhibits an excellent ability to mediate electron transport and promote pollutant removal at 600 °C, which provides a techno-economically feasible scenario for the utilization of low-carbon-containing solid wastes.
Collapse
Affiliation(s)
- Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yongliang Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qian Jiang
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jinting Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province/School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qing Du
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xin Song
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Liu X, Zhao C, Xu T, Liu W, Chen Q, Li L, Tan Y, Wang X, Dong Y. Pyrite and sulfur-coupled autotrophic denitrification system for efficient nitrate and phosphate removal. BIORESOURCE TECHNOLOGY 2023; 384:129363. [PMID: 37336446 DOI: 10.1016/j.biortech.2023.129363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The inefficiency of nitrogen removal in pyrite autotrophic denitrification (PAD) and the low efficiency of PO43--P removal in sulfur autotrophic denitrification (SAD) limit their potential for engineering applications. This study examined the use of pyrite and sulfur coupled autotrophic denitrification (PSAD) in batch and column experiments to remove NO3--N and PO43--P from sewage. The effluent concentration of NO3--N was 0.32 ± 0.11 mg/L, with an average Total nitrogen (TN) removal efficiency of 99.14%. The highest PO43--P removal efficiency was 100% on day 18. There was a significant correlation between pH and the efficiency of PO43--P removal. Thiobacillus, Thiomonas and Thermomonas were found to be dominant at the bacterial genus level in PSAD. Additionally, the abundance of Thermomonas in the PSAD was greater than that observed in the SAD reactor. This result indirectly indicates that the PSAD system has more advantages in reducing N2O.
Collapse
Affiliation(s)
- Xuzhen Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Changsheng Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China.
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Luzhen Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Yu Tan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Xiaokai Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Yanan Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| |
Collapse
|
7
|
Xin X, Xie J, Wang Y, Li L, Li W, Lv S, Wen Z, He J, Xin Y. Sludge source-redox mediators obtainment and availability for enhancing bioelectrogenesis and acidogenesis: Deciphering characteristics and mechanisms. WATER RESEARCH 2023; 236:119974. [PMID: 37084579 DOI: 10.1016/j.watres.2023.119974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Anaerobic biological treatment was regarded as one of promising options for realizing concurrent WAS reduction, stabilization and bioenergy/bioresource recycle. But the relatively low treatment efficiency limited its spreading application toward larger scale considerably in China. Aimed at such barrier, this study offered a novel enhancing strategy for achieving high-efficiency of bioenergy/bioresource recycle from WAS anaerobic treatment via improving bioelectrogenesis/acidogenesis using sludge source-redox mediators (SSRMs). SSRMs not only facilitated bioeletrogenesis with an increasing efficiency of 36% for voltage output and 39% for bioelectricity bioconversion, but also enhanced acidogenesis of WAS with a mean elevating efficiency of 37.5% of volatile fatty acids (VFAs) production within 5 d Mechanistic investigations indicated that SSRMs had a potential influence on improving the protein and carbohydrate metabolisms-related genes' expression for enhancing bioelectrogenesis and acidogenesis. Moreover, SSRMs exerted roles of electrochemical "catalysts" or as terminal electron acceptors with affecting functional proteins of complexes of Ⅰ and Ⅳ in electron transfer chains for improving electron transfer efficiency. Meanwhile, the core members' abundance, microbial diversity and community distributive evenness were prompted concurrently for carrying out superior bioelectrogenesis and acidogenesis. A schematic illustration was established for demonstrating the mechanism of SSRMs for enhancing bioelectrogenesis and acidogenesis via changing microbial metabolism functions, enhancing electron transfer efficiency, and regulating functional genes' expression of functional proteins (up-regulating cytochrome c oxidase and down-regulating-NADH dehydrogenase). This study provided an effective enhancing strategy for facilitating WAS bioconversion to bioenergy/bioresource with well-process sustainability.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China.
| | - Jiaqian Xie
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Yanfang Wang
- North China municipal engineering design &research institute CO., LTD, Tianjin 300381, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ying Xin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
8
|
Chen R, Huang J, Li X, Yang C, Wu X. Functional characterization of an efficient ibuprofen-mineralizing bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130751. [PMID: 36641849 DOI: 10.1016/j.jhazmat.2023.130751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Ibuprofen (IBU) is a widely used non-steroidal anti-inflammatory drug (NSAID), which has attracted widespread attention due to its high frequency of environmental detection, non-degradability and potential ecological risks. However, little is known about the functional characterization of the highly efficient IBU-mineralizing consortium. In this study, an IBU-mineralizing consortium C6 was obtained by continuous enrichment of the original consortium C1 accumulated the metabolite of 2-Hydroxyibuprofen (2HIBU). Methylobacter, Pseudomonas, and Dokdonella spp. were significantly enriched in the consortium C6. Streptomyces sp. had a relative abundance of about 0.01 % in the consortium C1 but extremely low (< 0.001 %) in the consortium C6. Subsequently, two IBU degraders, Streptomyces sp. D218 and Pseudomonas sp. M20 with detection of 2HIBU or not, were isolated from the consortia C1 and C6, respectively. These results imply that the degradation of IBU in the consortia C1 and C6 may be mainly mediated by key players of Streptomyces and Pseudomonas, respectively. This study showed that the composition of the core functional strains of the bacterial community structure was changed by continuous enrichment, which affected the degradation process of IBU. These findings provide new insights into our understanding of the biotransformation process of NSAIDs and provide valuable strain resources for bioremediation.
Collapse
Affiliation(s)
- Ruomu Chen
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiaomeng Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Chen Yang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
9
|
Wang W, Wang K, Zhao Q, Yang L. Maximizing electron flux, microbial diversity and gene abundance in MFC powered electro-Fenton system by optimizing co-addition of lysozyme and 2-bromoethanesulfonate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116067. [PMID: 36049306 DOI: 10.1016/j.jenvman.2022.116067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, a microbial fuel cell powered electro-Fenton system (MFCⓅEFs) was established in order to overcome the shortcomings of low electron flux and unexpected methane production, while simultaneously treating excess sludge (ES, substrate) and refractory syringic acid (SA). A strategy of co-adding lysozyme (LZ, as ES degradation catalyst) and 2-bromoethanesulfonate (BES, as methane inhibitor) into ES was optimized in MFCⓅEFs to maximize electron flux, microbial community diversity and functional gene abundance. The removal of sludge total chemical oxygen demand (TCOD) achieved 81.69% in 25 d under an optimal co-addition strategy (40.41 mg/gSS of LZ, 27.03 mmol/L of BES, adding on 22.8 h of the7th day), with a simultaneous high degradation of SA (99.30% in 25 h). Correspondingly, a maximum power density of 3.35 W/m3 was achieved (only 0.62 W/m3 from the control), which effectively realizes in-situ micro-electricity generation and utilization for bioelectric Fenton processes. Moreover, 42.25% of the total charges were employed for bio-electricity generation. The electricigens of Pseudomonas, Acinetobacter and Chlorobium showed effective enrichment, while the abundance of methanogenesis archaea was extremely decreased. Functional genes associated with methanogenesis including mtaA, hdra, and mcrA were effectively inhibited. The life cycle assessment along with an optimized co-addition strategy illustrated a beneficial environmental effect, particularly in terms of ecosystem quality and climate change. Above all, an enhanced synchronous degradation of excess sludge and refractory pollutants had been realized in a green and environmentally friendly way.
Collapse
Affiliation(s)
- Weiye Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin Yang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Huang Q, Liu Y, Ranjan Dhar B. A multifaceted screening of applied voltages for electro-assisted anaerobic digestion of blackwater: Significance of temperature, hydrolysis/acidogenesis, electrode corrosion, and energy efficiencies. BIORESOURCE TECHNOLOGY 2022; 360:127533. [PMID: 35764278 DOI: 10.1016/j.biortech.2022.127533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
A microbial electrolysis cell-assisted anaerobic digester (MEC-AD) was operated with vacuum toilet blackwater at different applied voltages (0-1.6 V) at room temperature (R20). A parallel MEC-AD was operated at 35 °C (R35) to provide a kinetics index at mesophilic temperature. Both reactors failed at 1.6 V due to the alkaline pH created by anodic corrosion. In R20, the best performance was observed at 1.2 V, with methane yield, COD removal, hydrolysis and acidogenesis efficiency increased by 59.9%, 27.0%, 52.0%, and 44.9%, respectively, compared to those of 0 V. Enrichment of hydrolytic and syntrophic bacteria (e.g., Clostridium, Bacteroidales, Sedimentibacter, Syntrophomonas) and increased abundance of genes encoding complex organics (e.g., proteins, carbohydrates, lipids) metabolism in R20 at 1.2 V corresponded to the enhanced hydrolysis/acidogenesis processes. R20 at 1.2 V generated 1.16 times more net energy than R35 at the optimum voltage for methane yield (0.8 V), indicating ambient temperature operation of MEC-AD systems would be a more sustainable strategy.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
11
|
Liu SH, Lee KY. Performance of a packed-bed anode bio-electrochemical reactor for power generation and for removal of gaseous acetone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115062. [PMID: 35436710 DOI: 10.1016/j.jenvman.2022.115062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The packed anode bioelectrochemical system (Pa-BES) developed in this study is a type of BES that introduces waste gas into a cathode and then into an anode, thereby providing the cathode with sufficient oxygen and reducing the amount of oxygen to the anode to promote the output of electricity. When the empty-bed residence time was 45 s and the liquid flowrate was 35 mL/s, the system achieved optimal performance. Under these conditions, removal efficiency, mineralization efficiency, voltage output, and power density were 93.86%, 93.37%, 296.3 mV, and 321.12 mW/m3, respectively. The acetone in the waste gas was almost completely converted into carbon dioxide, indicating that Pa-BES can effectively remove acetone and has the potential to be used in practical situations. A cyclic voltammetry analysis revealed that the packings exhibited clear redox peaks, indicating that the Pa-BES has outstanding biodegradation and power generation abilities. Through microbial community dynamics, numerous organics degraders, electrochemically active bacteria, nitrifying and denitrifying bacteria were found, and the spatial distribution of these microbes were identified. Among them, Xanthobacter, Bryobacter, Mycobacteriums and Terrimonawas were able to decompose acetone or other organic substances, with Xanthobacter dominating. Bacterium_OLB10 and Ferruginibacter are the electrochemically active bacteria in Pa-BES, while Ferruginibacter is the most abundant in the main anode, which is responsible for electron collection and transfer.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| | - Kun-Yan Lee
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| |
Collapse
|
12
|
Wang Y, Liang B, Kang F, Wang Y, Yuan Z, Lyu Z, Zhu T, Zhang Z. Denitrification Performance in Packed-Bed Reactors Using Novel Carbon-Sulfur-Based Composite Filters for Treatment of Synthetic Wastewater and Anaerobic Ammonia Oxidation Effluent. Front Microbiol 2022; 13:934441. [PMID: 35875584 PMCID: PMC9301263 DOI: 10.3389/fmicb.2022.934441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
To avoid nitrate pollution in water bodies, two low-cost and abundant natural organic carbon sources were added to make up the solid-phase denitrification filters. This study compared four novel solid-phase carbon-sulfur-based composite filters, and their denitrification abilities were investigated in laboratory-scale bioreactors. The filter F4 (mixture of elemental sulfur powder, shell powder, and peanut hull powder with a mass ratio of 6:2.5:1.5) achieved the highest denitrification ability, with an optimal nitrate removal rate (NRR) of 723 ± 14.2 mg NO3–-N⋅L–1⋅d–1 when the hydraulic retention time (HRT) was 1 h. The HRT considerably impacted effluent quality after coupling of anaerobic ammonium oxidation (ANAMMOX) and solid-phase-based mixotrophic denitrification process (SMDP). The concentration of suspended solids (SS) of the ANAMMOX effluent may affect the performance of the coupled system. Autotrophs and heterotrophs were abundant and co-existed in all reactors; over time, the abundance of heterotrophs decreased while that of autotrophs increased. Overall, the SMDP process showed good denitrification performance and reduced the sulfate productivity in effluent compared to the sulfur-based autotrophic denitrification (SAD) process.
Collapse
Affiliation(s)
- Yao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Zhihong Yuan
- Shenyang Zhenxing Environmental Technology Co., Ltd., Shenyang, China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- *Correspondence: Tong Zhu, , orcid.org/0000-0002-3460-7316
| | - Zhijun Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- Zhijun Zhang, , orcid.org/0000-0003-4281-5331
| |
Collapse
|
13
|
Liang B, Kang F, Wang Y, Zhang K, Wang Y, Yao S, Lyu Z, Zhu T. Denitrification performance of sulfur-based autotrophic denitrification and biomass‑sulfur-based mixotrophic denitrification in solid-phase denitrifying reactors using novel composite filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153826. [PMID: 35157874 DOI: 10.1016/j.scitotenv.2022.153826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Both the elemental sulfur-based autotrophic denitrification (ESAD) and the biomass‑sulfur-based mixotrophic (simultaneous autotrophic and heterotrophic) denitrification processes (BSMD) are efficient methods for removing nitrate from wastewater. However, a comparative analysis of the denitrification capacity of the BSMD and ESAD in the packed bed reactors is still lacking. In this paper, corncob powder was selected as the biomass source to prepare biomass‑sulfur-based composite filter (BSCF) for the BSMD process. The denitrification performances of the three identical lab-scale bioreactors packed with varying elemental sulfur-based composite filters (ESCFs) were compared under varying loading conditions, and the optimal ESCF of the ESAD system was 2:1 by weight ratio of sulfur powder to shell powder. In pilot-scale experiments, the results showed that BSCF could decrease the sulfate productivity and gave better denitrification performance than the ESCF with the optimal nitrate removal rate (NRR) of 504 ± 12.3 mg NO3--N·L-1·d-1. In addition, the two-stage flushing strategy (for the removal of aged sludge) can effectively improve the denitrification capacity, while the denitrification will be inhibited when the influent dissolved oxygen concentration was higher than 4.5 mg L-1. Moreover, the heterotrophs and autotrophs were abundant in the reactors. Over time, the abundance of autotrophs increased while that of heterotrophs decreased. Overall, BSCF could be a promising and economic technology to improve the effluent quality.
Collapse
Affiliation(s)
- Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Chemistry and Chemical Engineering, Ningxia Vocational Technical College of Industry and Commerce, Yinchuan 750021, PR China; Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Yao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China.
| |
Collapse
|
14
|
Lai BL, Xiao ZH, Jiang PY, Xie Y, Li N, Liu ZQ. Two‐dimensional Ag/Fe‐N‐C nanosheets as efficient cathode catalyst to improve power‐generation performance of microbial fuel cell. ChemElectroChem 2022. [DOI: 10.1002/celc.202101699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bi-Lin Lai
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Hui Xiao
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Peng-Yang Jiang
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Yong Xie
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Nan Li
- Guangzhou University School of Chemistry and Chemical Engineering 230 Wai Huan Xi Road 510006 Guangzhou CHINA
| | - Zhao-Qing Liu
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
15
|
Liu SH, Lin HH, Lin CW. Gaseous isopropanol removal in a microbial fuel cell with deoxidizing anode: Performance, anode characteristics and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127200. [PMID: 34537644 DOI: 10.1016/j.jhazmat.2021.127200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
A deoxidizing packing material (DPM) with an encapsulated deoxidizing agent (DA) was developed to construct the packed anodes of a trickle-bed microbial fuel cell (TB-MFC) for treating waste gas. The encapsulated DA can consume O2 in waste gas and increase the voltage output and power density (PD) of the constructed TB-MFC. The DPM effectively enables the circulating water in TB-MFC for maintaining a low level of dissolved oxygen for 80 h. The results revealed that when the concentration of isopropanol (IPA) in waste gas was 0.74 g/m3, the TB-MFC (DPM with DA) exhibited an IPA removal efficiency (RE) of up to 99.7%. When DPM with DA was used as the packing material of the TB-MFC (486.6 mW/m3), the PD was 2.54 times that obtained when using coke as the packing material (191.6 mW/m3). The next-generation sequencing results demonstrated that because the oxygen content of the MFC anode chamber decreased over time in the TB-MFC, the richness of anaerobic electrogens (Pseudoxanthomonas, Flavobacterium, and Ferruginibacter) in the packing materials was increased. These electrogens mainly attached to the DPM, and IPA-degraders appeared in the circulating water of the TB-MFC. This enabled the TB-MFC to simultaneously achieve a high voltage output and IPA RE.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Hsin-Hui Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC.
| |
Collapse
|
16
|
Hoang AT, Nižetić S, Ng KH, Papadopoulos AM, Le AT, Kumar S, Hadiyanto H, Pham VV. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. CHEMOSPHERE 2022; 287:132285. [PMID: 34563769 DOI: 10.1016/j.chemosphere.2021.132285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is lauded for its potentials to solve both energy crisis and environmental pollution. Technologically, it offers the capability to harness electricity from the chemical energy stored in the organic substrate with no intermediate steps, thereby minimizes the entropic loss due to the inter-conversion of energy. The sciences underneath such MFCs include the electron and proton generation from the metabolic decomposition of the substrate by microbes at the anode, followed by the shuttling of these charges to cathode for electricity generation. While its promising prospects were mutually evinced in the past investigations, the upscaling of MFC in sustaining global energy demands and waste treatments is yet to be put into practice. In this context, the current review summarizes the important knowledge and applications of MFCs, concurrently identifies the technological bottlenecks that restricted its vast implementation. In addition, economic analysis was also performed to provide multiangle perspectives to readers. Succinctly, MFCs are mainly hindered by the slow metabolic kinetics, sluggish transfer of charged particles, and low economic competitiveness when compared to conventional technologies. From these hindering factors, insightful strategies for improved practicality of MFCs were formulated, with potential future research direction being identified too. With proper planning, we are delighted to see the industrialization of MFCs in the near future, which would benefit the entire human race with cleaner energy and the environment.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Agis M Papadopoulos
- Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Postal Address: GR-54124, Thessaloniki, Greece
| | - Anh Tuan Le
- School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Sunil Kumar
- Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| | - H Hadiyanto
- Center of Biomass and Renewable Energy (CBIORE), Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang, 50271, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo, SH Semarang, 50241, Indonesia.
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
17
|
Liang B, Kang F, Yao S, Zhang K, Wang Y, Chang M, Lyu Z, Zhu T. Exploration and verification of the feasibility of the sulfur-based autotrophic denitrification integrated biomass-based heterotrophic denitrification systems for wastewater treatment: From feasibility to application. CHEMOSPHERE 2022; 287:131998. [PMID: 34450373 DOI: 10.1016/j.chemosphere.2021.131998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The sulfur-based autotrophic denitrification (SAD) and the solid organic carbon-based denitrification processes are both efficient techniques to remove nitrate from wastewater, and the hydrogen ions generated by the SAD process would be consumed in the heterotrophic denitrification process. Therefore, it is possible to improve the denitrification capacity when the solid organic carbon was added into a SAD reactor. In this study, corncob powder and sawdust powder were selected as solid organic carbon sources, and the sulfur-based autotrophic denitrification integrated biomass-based heterotrophic denitrification system was formed (SBD). The laboratory and field experiments showed that SBD could shorten the start-up period, decrease the sulfate productivity, and maintain a good denitrification performance when treated wastewater. According to the field experiment results, when the HRT was 1 h, the effluent total nitrogen (TN) concentration was always lower than 15 mg L-1. In addition, nitrite inhibition was observed when the concentration of nitrite in the reactors reached above 30 mg L-1. The mixture of elemental sulfur powder, shell powder, corncob powder, and sawdust powder with a mass ratio of 6:2:1:1 was the optimal filter for the SBD system, with an average nitrate reduction rate (NAR) of 420 mg NO3-N·L-1·d-1 obtained at the end of the study. During the whole operation, the major autotrophs in the SBD systems were Thermomonas, Ferritrophicum, and Thiobacillus, while the major heterotrophs were Saprospiraceae, Ferruginibacter, Dokdonella, and Simplicispira. Overall, the SBD system was a feasible and practically favorable way to remove nitrate from wastewater.
Collapse
Affiliation(s)
- Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Mingdong Chang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110004, PR China.
| |
Collapse
|
18
|
He J, Xin X, Pei Z, Chen L, Chu Z, Zhao M, Wu X, Li B, Tang X, Xiao X. Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts. BIORESOURCE TECHNOLOGY 2021; 337:125452. [PMID: 34186332 DOI: 10.1016/j.biortech.2021.125452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This first-attempt study illustrated the microbial cooperative interactions related to bioelectricity generation from the mixture of sludge fermentation liquid (SFL) and fruit waste extracts (FWEs) via microbial fuel cells (MFCs). The optimal output voltages of 0.65 V for SFL-MFCs, 0.51 V for FWEs-MFCs and 0.75 V for mixture-MFCs associated with bioelectricity conversion efficiencies of 1.061, 0.718 and 1.391 kWh/kg COD were reached, respectively. FWEs addition for substrates C/N ratio optimization contributed considerably to increase SFL-fed MFCs performance via triggering a higher microbial diversity, larger relatively abundance of functional genes and microbial synergistic interactions with genera enrichment of Clostridium, Alicycliphilus, Thermomonas, Geobacter, Paludibaculum, Pseudomonas, Taibaiella and Comamonas. Furthermore, a conceptual illustration of co-locating scenario of wastewater treatment plant(s), waste sludge in situ acidogenic fermentation, fruit waste collection/crushing station and MFC plant was proposed for the first time, which provided new thinking for future waste sludge treatment toward maximizing solid reduction and power recovery.
Collapse
Affiliation(s)
- Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zheng Pei
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Lingyu Chen
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xuewei Wu
- Guangzhou Sewage Purification CO., LTD., Guangzhou 510655, PR China
| | - Biqing Li
- Guangzhou Sewage Purification CO., LTD., Guangzhou 510655, PR China
| | - Xia Tang
- Guangzhou Sewage Purification CO., LTD., Guangzhou 510655, PR China
| | - Xiannian Xiao
- Guangzhou Sewage Purification CO., LTD., Guangzhou 510655, PR China
| |
Collapse
|
19
|
Maquia ISA, Fareleira P, Videira e. Castro I, Soares R, Brito DRA, Mbanze AA, Chaúque A, Máguas C, Ezeokoli OT, Ribeiro NS, Marques I, Ribeiro-Barros AI. The Nexus between Fire and Soil Bacterial Diversity in the African Miombo Woodlands of Niassa Special Reserve, Mozambique. Microorganisms 2021; 9:microorganisms9081562. [PMID: 34442641 PMCID: PMC8400031 DOI: 10.3390/microorganisms9081562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: the Miombo woodlands comprise the most important vegetation from southern Africa and are dominated by tree legumes with an ecology highly driven by fires. Here, we report on the characterization of bacterial communities from the rhizosphere of Brachystegia boehmii in different soil types from areas subjected to different regimes. (2) Methods: bacterial communities were identified through Illumina MiSeq sequencing (16S rRNA). Vigna unguiculata was used as a trap to capture nitrogen-fixing bacteria and culture-dependent methods in selective media were used to isolate plant growth promoting bacteria (PGPB). PGP traits were analysed and molecular taxonomy of the purified isolates was performed. (3) Results: Bacterial communities in the Miombo rhizosphere are highly diverse and driven by soil type and fire regime. Independent of the soil or fire regime, the functional diversity was high, and the different consortia maintained the general functions. A diverse pool of diazotrophs was isolated, and included symbiotic (e.g., Mesorhizobium sp., Neorhizobium galegae, Rhizobium sp., and Ensifer adhaerens), and non-symbiotic (e.g., Agrobacterium sp., Burkholderia sp., Cohnella sp., Microvirga sp., Pseudomonas sp., and Stenotrophomonas sp.) bacteria. Several isolates presented cumulative PGP traits. (4) Conclusions: Although the dynamics of bacterial communities from the Miombo rhizosphere is driven by fire, the maintenance of high levels of diversity and functions remain unchanged, constituting a source of promising bacteria in terms of plant-beneficial activities such as mobilization and acquisition of nutrients, mitigation of abiotic stress, and modulation of plant hormone levels.
Collapse
Affiliation(s)
- Ivete Sandra Alberto Maquia
- Forest Research Center, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
- TropiKMan Doctoral Program, NOVA SBE, 2775-405 Carcavelos, Portugal
- Biotechnology Center, Eduardo Mondlane University, Maputo 3453, Mozambique;
| | - Paula Fareleira
- National Institute of Agricultural and Veterinary Research, I.P. (INIAV, I.P), 2780-157 Oeiras, Portugal; (P.F.); (I.V.e.C.); (R.S.)
| | - Isabel Videira e. Castro
- National Institute of Agricultural and Veterinary Research, I.P. (INIAV, I.P), 2780-157 Oeiras, Portugal; (P.F.); (I.V.e.C.); (R.S.)
| | - Ricardo Soares
- National Institute of Agricultural and Veterinary Research, I.P. (INIAV, I.P), 2780-157 Oeiras, Portugal; (P.F.); (I.V.e.C.); (R.S.)
| | - Denise R. A. Brito
- Biotechnology Center, Eduardo Mondlane University, Maputo 3453, Mozambique;
| | | | - Aniceto Chaúque
- Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, Maputo 3453, Mozambique; (A.C.); (N.S.R.)
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Obinna T. Ezeokoli
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa;
| | - Natasha Sofia Ribeiro
- Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, Maputo 3453, Mozambique; (A.C.); (N.S.R.)
| | - Isabel Marques
- Forest Research Center, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
- Correspondence: (I.M.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Forest Research Center, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
- Correspondence: (I.M.); (A.I.R.-B.)
| |
Collapse
|
20
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144429. [PMID: 33385808 DOI: 10.1016/j.scitotenv.2020.144429] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly. Dark fermentation involves anaerobic microbes which degrade carbohydrate rich substrate and produce hydrogen. Lignocellulosic biomass is an abundantly available raw material and can be utilized as an economic and renewable substrate for biohydrogen production. Although there are many hurdles, continuous advancements in lignocellulosic biomass pretreatment technology, microbial fermentation (mixed substrate and co-culture fermentation), the involvement of molecular biology techniques, and understanding of various factors (pH, T, addition of nanomaterials) effect on biohydrogen productivity and yield render this technology efficient and capable to meet future energy demands. Further integration of biohydrogen production technology with other products such as bio-alcohol, volatile fatty acids (VFAs), and methane have the potential to improve the efficiency and economics of the overall process. In this article, various methods used for lignocellulosic biomass pretreatment, technologies in trends to produce and improve biohydrogen production, a coproduction of other energy resources, and techno-economic analysis of biohydrogen production from lignocellulosic biomass are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill 171005, H.P, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Andhra Pradesh 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|